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Summary. We want to develop a tool to distribute in a black-box environment
automatically a given arbitrary 2-D or 3-D mesh equally among a given number of
processors. First we sort the nodes by their x-coordinate locally on each processor,
afterwards globally by a sophisticated algorithm where we make use of the message
passing paradigm. This results in a one-dimensional domain decomposition that may
also run over dividing lines. The elements are sent around in a ring shift afterwards,
where each processor takes the necessary element information out of the current
basket in each tact. To be able to set up the linear system of equations resulting from
the discretization purely local without communication, we also create an overlap,
i.e. we also store on each processor the necessary node and element information of
neighbouring processors. The re-sorting of refined meshes serves the purpose of load
balancing, and for the resulting matrix it also serves as bandwidth optimizer.

1 Introduction

Basically, there are three main methods for the numerical solution of nonlinear
PDEs, cf. [Langtangen, 2003, Larsson and Thomée, 2003]: the finite difference
method (FDM) that dominated the early development of numerical analysis of
PDEs, the finite element method (FEM) that has been introduced by engineers
in the 1960s and that has become the mostly used numerical method for
PDEs over the last decades, and the finite volume method that is between the
FDM and the FEM (widely used in CFD). Furthermore, there is the boundary
element method, but this method is applicable only to linear systems of PDEs.
We combine the advantages of the first two methods as we use a FDM on an
unstructured FEM mesh which we call Finite Difference Element Method
(FDEM). The FEM mesh is only needed for the structure of the space, after
we have collected the neighbour nodes for each grid node, we do not need the
elements any more, and thus we have a meshfree method.

The organization of this paper is as follows: In Sect. 2 we give a short
survey of FDEM. There we describe the generation of the difference and error
formulas and the computation of the error estimate. The parallelization of
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the FDEM progam package necessitates the re-sorting of the mesh which
results in an automatic domain decomposition that we explain in Sect. 3. To
demonstrate the usefulness of our method, we give a 2-D and a 3-D example
in Sect. 4, before we finally conclude.

2 The Finite Difference Element Method

We want a robust black-box solver to solve nonlinear systems of elliptic and
parabolic PDEs in 2-D and 3-D with arbitrary nonlinear boundary conditions
(BCs) where we use an unstructured mesh on an arbitrary domain. The do-
main may be composed of several subdomains with different systems of PDEs.
Then the solutions of the subdomains are coupled by coupling conditions over
the dividing lines. Together with the solution we compute a reliable error es-
timate that we also use for the order control and for a local mesh refinement.
Considered together, these properties cannot be found in any other code for
the numerical solution of PDEs.

We discuss the solution method in 2-D, the extension to 3-D is straight-
forward, see [Schönauer and Adolph, 2005]. We abbreviate the PDE and BC
operator for the unknown solution u(t, x, y) as follows:

Pu ≡ P (t, x, y, u, ut, ux, uy, uxx, uyy, uxy) = 0 , (1)

where u and Pu are vectors with l components (system of l PDEs). If we
include t and ut the system is parabolic, otherwise it is elliptic.

A basic paper on FDEM is [Schönauer and Adolph, 2001], a progress
report is [Schönauer and Adolph, 2003]. A detailed report is available online,
see [Schönauer and Adolph, 2005].

2.1 The Generation of Difference and Error Formulas

For the generation of the difference and error formulas we make a polynomial
approach in x,y of order q which then will be the consistency order:

Pq(x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + · · ·+ am−1y

q . (2)

We need m = (q +1)(q +2)/2 nodes to determine the m unknown coefficients
a0 to am−1.

In order to get explicit difference formulas we make use of the principle
of the influence polynomials. For a node i the influence polynomial Pq,i of
order q is defined by

Pq,i(x, y) =
{

1 for (xi, yi)
0 for (xj , yj), j �= i .

(3)

In the FEM, the basis functions are always defined on a unit element. The
shape of an element is prescribed, and on this shape the nodes are prescribed
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according to the order. In FDEM there is no shape. The nodes are arbitrarily
distributed in the space. When the nodes are selected, it is a meshfree method.

