WORKSHOP 13

Elastic Stability of Plates (Plate Buckling Analysis)

- Create a geometric representation of a plate.
- Apply a compression load to two opposite sides of the plate.
- Run a buckling analysis of the plate.

13-2 MSC/NASTRAN for Windows 101 Exercise Workbook

Model Description:

Below is a finite element representation of a rectangular plate under equal, uniform compression on two opposite edges. Assume that all edges are simply supported.

Figure 13.1 - Load Conditions

Table 13.1 - Material Properties

Elastic Modulus:	29E6 psi
Poisson Ratio	0.3
Plate Thickness:	0.01 in

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Create a material called **mat_1**.

From the pulldown menu, select Model/Material.

Model/Material...

Title:

Youngs Modulus:

Poisson's Ratio:

mat_1	
29e6	
0.3	

OK Cancel

3. Create a property called **prop_1** to apply to the members of the plate itself.

From the pulldown menu, select Model/Property.

Model/Property...

Title:

prop_1

To select the material, click on the list icon next to the databox and select **mat_1**.

Material:

Thickness, Tavg or T1:

OK	
Cancel	

1mat_1	
0.01	

4. Create the NASTRAN geometry for the plate.

Geometry/Surface/Corners...

	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Corner 1	0	0	0

OK

Repeat this process for the other 3 corners.

<i>X</i> :	<i>Y</i> :	<i>Z</i> :
20	0	0
20	8	0
0	8	0

OK	
OK	
OK	

Cancel

To fit the display onto the screen, use the Autoscale feature.

View/Autoscale

5. Place mesh seeds on the newly created surface.

Mesh/Mesh Control/Mapped Divisions on Surface...

6. Create the appropriate elements on the surface of the plate.

Mesh/Geometry/Surface...

Select All
ОК
Property:
ОК

7. Create the constraints for the model.

Before creating the appropriate constraints, a constraint set needs to be created. Do so by performing the following:

Model/Constraint/Set...

Title:

constraint_1

OK

Now define the relevant constraint for the model.

Model/Constraint/Nodal...

Select all 5 nodes on the left edge, **Nodes 1, 25, 26, 27 & 28**. (Hint - you may want to use the rectangular pick to box in the desired nodes - shift & left mouse button)

OK

On the *DOF* box, select all translations.

🗙 ТХ 🔀 ТҮ 🔀 Т

OK

Now select all 5 nodes on the right edge, Nodes 11, 12, 13, 14 & 15.

On the *DOF* box, select the following translations.

\boxtimes	ΤY	\boxtimes	ΤZ
-------------	----	-------------	----

OK	

13-6 MSC/NASTRAN for Windows 101 Exercise Workbook

Finally, select **Nodes 2** through **10 & 16** through **24** on the top and bottom edges. These nodes do not include the four corners.

ΤZ

OK

On the *DOF* box, select the following translation.

UK	
Cancel	

8. Create the appropriate model loading.

Like the constraints, a load set must first be created before creating the appropriate model loading.

Model/Load/Set...

Title:

OK

load_	1

OK

Next, convert the edge pressure of 100 psi to appropriate nodal force. Total edge force will be (100 psi) x (0.01 in) x (8 in) = 8 lb. Thus, 2 lb each will be used for the 3 middle nodes and 1 lb each will be used for the 2 corner nodes.

Model/Load/Nodal...

Select Nodes 12, 13, & 14 (the middle 3 nodes of right edge):

OK

Highlight Force.

FX	\square
OK	

Force	
-2	
L -	

Now select Nodes 11 & 15 (the top and bottom nodes of right edge):

(

Highlight Force.

FX	\boxtimes
OK	
Cano	el

Force	
-1	

This will put a total of 8 lb along the right edge.

9. Create the input file and run the analysis.

File/Export/Analysis Model...

Analysis Format/Type:

7..Buckling

OK

Change the directory to C:\temp.

File Name: plbuck Write \mathbb{N} **Run Analysis** Advanced... Modal Solution Method: Lanczos Eigenvalues & Eigenvectors/ Number Desired: 1 OK **Plate Buckling** Problem ID: Sample Problem OK OK OK

When asked if you wish to save the model, respond Yes.

Yes

File Name:

plbuck

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

10. Look at the results to find the first eigenvalue.

Answer the following question:

What is the first eigenvalue? Eigenvalue 1 = _____

Since the applied pressure = 8/(8)(.01) = 100 psi,

$$s_{cr} = 1.722(100)$$

= 172.2 psi

11. Theory.

From: Formulas for Stress & Strain, Roark & Young, McGraw-Hill

$$\sigma_{cr} = K \frac{E}{1 - v^2} \left(\frac{t}{b}\right)^2$$

Here K depends on ratio a/b.

When a/b = 20/8 = 2.5, K = 3.373

Thus,

$$\sigma_{cr} = 3.373 \left(\frac{29e6}{1-(.3)^2}\right) \left(\frac{.01}{8}\right)^2$$

This concludes the exercise.

Eigenvalue I 1.722