All-sky search for almost monochromatic gravitational waves using supercomputers

Andrzej Królak & Michał Bejger

KIT SCC, 17.11.15

- * Gravitation and gravitational waves,
- * Sources of gravitational waves,
- * Gravitational wave detectors,
- * Rotating neutron stars as sources,
 - * Gravitational wave data analysis,
 - * All-sky search pipeline,
 - * Massive parallelization,
- * Current and future plans.

4 fundamental interactions, but our knowledge about the Universe is based on EM. Let's directly probe the other long-range interaction: gravitation.

Gravitational waves

Quadrupole moment

 $G/c^4 = 8,3 \cdot 10^{-50} [s^2/(kg m)]$

4/26

How to make a gravitational wave

v it

Case #1: your own lab! M = 1000 kg R = 1 m f = 1000 Hz r = 300 m

 $h \sim 10^{-35}$

 $h \approx \frac{32\pi^2 GMR^2 f_{orb}^2}{rc^4} \quad !!!$

1000 kg

1000 kg

How to make a gravitational wave that might be detectable!

- Case #2: A 1.4 solar mass binary neutron star pair
 - M = 1.4 M_☉ R = 20 km f = 1000 Hz r = 10²³ m

 $h \sim 10^{-20}$

Sources of gravitational waves

Periodic sources

 Binary Pulsars, Spinning neutron stars, Low mass X-ray binaries

Coalescing compact binaries

- Classes of objects: NS-NS, NS-BH, BH-BH
- Physics regimes: Inspiral, merger, ringdown
- Numerical relativity will be essential to interpret GW
- waveforms

Burst events

e.g. Supernovae with asymmetric collapse

Stochastic background

- Primordial Big Bang (t = 10⁻²² sec)
- Continuum of sources
 The Unexpected !

Some Questions Gravitational Waves May Be Able to Answer

Fundamental Physics

- Is General Relativity the correct theory of gravity?
- How does matter behave under extreme conditions?
- What equation of state describes a neutron star?
- Are black holes truly bald?

Astrophysics, Astronomy, Cosmology

- Do compact binary mergers cause GRBs?
- What is the supernova mechanism in core-collapse of massive stars?
- How many low mass black holes are there in the universe?
- Do intermediate mass black holes exist?
- How bumpy are neutron stars?
- Is there a primordial gravitational-wave residue?
- Can we observe populations of weak gravitational wave sources?
- Can binary inspirals be used as "standard sirens" to measure the local Hubble parameter?

Right ascension [hours]

Michelson-Morley type interferometric detector

Gravitational wave is registered by measuring temporal change in arms' length (changes in the interferometric pattern):

9/26

Gravitational wave detectors' network

Gravitational wave detectors' network: LIGO (USA), GEO600 (UK, Germany), Virgo (France, Italy, Hungary, Netherlands and Poland), KAGRA (Japan), LIGO India...

Virgo detector (3km arm length)

Polgraw group in Virgo project and LIGO-Virgo consortium:

- * IMPAN, CAMK, OAUW, NCBJ, UZg, UwB.
- * Theory, data analysis, large-scale computation, detector engineering.

LIGO/Virgo sensitivity

LIGO (US, Hanford & Livingston) and Virgo detectors (FR+IT+NL+HU+PL, Pisa) have reached the desired initial sensitivity (2002-2011).

Currently ongoing - the Advanced Detector Era (2015 - ...)

Two LIGO detectors (Livingston & Hanford) began O1 observational run on September 18th 2015 (end of run: January 12th 2016).

Advanced Detector Era: 2015 - ...

Sensitivity of AdLIGO and AdVirgo increased by an order of magnitude \rightarrow distance reach $\times 10$ (sensitivity $\propto 1/r$ - detection of amplitude, not energy of the wave!)

Neutron stars = very dense, magnetized stars

* The most relativistic, material objects in the Universe: compactness $M/R \simeq 0.5$.

The mystery of neutron star interiors

(Courtesy: F. Weber)

Dense matter in conditions impossible to obtain on Earth!

Continuous GWs from spinning neutron stars

Characteristics:

- 1. Long-lived: T > T_{obs}
- 2. Nearly periodic: $f_{GW}~\sim~\nu$

Generation mechanisms (we need a time varying quadrupole moment):

1. Mountains

(elastic stresses, magnetic fields)

- 2. Oscillations (r-modes)
- 3. Free precession (magnetic field)
- 4. Accretion

(drives deformations from r-modes, thermal gradients, magnetic fields)

Courtesy: McGill U.

Example: weak monochromatic signals hidden in the noise

In this case Fourier transform is sufficient to detect the signal (a matched filter method):

$$F = \int_0^{\tau_0} x(t) \exp(-i\omega t) dt$$

Signal-to-noise

$$SNR = h_0 rac{\sqrt{T_0}}{\sigma_{noise}}$$

Since the detector is on Earth, influence of planets and Earth's rotation changes the signal's amplitude and phase.

- * Signal is almost monochromatic: pulsars are slowing down,
- \star To analyze, we have to demodulate the signal (detector is moving),
- \rightarrow precise ephemerids of the Solar System used.