With the influence polynomials the discretized solution which we denote
by ud (the index d means “discretized”) can be represented by

ud(x, y) := Pq(x, y) =
m−1∑
i=0

uiPq,i(x, y) . (4)

By the evaluation of Pq,i for a grid point x = xj , y = yj , we obtain the
coefficients of an interpolation polynomial at a node j. The difference formulas
are the partial derivatives of (4). E.g. for ux we get

ux,d :=
∂Pq(x, y)

∂x
=

m−1∑
i=0

ui
∂Pq,i(x, y)

∂x
. (5)

One of the most critical sections is how we choose the m nodes on an un-
structured FEM mesh. The nodes are collected in rings (2-D) or balls (3-D),
respectively, around the central node, see Fig. 1. For reasons of simplicity, we
also speak of “rings” in 3-D. We use logical masks to get the next neighbour
ring of a given ring from the element list (gives nodes of an element) and the
inverted element list (gives elements in which a node occurs). We do not only

�

q=2

q=4

q=6

Fig. 1. Illustration for ring search

collect m nodes up to the consistency order q but m + r nodes up to order
q + ∆q because there may be linear dependencies on straight lines. A second
criterion is that we collect at least q + 2 rings (because of the error formula).
This results in m + r equations for the m coefficients. We want to have nodes
in the difference stars that are close to the central node. Therefore, we ar-
range the equations according to the ring structure and allow the crossing of
a ring limit only if the current pivot element |pivot| ≤ εpivot. The parameters
∆q and εpivot determine the quality of the difference and error formulas and
therefore are the key for the whole solution process. As we must determine m
influence polynomials that generate the unit matrix as the right hand sides,
we must invert the matrix in reality, see [Schönauer and Adolph, 2001, (27),
(28)].
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2.2 The Discretization Error Estimate and the Error Equation

As we have formulas of arbitrary order q, we get an easy access to the estimate
of the discretization error, e.g. for the derivative ux

dx = ux,d,q+2−ux,d,q (6)
dexact = ux −ux,d,q (7)

where ux,d,q denotes the difference formula of order q, i.e. the discretization
error is defined by the difference to the order q + 2. In (7) we show the
exact discretization error and we see that the derivative is replaced by a
“better” formula for the estimate which holds only for sufficiently fine grid.
Equation (6) is the key for our explicit error access. This estimate has a built-
in self-control: If the higher order formula is not essentially better, we get a
large error estimate that shows the failure of the method.

Pu (1) is an arbitrary nonlinear function of its arguments. Therefore, we
linearize system (1) with the Newton-Raphson method and then discretize
the resulting linear Newton-PDE by replacing e.g. for the derivative ux

ux ⇐ ux,d + dx , (8)

and analogously for the other derivatives. After linearizing also in the dis-
cretization errors, we finally get the error equation for the overall error ∆ud:

∆ud = ∆uPu + ∆uDt + ∆uDx + ∆uDy + ∆uDxy (level of solution)

= Q−1
d [(Pu)d + Dt + {Dx + Dy + Dxy}] . (level of equation)

(9)

Here Qd denotes the large sparse matrix resulting from the discretization. The
inverse Q−1

d is never explicitly computed as it is a full matrix. Instead, the
system is solved iteratively. (Pu)d is the discretized Newton residual and the
Dµ are discretization error terms that result from the linearization in the dµ,
e.g.

Dx =
∂Pu

∂ux
dx +

∂Pu

∂uxx
dxx . (10)

The Newton correction ∆uPu is computed from

Qd∆uPu = (Pu)d . (11)

The other error terms in the first row of (9) are only used for the error control.
If we applied these terms, we had no error estimate any more. This approach
also implies that we can explicitly follow the effect of a discretization error to
the level of solution.

3 Automatic Domain Decomposition

We have a black-box for the PDEs and for the domain, i.e. the user may solve
any system of elliptic or parabolic PDEs in 2-D or 3-D on any unstructured
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FEM grid that may also consist of several subdomains coupled by coupling
conditions. Then the subdomains are separated by internal boundaries (di-
viding lines) over which we must not differentiate, see Fig. 2(a). However, the
program code must be efficiently parallelized for distributed memory parallel
computers with MPI because the numerical solution of large PDE problems
needs much computation time and memory. This must even be fulfilled after
the mesh has been refined locally several times, so that there are elements of
many different refinement stages, see Fig. 2(b) for a part of a refined mesh
with elements of 4 different refinement stages.

The solution is as simple as effective: we re-sort the nodes and elements
stored on the processors globally by x-coordinate, and we also store on the
processors necessary node and element information of nodes and elements that
are owned by neighbour processors, which results in an automatic 1-D domain
decomposition with overlap, see Fig. 2(a) and Fig. 5 below.

