Home | Sitemap | english  | Impressum | Datenschutz | KIT
Thorsten Zirwes

Thorsten Zirwes

Gebäude449
Raum295
Tel.+49 721 608-29278

E-Mailthorsten zirwesMvo3∂kit edu
Scientific Computing and Simulation
Mitarbeiter / Mitarbeiterinnen

Research

Combustion is still the most important energy source. Today, over 80 % of the world's primary energy consumption is supplied by fossil fuels [1]. In order to meet the climate goals despite the world's growing energy demands, it is important to increase the efficiency and reduce the pollutant emissions of future combustion systems. But this is only possible with a better understanding of the fundamental physical and chemical processes that underlie combustion.

An important technique for studying combustion processes is Computational Fluid Dynamics (CFD), where computers are used to perform numerical simulations. A special CFD method is the Direct Numerical Simulation (DNS). In DNS, no simplifications are used to model the complex combustion phenomena and the gas flow. Instead, the governing mathematical equations are solved directly. In order to do this, the simulation has to resolve all details that are relevant in the combustion: the (turbulent) flow field has to be resolved down to the smallest structures, which might be of the order of a few micrometers, while the computational domain my span meters. Additionally, the thin reactive layer of the flames, where most of the chemical reactions take place, has to be captured in detail as well. Detailed chemical reaction mechanisms have to be used, which can include tens of thousands of different chemical reactions for describing the combustion. This also constrains the temporal resolution of the simulations, because even the fastest reactions have to be considered.

Because of this, DNS of combustion is very computationally expensive and only possible to perform on supercomputers. We developed a DNS solver for turbulent flames in OpenFOAM [2], which uses an optimized chemistry implementation and is coupled to Cantera [3] in order to compute detailed molecular fluxes. Figure 1 shows scaling tests performed on the ForHLR II Cluster at the SCC and the Hazel Hen Cluster at the HLRS. The results were obtained with OpenFOAM v1612+ on a computational grid with 176 million cells on up to 28800 CPU cores.

Figure 1: Scaling tests with OpenFOAM v1612+.
Source: Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H. 2017. Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM. In High Performance Computing in Science and Engineering '17. Springer International Publishing

The results of DNS are very valuable because they allow to gain deeper insights in the mutual interaction between the flame and the fluid flow field, which is still not fully unterstood [4]. DNS can also be used to investigate phenomena which are not accessible through experiments. Figure 2 shows a 2D cut of the temperature field from a simulation of a model burner, which generates a flame where the fuel and oxidizer are only partially premixed. Figure 3 shows the heat release rate as well as a vorticity iso-surface to illustrate the highly turbulent flow in the central jet region.

Figure 2: Temperature field of a partially premixed flame.
Figure 3: Vorticity iso-surface colored by fluid velocity and heat release rate.

 

Publications

Sebbar, N.; Zirwes, T.;Habisreuther, P.; Bozzelli, J.W.; Bockhorn, H.; D. Trimis, D. 2018. S2 + Air Combustion: Reaction Kinetics, Flame Structure and Laminar Flame Behavior, Energy & Fuels (submitted)

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H; Trimis, D. 2018Improved Vectorization for Efficient Chemistry Computations in OpenFOAM for Large Scale Combustion Simulations, in: W.E. Nagel; D.H. Kröner; M.M. Resch. High Performance Computing in Science and Engineering '18, Springer, 2018 (submitted)

Denev, J.A.; Naydenova, I.; Zhang, F.; Zirwes, T.; Bockhorn, H. 2018. Unsteady Pure Straining Effects on Lean
Premixed Flames of Different Lewis Numbers, in: W.E. Nagel; D.H. Kröner; M.M. Resch. High Performance Computing in Science and Engineering '18, Springer, 2018 (submitted)

Zhang, F.; Zirwes, T.; Denev, J.A.; Habisreuther, P.; Zarzalis, N.; Trimis, D.; Bockhorn, H. 2018. LES of Turbulent Flow in a Bomb Vessel Generated by Rotating Fans with OpenFOAM, in: W.E. Nagel; D.H. Kröner; M.M. Resch. High Performance Computing in Science and Engineering '18, Springer, 2018 (submitted)

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H; Trimis, D. 2018. Detailed Transport and Performance Optimization for Massively Parallel Simulations of Turbulent Combustion with OpenFOAM. The 13th OpenFOAM Workshop. June 24-29 2018, Shanghai, China.

