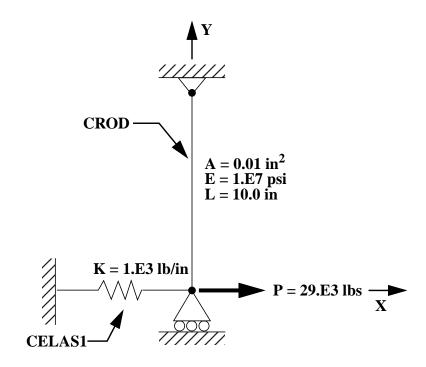

WORKSHOP PROBLEM 1b

Spring Element with Nonlinear Analysis Parameters (large displacements on)



Objectives:

- Demonstrate the effects of geometric nonlinear analysis in SOL 106 (nonlinear statics).
- Demonstrate how to interpret the results.

Model Description:

For the structure below:

Add Case Control commands and Bulk Data Entries to:

- Perform a geometric nonlinear analysis in SOL 106 1. (nonlinear statics) with the large displacements option turned on.
- Apply a $29x10^3$ lbs load in a single subcase with 4 2. incremented steps. Use default values for all other subcase parameters. Request the output of all grid displacements and all element forces.

Suggested Exercise Steps:

- Modify the existing MSC/NASTRAN input file by adding the appropriate loading conditions and nonlinear static analysis control parameters.
- For Case Control, insert the static load set selection (LOAD) and the nonlinear static analysis parameter selection (NLPARM) in each subcase.
- For Bulk Data, insert all relevant nonlinear static analysis parameters for each subcase (NLPARM).
- Prepare the model for a nonlinear static analysis (turn on large displacements).
 - ◆ PARAM, LGDISP, 1
- Generate an input file and submit it to the MSC/NASTRAN solver for normal modes analysis.
- Review the results.

Input File from Workshop 1a for Modification: prob1a.dat

```
ASSIGN OUTPUT2 = 'prob1a.op2', UNIT=12
ID NAS103, WORKSHOP 1A SOLUTION
TIME 10
SOL 106 $ NONLIN
CEND
TITLE=SIMPLE ROD SPRING - COLD ANALYSIS AND RESTART WORKSHOP
SUBTITLE=GEOMETRIC NONLINEAR
ECHO=BOTH
DISP=ALL
OLOAD=ALL
FORCE=ALL$
$ APPLY X LOAD
SUBCASE 10 $ LOAD=29.E03
LABEL=APPLY LOAD P IN X DIRECTION = 29E+03
LOAD=3
NLPARM=10
OUTPUT(PLOT)
 SET 1 ALL
 MAXI DEFO 5.
 AXES Z, X, Y
 VIEW 0., 0., 0.
 FIND SCALE ORIGIN 1 SET 1
 PLOT STATIC 0 MAXIMUM DEFORMATION 5. SET 1
BEGIN BULK
PARAM, POST, -1
PARAM, PATVER, 3.0
GRID, 1, 0, 0.0, 0.0, 0.0, , 23456
GRID, 3, 0, 0.0, 10.0, 0.0, , 123456
CROD, 3, 3, 3, 1
CELAS1, 2, 2, 1, 1, 0
PROD, 3, 3, .01
PELAS, 2, 1.0E3
```

MAT1, 3, 1.0E7 FORCE, 1, 1, 0, 1.6E4, 1.0 FORCE, 2, 1, 0, 2.4E4, 1.0 FORCE, 3, 1, 0, 2.9E4, 1.0 PARAM, LGDISP,-1 NLPARM, 10, 4 **ENDDATA**

Exercise Procedure:

File/Open...

- Users who are not utilitizing MSC/PATRAN for generating an input file should go to Step 4, otherwise, proceed to step 2.
- Open the database created from the last exercise called 2. prob1a.db.

Database List:	prob1a	
OK		
3. Now you are ready to generate an input file for analysis.		
Click on the Analysis radio button on the Top Menu Bar and set up the subcases as follows:		
♦ Analysis		
Action:	Analyze	
Object:	Entire Model	
Method:	Analysis Deck	
Job Name	prob1b	
Solution Type		
Solution Type:	• NONLINEAR STATIC	
Solution Parameters		
(Make sure large displacements are on.)	■ Large Displacements	
OK		
OK		

Apply

An input file called **prob1b.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN users should now proceed to **Step 5**.

PELAS, 2, 1.0E3

Generating an input file for MSC/NASTRAN Users:

4. MSC/NASTRAN users can generate an input file using the data from the Model Description. The result should be similar to the output below (**prob1b.dat**):

```
ASSIGN OUTPUT2 = 'prob1b.op2', UNIT=12
ID NAS103, WORKSHOP 1B SOLUTION
TIME 10
SOL 106 $ NONLIN
CEND
TITLE=SIMPLE ROD SPRING - COLD ANALYSIS AND RESTART WORKSHOP
SUBTITLE=GEOMETRIC NONLINEAR
ECHO=BOTH
DISP=ALL
OLOAD=ALL
FORCE=ALL$
$ APPLY X LOAD
SUBCASE 10 $ LOAD=29.E03
LABEL=APPLY LOAD P IN X DIRECTION = 29E+03
LOAD=3
NLPARM=10
OUTPUT(PLOT)
SET 1 ALL
MAXI DEFO 5.
AXES Z, X, Y
 VIEW 0., 0., 0.
FIND SCALE ORIGIN 1 SET 1
PLOT STATIC 0 MAXIMUM DEFORMATION 5. SET 1
BEGIN BULK
PARAM, POST, -1
PARAM, PATVER, 3.0
GRID, 1, 0, 0.0, 0.0, 0.0, , 23456
GRID, 3, 0, 0.0, 10.0, 0.0, , 123456
CROD, 3, 3, 3, 1
CELAS1, 2, 2, 1, 1, 0
PROD, 3, 3, .01
```