(a) (b)

P (1)

P (2)

P (3)

ip1 ip2 ip3 ip4

dividing line

Fig. 2. (a) Domain of solution with 2 dividing lines and illustration of 1-D domain
decomposition on np = 4 processors; (b) grid after 3rd refinement

3.1 Global Mesh Re-sorting Algorithm

Why is it necessary to re-sort the mesh? From Fig. 3 we learn that we need
nodes of all 4 processors for the difference star of node 254 (Fig. 3(a)), i.e.
we either need much communication to generate the difference formulas or
we have to store nodes of all processors on each processor. As both is not
an efficient way to parallelize a program code we re-sort the nodes so that
we only need nodes of the neighbour processor(s) for the difference star of
this node (now node 223), see Fig. 3(b). The node re-sorting algorithm also
performs an efficient load balancing across the processors, especially after the
mesh has been refined locally.

We use a parallel global re-sort algorithm where we first sort the nodes
locally on each processor by x-coordinate. For the global re-sorting we need
2(np−1) steps on np processors, for illustration see Table 1, and there are up
to np/2 processors active in parallel.

In step 1 processor 1 sends its sorted nodes to the right neighbour proces-
sor 2. Processor 2 merges the two sorted node lists in step 2 and sends the first
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Fig. 3. Illustration of node numbering on np = 4 processors, index 1–4 means
processor number: (a) numbering by mesh generator; (b) numbering after global
re-sorting of the nodes by x-coordinate

part to processor 3. In step 3 processor 3 merges the nodes and sends the first
part to processor 4, whereas processor 2 sends the second part of its nodes to
processor 3. This is continued up to step np − 1 when processor np = 8 re-
ceives new nodes for the first time. In the second half of the algorithm the first
np − 1 processors proceed the same way as before, and processor np merges
the received nodes with its own nodes and sends the part with the lowest
x-coordinates to the current target processor (from 1 to np− 1) in each step.

Table 1. Illustration of the global node re-sorting algorithm on np = 8 processors

Step
Proc. 1 2 3 . . . 7 8 9 . . . 13 14

1 S R

2 R M S S R

3 R M S R

4 R S

5 M S R M S S

6 M S R M S R M S R R

7 M S R M S R M S R S R

8 R M S R M S R M S R M S

M: Merge, S: Send, R: Receive

The elements and boundary nodes are read from the mesh file in parallel,
and each processor puts its data into a basket. These baskets are sent around
in a ring-shift in np tacts, and in each tact each processor takes out the data
it needs, see Fig. 4. For the elements we need 2 ring-shifts as we first have to
determine the owning processor of each element (an element is owned by the
processor that owns the leftmost node of this element).

For the boundary nodes we compare the received boundary node numbers
to the node numbers of the own nodes in each tact. Matching node numbers
are stored on the processor, non-matching nodes are sent to the next neighbour
processor. For the (sliding) dividing line nodes we proceed the same way.
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mesh file

proc. ip1 ip2 · · · ipnp−1 ipnp

new
data

shifted in
ring to

the right

old
data

(static)
. . .

Fig. 4. Distribution of the elements and boundary nodes

3.2 Generation of Overlap

As we want to execute the computation of the large sparse matrix Qd and the
r.h.s. (Pu)d purely local without communication, we also have to store on a
processor ip the necessary node and element information of its left and right
neighbour processor(s). This is indicated as overlap, see Fig. 5.

ip2 ip3 ip4 ip5 ip6 ip7

xleft,4 xright,4xmin,4 xmax,4

xoverlap xoverlap

Fig. 5. Illustration of the overlap

The width of the overlap xoverlap depends on the consistency order q and
the mean edge length of the grid and is computed so that two criterions are
fulfilled: we must collect enough nodes and enough rings. Therefore, an overlap
may also extend over several processors but we do not necessarily store the
information of all nodes and elements of an overlap processor. Furthermore,
the number of overlap processors on the left and right side may be different,
only the width of the overlaps is always the same, see Fig. 5.

When the data with the overlap has been distributed to the processors,
each processor generates its part of the matrix Qd and of the r.h.s. (Pu)d

without communication. The global dependency is made by the numerical
solution of the linear system of equations for which we need message passing
again.
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4 Numerical Examples

To demonstrate the usefulness of the FDEM, we present two examples in this
section. Both are problems for which we got the PDEs from an academic
partner. The computations have been carried out on the HP XC4000 with
2.6 GHz AMD Opteron processors and InfiniBand 4X interconnect at the
University of Karlsruhe, Germany.

4.1 The Numerical Simulation of a Microreactor

We simulate numerically the mixing and the chemical reactions in a microre-
actor. Here a laminar jet enters from a pipe, perpendicular to the main flow in
a channel. One chemical component enters through the main channel, another
one through the pipe. They react and produce a third chemical component.

We have six variables, as there are two velocity components, the pressure
and three chemical components. So we need a system of six PDEs: global
continuity equation, two momentum equations for the mixture, two continuity
equations for the entering chemical components, and Dalton’s law.

