

Performance of and experiences with Lustre over a long distance InfiniBand connection

Roland Laifer

STEINBUCH CENTRE FOR COMPUTING - SCC

Overview

- Lustre systems at KIT
 - and details of our complex InfinBand fabric
- Investigation of Lustre related InfiniBand (IB) problems
 - based on two examples
- Lustre performance over long distance IB
 - for throughput and metatdata

Lustre systems at KIT - diagram

Lustre systems at KIT - details

System name	pfs2	pfs3	pfs4
Users	universities, all clusters	universities, tier 2 cluster (phase 1)	universities, tier 2 cluster (phase 2)
Lustre server	DDN	DDN	DDN
version	Exascaler 2.3	Exascaler 2.1	Exascaler 2.3
# of clients	3100	540	1200
# of servers	21	17	23
# of file systems	4	3	3
# of OSTs	2*20, 2*40	1*20, 2*40	1*14, 1*28, 1*70
Capacity (TiB)	2*427, 2*853	1*427, 2*853	1*610, 1*1220, 1*3050
Throughput (GB/s)	2*8, 2*16	1*8, 2*16	1*10, 1*20, 1*50
Storage hardware	DDN SFA12K	DDN SFA12K	DDN ES7K
# of enclosures	20	20	16
# of disks	1200	1000	1120

Karlsruhe Institute of Technology

Long distance connection - overview

- Two dark fibres for reliability
 - Allow transparent failover
 - IB failover same as with redundant switches
 - Length is 28 and 33 km
- Use the same dark fibres for different protocols
 - 10 GE, 100 GE, IB, FC
 - Underlying technology is dense wavelength division multiplexing (DWDM)
 - Spacing was reduced from 100 GHz to 50 GHz to provide additional channels for IB

Long distance connection - details

- Mellanox MetroX IB switches
 - Special hardware with enough buffers to fill full length of dark fibre
 - Obsidian's Longbow is an alternative product

IB network details

- Up/down routing
- 284 IB switches
- 3139 IB hosts

- QDR
- FDR10
- FDR
- EDR
- FDR switch

Campus South (CS)

Ex. 1: Investigate Lustre connectivity problems

- Initial problem
 - Failover servers of all file systems reported new client connections
 - Obviously many clients had problems to reach active servers
 - New file system servers were failing over Lustre services
 - Reason was that ping on IB had failed (and bad configuration)
 - 2 clients on new cluster lost connection to everything on IB
 - Happened while IB throughput benchmark was running
- Further investigation
 - Problem disappeared after reboot of the switch with the bad clients
 - Problem was reproducible
 - Even with running the benchmark on few clients (including the 2 bad)
 - IB subnet manager showed healthy fabric
 - Replacing the EDR switch with the 2 bad clients did not help

Ex. 1: Investigate Lustre connectivity problems

Ex. 1: Investigate Lustre connectivity problems

Solution

- Routes to 2 bad clients used the same port on core EDR switch
 - Replacing that switch fixed the problem
- Do not ignore problems on few bad clients
- Investigate routing to check which components are shared

Possible root cause

- Management communication still worked
 - Therefore no new route assignment by subnet manager
 - Maybe subnet manager used alternative connection
- Data communication on bad EDR switch port was blocked
 - Possibly caused backlog and full switch buffers on other switches
- Cascading blocked ports on complete fabric might be possible
- We do not know how such issues could be clearly investigated

Ex. 2: Investigate Lustre performance problems

Ex. 2: Investigate Lustre performance problems

- Insufficient performance with iozone over long distance IB
 - On 50 GB/s file system only reached 22 GB/s
 - Peak IB bandwidth is 8 * FDR10 = 38 GB/s
 - With one FDR10 connection reached 4.6 GB/s which is good
- Investigate IB network topology
 - MetroX have 8 FDR10 connections but file system has 10 OSS
 - IB has static routing, i.e. some OSS share same FDR10 connection
 - Lustre evenly distributes files to OSTs, i.e. performance per OSS is half of FDR10
 - Peak with 10 OSS is FDR10 / 2 * 10 = 24 GB/s
 - Measured 22 GB/s are good

Ex. 2: Investigate Lustre performance problems

- Double check
 - With ibtracert checked which OSS used same FDR10 cable
 - MDS used one cable, i.e. only 7 connections were used by OSS
 - Created directories with different OST stripe index for iozone
 - Assigned only half number of files to OSTs with shared connections
 - Measured 29.2 GB/s with 7 connections
 - Would be 33.4 GB/s with 8 connections, i.e. 12% below peak

Performance measurement details

Performance measurement details

- Done while some of the systems were in production
 - Just show trends, no focus on best performance
- Write performance measured with iozone
 - Options: -+m <file_name> -i 0 -+n -r 1024k -t <thread_count> -s 8g
- Metadata performance measured with mdtest
 - Options: -u -n 10000 -i 3 -p 10 -d <lustre_dir>
- Used clients
 - CN: RH7, Mellanox OFED, FDR Connect-IB, Exascaler 2.3
 - CS: RH6, RH OFED, FDR ConnectX-3, Exascaler 2.1
- Used file systems
 - CN: EF4024 (MDT), 28 OSTs on ES7K, 6 TB disks, Exascaler 2.3
 - CS: EF3015 (MDT), 40 OSTs on SFA12K, 3 TB disks, Exasc. 2.1

Write performance to file system at CN

 Remote CS clients on older hardware and software are slightly slower

Write perf with 14 threads per client

Number of clients

Write performance to file system at CS

Same performance from both sites

Write perf with 20 threads per client

2016-09-21

File creation performance to file system at CN

File creation with 2 tasks per client

- Much slower performance from remote site
- With high load from many clients delay on server is dominating

File creation performance to file system at CS

File creation with 2 tasks per client

- Same performance from both sites
- Single client performance is not good, impact of older server version?

File stat performance to file system at CN

File stat with 2 tasks per client

- Remote clients are slower
- Using more clients helps to hide latency

2016-09-21

File stat performance to file system at CS

File stat with 2 tasks per client

- Remote clients are slower
- Using more clients helps to hide latency

File remove performance to file system at CN

File remove with 2 tasks per client

- Remote clients are slower
- Using more clients helps to hide latency

File remove performance to file system at CS

File remove with 2 tasks per client

- Remote clients are slower
- Using more clients helps to hide latency

Experiences and summary

- Experiences with complex IB network at KIT
 - Analyzing network related problems is not easy
 - We saw very few critical problems
 - Long distance IB connection just worked as expected
- Performance over long distance IB
 - Throughput is similar to local usage
 - Metadata performance depends on distance
 - With 33 km drops to about one-third for some operations
 - Impact can be reduced by using more clients
- All my talks about Lustre
 - http://www.scc.kit.edu/produkte/lustre.php
- roland.laifer@kit.edu

2016-09-21