Zhang, F.; Zirwes, T.; Nawroth, H; Li, N.; Habisreuther, P; Bockhorn, H.; Trimis, D.; Paschereit, C.O. 2018. Spectral Response of Different Combustion Models in Les of Direct Combustion Noise. 41st Meeting ot the Italien Section of The Combustion Institute. German and Italian Sections of The Combustion Institute, I8

Zhang, F.; Zirwes, T.; Habisreuther, P.; Zarzalis, N.; Trimis, D.; Bockhorn, H. 2018. Large Eddy Simulation of Turbulent Flow in a Fan-stirred Combustion Vessel. 41st Meeting ot the Italien Section of The Combustion Institute. German and Italian Sections of The Combustion Institute, I10

Sebbar, N.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D. 2018. Investigation of S2 + Air Combustion. German and Italian Sections of the Combustion Institute. 41st Meeting of the Italien Section of The Combustion Insitute. May 23-26 2018, Sorrento, Italy, VI10

Zirwes, T.; Zhang, F.; Häber, T.; Bockhorn, H. 2018. Ignition of combustible mixtures by hot particles at varying relative speeds. Combustion Science and Technology, pp. 1-18. doi: 10.1080/00102202.2018.1435530

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H. 2017. Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM. In High Performance Computing in Science and Engineering '17. Springer International Publishing, 2017, pp. 189-204. doi: 10.1007/978-3-319-68394-2_11

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P; Bockhorn, H.; Zarzalis, N. 2017. Effect of Elevated Pressure on the Flame Response To Stretch of Premixed Flames. 28. Deutscher Flammentag, 6 September - 7 September, Darmstadt, Deutschland

Zirwes, T.; Zhang, T.; Häber, T.; Roth, T.; Bockhorn, H. 2017. Direct numerical simulation of ignition by hot moving particles. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, July 30 - August 04, Boston, USA, ICDERS2017-1121 

Zirwes, T.; Zhang, F.; Denev, J.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N. 2017. Response of Local and Global Consumption Speed to Stretch in Laminar Steady-State Flames. In Proceedings of the 8th European Combustion Meeting – 2017, April 18-21, Dubrovnik, Croatia, ECM2017.0379 

Häber; T.; Zirwes, T; Roth, D.; Zhang, F.; Bockhorn, H.; Maas, U. 2017. Numerical Simulation of the Ignition of Fuel/Air Gas Mixtures Around Small Hot Particles. Zeitschrift für Physikalische Chemie, 231(10), pp. 1625-1654. DOI:10.1515/zpch-2016-0933 

Zhang, F.; Zirwes,T.; Habisreuther, P.; Bockhorn, H. 2017. Towards Reduction of Computational Cost for Large-Scale Combustion Modeling with a Multi-Regional Concept. Progress in Computational Fluid Dynamics, accepted for publication .

Zhang, F.; Zirwes,T.; Habisreuther, P.; Bockhorn, H. 2017. Effect of unsteady stretching on the flame local dynamics. Combustion and Flame, 175, 170-179. DOI:10.1016/j.combustflame.2016.05.028 

Zhang, F.; Baust, T.; Zirwes, T.; Denev , J.A.; Habisreuther, P.; Zarzalis, N.; Bockhorn, H. 2016. Impact of infinite thin flame approach on the evaluation of flame speed using spherically expanding flames. Energy Technology 5(7) p. 1055–1063, DOI:10.1002/ente.201600573 

Zhang, F.; Zirwes,T.; Nawroth, H.; Habisreuther, P.; Bockhorn, H.; Paschereit, C.O. 2016. Combustion generated noise: an environment related issue for future combustion systems. Energy Technology 5(7) p. 1045 –1054, DOI:10.1002/ente.201600526 

Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H. A DNS Analysis of the Evaluation of Heat Release Rates from Chemiluminescence Measurements in Turbulent Combustion. in: W.E. Nagel; D.H. Kröner; M.M. Resch. High Performance Computing in Science and Engineering '16, Springer, 2016, pp. 229-243. doi:10.1007/978-3-319-47066-5 

Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H. Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach. in: W.E. Nagel; D.H. Kröner; M.M. Resch. High Performance Computing in Science and Engineering '15, Springer, 2015, pp. 267--280.  doi:10.1007/978-3-319-24633-8

Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N. Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM. in: W.E. Nagel; D.H. Kröner; M.M. Resch. High Performance Computing in Science and Engineering '14, Springer, 2014, pp. 221--236. doi:10.1007/978-3-319-10810-0_16

See also HERE 

 

Presentations and Posters

Zirwes, T.; Zhang, F.;  Habisreuther, P.; Denev, J.A.; Bockhorn, H; Trimis, D. 2018. Highly Resolved Numerical Simulation of Regime Transition in Mixed-Mode Flames. 37th International Symposium on Combustion, 29 July - 3 August 2018, Dublin, Ireland (Poster)

Zirwes, T.; Denev, J.A.; Barthel, R.; Schneider, O. 2018. Bridging the Gap between Domain Experts and Computer Scientists with Tiger Teams in the bwHPC-C5 Project. 13th World Congress on Computational Mechanics / 2nd Pan American Congress on Computational Mechanics,New York City, July 22-27, 2018

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H; Trimis, D. 2018. Detailed Transport and Performance Optimization for Massively Parallel Simulations of Turbulent Combustion with OpenFOAM. The 13th OpenFOAM Workshop. June 24-29 2018, Shanghai, China (Presentation)

Zhang, F.; Zirwes, T.; Habisreuther, P.; Zarzalis, N.;  Trimis, D.;Bockhorn, H. 2018. Spectral Response of Different Combustion Models in LES of Direct Combustion Noise. 41st Meeting of the Italien Section of The Combustion Insitute. May 23-26 2018, Sorrento, Italy (Presentation)

Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D.; Nawroth, H.; Paschereit, C.O. 2018. Large Eddy Simulation of Turbulent Flow in a Fan-Stirred Combustion Vessel. 41st Meeting of the Italien Section of The Combustion Insitute. May 23-26 2018, Sorrento, Italy (Presentation)

Sebbar, N.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D. 2018. Investigation of S2 + Air Combustion. German and Italian Sections of the Combustion Institute. 41st Meeting of the Italien Section of The Combustion Insitute. May 23-26 2018, Sorrento, Italy (Poster)

Zirwes, T.; Zhang, F.; Habisreuther, P; Denev, J.A.; Bockhorn, H.; Trimis, D. 2018. Database and Prediction of the Regime Transition for the Sandia/Sydney Mixed-Mode Flame. Combustion-DNS Strategy & Data Analysis Workshop, May 22-23 2018, Sorrento, Italy (Poster)

Zirwes, T.; Zhang, F.; Habisreuther, P; Denev, J.A.; Bockhorn, H.; Trimis, D. 2018. A Reliability Assessment of Highly Resolved Numerical Simulation for Turbulent Combustion. Combustion-DNS Strategy & Data Analysis Workshop, May 22-23 2018, Sorrento, Italy (Poster)

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P;  Bockhorn, H.; Trimis, D. 2018. Generation of a Database with Detailed Numerical Simulation of Mixed-Mode Combustion. NIC Symposium, 2018, Jülich, Germany.