Calculation of the F-statistic

To estimate how well the model matches with the data x(t), we calculate \mathcal{F} ,

$$\mathcal{F} = rac{2}{S_0 T_0} \left(rac{|F_a|^2}{\langle a^2
angle} + rac{|F_b|^2}{\langle b^2
angle}
ight)$$

where S_0 is the spectral density, T_0 is the observation time, and

$$F_a = \int_0^{\tau_0} x(t) a(t) \exp(-i\phi(t)) dt, F_b = \dots$$

and a(t), b(t) are amplitude modulation functions (depend on the detector location and sky position of the source),

$$h_1(t) = a(t) \cos \phi(t), \quad h_2(t) = b(t) \cos \phi(t),$$

 $h_3(t) = a(t) \sin \phi(t), \quad h_4(t) = b(t) \sin \phi(t),$

related to the model of the signal $(h_i, i = 1, ..., 4)$

$$h(t)=\sum_{i=1}^{4}A_{i}h_{i}(t).$$

For triaxial ellipsoid model: dependence on the extrinsic $(h_0, \psi, \iota, \phi_0)$ and intrinsic (f, f, α, δ) parameters.

Methods of data analysis

Computing power $\propto T_0^5 \log(T_0)$. Coherent search of $T_0 \simeq 1 \text{ yr}$ of data would require zettaFLOPS (10^{21} FLOPS) \rightarrow currently impossible $\stackrel{\sim}{\frown}$

Solution: divide data into shorter length time frames ($T_0 \simeq 2$ days)

$$f_{i} \underbrace{\begin{array}{c} T_{0} \\ (i,j) \\ (i-1,j) \end{array}}^{T_{0}} T_{0} \\ (i,j+1) \\ B = \frac{1}{2\delta t}$$

* narrow frequency bands sampling time $\delta t = 1/2B$, number of data points $N = T/\delta t \rightarrow N = 2TB$

 \rightarrow feasible on a petaFLOP computer.

Example search space (Virgo Science Run 1). Red: no data, yellow: bad data, green: good data.

Typical all-sky search: parameter space

- * Narrow (1 Hz) frequency bands *f*:
 [100 1000] Hz,
- Spin-down f₁ range proportional to f:

$$[-1.6 \times 10^{-9} \frac{f}{100 \text{Hz}}, 0] \text{ Hz s}^{-1}$$

★ All-sky search: number of sky positions $\alpha(f), \delta(f) \propto f$.

Comparison of the $f - \dot{f}$ plane searched (yellow) with that of other recent all-sky searches:

In our astrophysical applications, the 4-dim parameter space (f, f, α, δ) is big (in VSR1 $\simeq 10^{17}$ F-statistic evaluations)

All-sky pipeline

- $\star~$ Input data generation (Raw time domain data $\sim~$ PB)
- ★ Pre-processing $\rightarrow \sim TB$ (input time series, detector ephemerids and grid of parameters),
- Stage 1: F-statistic search for candidate GW signals (the most time-consuming part of the pipeline)
- \rightarrow 10¹⁰ candidates/detector, 100 TB of output.
 - Stage 2: Coincidences among candidate signals from different time segments,
 - Stage 3: Followup of interesting coincidences evaluation of F-statistic along the whole data span.

Most expensive part: search for candidate signals

- Suitable algorithms that allow for Fast Fourier Transforms,
- Optimized grid of parameters minimum number of operation to reach desired sensitivity,
 - \rightarrow partial demodulation before the inner spindown loop (only once per sky position),
- Sky positions completely indepedent of each other
 - \rightarrow "Embarasingly parallel problem"

First level of parallelization: over the sky positions

Sky positions (here in parameter grid coordinates) are independent \rightarrow Round-robin scheduling.

Internal MPI scheduling algorithm to run multiple instances of parallel all-sky search as one massively parallel computation:

- Initialization and estimation of the available and necessary parallel resources,
- Construction of different tasks as groups for requested frequencies,
- Size of Group of tasks estimated using frequency scaling,
- Distribution and decomposition of groups,
- * Bookkeeping.

Scheduling and scalability

Amount of computation scales well with the band frequency.

SkyFarmer was tested up to 50k CPU tasks.

- Scalability is good, but not optimal:
 - communication per task starts to dominate,
 - suboptimal domain decomposition due to simplified scheduling

Current and future plans

- ★ CPU SkyFarmer will be used to analyze the incoming O1 data (40 2000 Hz, 4 months), using data divided in 2 day segments
- $\rightarrow \simeq 5 \times 10^6$ CPU-hours needed,
- \rightarrow For better sensitivity with 6-day segments, we need $\approx 10^8$ CPU-hours.
 - * Scaling higher for future exaFLOP computers hybrid code with GPU.
- \rightarrow single-GPU code already exists CUDA $\,$ cuFFT allowing for considerable speedup (> 50×).
 - * Analysing data from future runs: O2, O3,... until 2020 and beyond,
 - * 3 detectors (LIGO + Virgo) or more (+KAGRA, LIGO India...)