In order to get a mean relative estimated error in the 1% region, we have
to use a very fine grid. We use a grid with 2561 × 641 nodes in the channel
and 161 × 321 nodes in the pipe, resulting in 1,693,121 nodes. We compute
with consistency order q = 4, and we use 128 processors.

The most interesting result is the distribution of the reaction product. The
maximum of the global relative estimated error is 0.75 (75%), the mean error
is 0.19%, i.e. the maximum error only occurs locally. The CPU time for the
master processor 1 is 17.6h. Due to the limited space, we refer to [Adolph and
Schönauer, 2007b] for further details.

An interesting by-product of the global node re-sorting is that it works as
a bandwidth optimizer. For this example, we have 10,158,726 unknowns which
therefore is the bandwidth of the full matrix if we define the bandwidth as the
difference from the main diagonal to the outermost non-zero element. Before
the node re-sorting, the bandwidth of the resulting large sparse matrix Qd is
10,096,384, after the re-sorting the bandwidth is 24,697, i.e. about 0.24% of the
original bandwidth. By the SSP bandwidth optimizer [Zundel and Schönauer,
2001] that has been developed by ourselves and that is an improved Cuthill-
McKee algorithm, we get a bandwidth of 9,663 so that it is safe to say that
our “global node re-sorting” bandwidth optimizer is quite good.

4.2 The Heat Conduction in a Power Module with 6 Power Chips

The simulation of the temperature in a power semiconductor module is a 3-D
parabolic problem with two subdomains that are coupled by a sliding dividing
line (interior boundary over which we must not differentiate, non-matching
grids, see [Schönauer and Adolph, 2001]). In the upper subdomain, we have
six power chips that have the same power dissipation of 250W/Chip. On the
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bottom surface, cooling is applied, either by a convective liquid or gas (air)
stream. We want to compute the temperature distribution on the top surface
after 50 sec.

As we have only the temperature as variable, we only need one PDE, the
heat conduction equation. This is a linear PDE, but the boundary condition
for the cooling at the bottom side is nonlinear.

We use a grid with 237 × 117 × 9 nodes in the upper subdomain, and
119 × 59 × 9 nodes in the lower subdomain. We compute with consistency
order q = 4, and we use 32 processors.

The maximum of the global relative estimated error is 0.78% in the upper
subdomain and 0.22% in the lower subdomain. The mean errors in the two
subdomains are 0.02% (upper) and 0.004% (lower), respectively. The CPU
time for master processor 1 is 42.0 h for 73 time steps. Again, we refer to
[Adolph and Schönauer, 2007a] for further details due to the limited space.

For this example, we have 312,750 unknowns which is the bandwidth of the
full matrix. Before the node re-sorting, the bandwidth of the resulting large
sparse matrix Qd is 306,502, after the re-sorting the bandwidth is 11,037, i.e.
about 3.6% of the original bandwidth. By the SSP bandwidth optimizer, we
get a bandwidth of 5,607 (1.8% of 306,502).

We also carried out a scalability test for this problem. We repeated the
computation with the same problem size on 64, 128, 256 and 512 processors.
This is not the usual way to examine the scalability of a code but because
of the mandatory LU preconditioning it is impossible to perform scalability
tests by increasing the problem and the number of processors uniformly as
usual, see [Adolph and Schönauer, 2007a].

The CPU time on 64 processors is 24.2h, on 128 processors it is 11.0h, on
256 processors it is 5.9 h, and on 512 processors it is 6.4 h. The computation
time is reduced roughly by the factor 2 if we double the number of processors.
For 512 processors, the communication overhead strongly affects the compu-
tation time. As more than 99% of the computation time is comsumed by the
linear solver LINSOL, there is still space for improvement.

5 Concluding Remark

We have developed a black-box PDE solver that is able to solve any nonlin-
ear system of elliptic or parabolic PDEs on any unstructured domain in 2-D
and 3-D that may even consist of several subdomains with different PDEs.
Together with the solution we compute an error estimate which is a unique
feature for such a general black-box. To set up the resulting linear system
of equations purely local, we re-sort the nodes globally by x-coordinate. Fur-
thermore, we also store necessary node and element information of neighbour
processors on each processor which results in an automatic 1-D domain de-
composition with overlap and built-in bandwidth optimizer. Above all, the
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FDEM program package is efficiently parallelized on distributed memory par-
allel computers by the means of MPI.

As the use of such a code is only possible by well-trained experts, we offer a
service: In academic or industrial cooperations, the partner gives us his PDEs,
and we, the experts, solve them for him. Up to now, we were able to solve all
systems of PDEs we were confronted with.
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