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H. 2017. Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM, 20th Results and Review Workshop of the HLRS, Oct 05 -- Oct 06, 2017, Stuttgart, Germany (Presentation)

Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P; Bockhorn, H.; Zarzalis, N. 2017. Effect of Elevated Pressure on the Flame Response To Stretch of Premixed Flames. 28. Deutscher Flammentag , 6 Sep - 7 Sep, Darmstadt, Germany (Presentation)

Zirwes, T.; Zhang, F.; Häber, T.; Roth, D.; Bockhorn, H. 2017. Direct numerical simulation of ignition by hot moving particles. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, July 30 - August 04, Boston, USA (Presentation)

Zirwes, T.; Zhang, F.; Denev, J.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N. 2017. Response of Local and Global Consumption Speed to Stretch in Laminar Steady-State Flames, in Proceedings of the European Combustion Meeting, April 18-21, Dubrovnik, Croatia (Presentation)

Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H. 2016. A DNS Analysis of the Correlation of Heat Release Rate with Chemiluminescence Emissions in Turbulent Combustion. The 19th Results and Review Workshop of the HLRS, October 13-14, Stuttgart, Germany (Presentation)

Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Nawroth, H.; Paschereit, C.O. 2016. LES and DNS of Combustion and Combustion Generated Noise. 2nd Colloquium on Combustion Dynamics and Noise, September 19-22, Menaggio, Italy (Presentation)

Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H. 2016. Flame Response to Unsteady Stretching. 36th International Symposium on Combustion, July 31 - August 5,, Seoul, Korea (Poster)

Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H. 2016. Identification of correlation between OH* chemiluminescence and heat release rate with direct numerical simulation. NIC Symposium, 11.--12. February 2016, Jülich, Deutschland (Poster)

Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H. 2015. Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach. High performance Computing in Science & Engineering}, 5. October 2015, HLRS Stuttgart, Germany (Presentation)

Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Nawroth, H.; Paschereit, C.O. 2015. Direct combustion noise of premixed flames: experiments and simulation using compressible LES and DNS. Numerical Combustion, 19.--22. April 2015, Avignon, Frankreich (Poster)

Zhang, F.; Bonart, H.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N.; 2014. Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM. 29. September 2014, HLRS Stuttgart (Presentation)

Zhang, F.; Bonart, H.; Zirwes, T.; Habisreuther, P.; Bockhorn, H. 2014. On Direct Numerical Simulation of Turbulent Combustion with OpenFOAM.NIC Symposium, Jülich, Germany, (Poster).

 

See also HERE 

Miscellaneous

Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J.A.; Bockhorn, H. 2018. Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM, InSiDE, Innovatives Supercomputing in Deutschland, Spring 2018

Zhang, F.; Zirwes, T. 2017. Numerische Simulation turbulenter Verbrennung auf Hochleistungsrechnern des SCC. SCC News, Ausgabe 1 2017, 18 - 20.

Zirwes, T. 2015. Optimierung einer Simulationssoftware für Verbrennungsprozesse. DVGW energie | wasser-praxis, wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Ausgabe 03/15, 2015, pp. 70--72

Zirwes, T. 2013. Weiterentwicklung und Optimierung eines auf OpenFOAM basierten DNS Lösers zur Verbesserung der Effzienz und Handhabung. Bachelorthesis, Karlsruher Institut für Technologie, URN: urn:nbn:de:swb:90-375385 

Awards & Honors

May 2018: Best Presentation Award

Joint Meeting of the German and Italian Sections of the Combustion Institute, 41st Meeting on Combustion, Sorrento, May 2018

 

February 2018: KHYS Internship Grant

Internship program with Beijing University, China
    

October 2017: Golden Spike Award

High Performance Computing Center Stuttgart (HLRS). Awarded for Scientific relevance (top in their research field) and optimal usage of HPC equipment in terms of optimization, parallelization and overall performance.

 

July 2016: Master (Summa cum Laude)

Master in Chemical Engineering and Process Engineering at the Karlruhe Institute of Technology.
        

June 2015: Scholarship from the Manfred Lautenschläger Foundation

for “Scientific Excellence“ in the MINT field.

 

September 2014: Student Award from the DVGW

for the best Bachelor’s thesis on gas fuels awarded by the “Deutscher Verein des Gas- und Wasserfaches” (DVGW).