MAT1, 3, 1.0E7 FORCE, 1, 1, 0, 1.6E4, 1.0 FORCE, 2, 1, 0, 2.4E4, 1.0 FORCE, 3, 1, 0, 2.9E4, 1.0 PARAM, LGDISP,1 NLPARM, 10, 4 ENDDATA

Submit the input file for analysis:

- 5. Submit the input file to MSC/NASTRAN for analysis.
 - 5a. To submit the MSC/PATRAN .bdf file, find an available UNIX shell window. At the command prompt enter nastran prob1b.bdf scr=yes. Monitor the analysis using the UNIX ps command.
 - 5b. To submit the MSC/NASTRAN .dat file, find an available UNIX shell window and at the command prompt enter nastran prob1b.dat scr=yes. Monitor the analysis using the UNIX ps command.
- 6. When the analysis is completed, edit the **prob1b.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 6a. While still editing **prob1b.f06**, search for the word:

DISPLACE (spaces are necessary).

What is the x-displacement	of the guided	end at the	end of
the analysis?			

T1 =
What is the force in the spring element at the end of the analysis?
FORCE =
What is the force in the rod element at the end of the analysis?
FORCE =

Comparison of Results:

7. Compare the results obtained in the **.f06** file with the results on the following page:

DISPLACEMENT VECTOR

POINT ID. TYPE T1 Т2 Т3 R1 R2 R3 1 G 8.540191E+00 0.0 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 SUBCASE 1 0

LOAD STEP = 1.00000E+00

(C E L A S 1) FORCES IN SPRINGS SCALAR ELEMENT FORCE ELEMENT FORCE ELEMENT FORCE ELEMENT FORCE ID. ID. ID. ID. 2 8.540190E+03 0 NONLINEAR SUBCASE 1

LOAD STEP = 1.00000E+00

FORCES IN ROD ELEMENTS (CROD)

ELEMENT AXIAL ELEMENT AXIAL FORCE ID. TORQUE ID. FORCE TORQUE 1 0.0

3.150470E+04

- 8. This ends the exercise for MSC/NASTRAN users. MSC/PATRAN users should proceed to the next step.
- 9. Proceed with the Reverse Translation process, that is, importing the **prob1b.op2** results file into MSC/PATRAN. To do this, return to the **Analysis** form and proceed as follows:

Action:	Read Output2		
Object:	Result Entities		
Method:	Translate		
Select Results File			
Selected Results File	prob1b.op2		
OK			
Apply			
10. When the translation is complete bring up the Results form.			
Now we will generate the fringe plot of the model.			
♦ Results			
Action:	Create		
Object:	Fringe		
Now click on the Select Results icon.			
Select Results			
Select Result Case(s)	Default, PW Linear: 100,% of		

Load 2

Magnitude

(Select the second **Default** case)

Displacements, Translational

Quantity:

Select Fringe Result

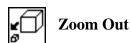
Analysis

Click on the **Display Attributes** icon.

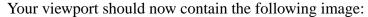
Style:	Discrete/Smooth			
Display:	Free Edges			
For better visual quality of the fringe plot, change the width of the line.				
Width:	(Select the third line from top.)			
Note: The Display Attributes form allows you the ability to change the displayed graphics of fringe plots.				
Now click on the Plot Options icon.				
Plot Options				
Coordinate Transformation:	None			
Scale Factor	1.0			
Apply	_			
Now create the deformation plot.				
♦ Results				
Action:	Create			
Object:	Deformation			
Now click on the Select Results icon.				
Select Results				

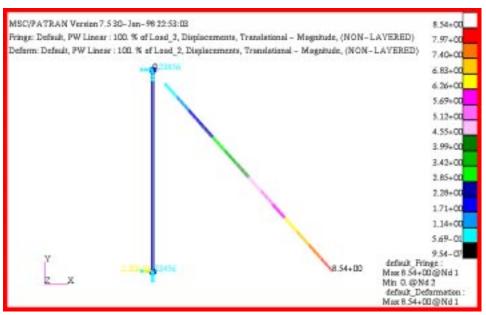
Select Result Case(s)

(Select second **Default** case)


Load_2

Default, PW Linear: 100.% of


Select Fringe Result	Displacements, Translational	
Show As:	Resultant	
Click on the Display Attrib	utes icon.	
Display A	ttributes	
Line Width:	(Select the third line from top.)	
In order to see the deformation to True Scale v	ion results accurately, set the Scale with a Scale Factor of 1.	
Scale Interpretation	True Scale	
Scale Factor	1.0	
■ Show Undeformed		
Line Width:	(Select the third line from top.)	
Now click on the Plot Options icon .		
Plot Options		
Coordinate Transformation:	None	
Scale Factor	1.0	
Apply		


The resulting fringe plot should display the displacement spectrum in addition to the physical deformation of the model.

To better fit the results on the screen, zoom out a couple times using the following toolbar icon:

Alternatively, use any number of the toolbar icons to better view the resulting fringe plot.

Notice that the deflection is now a much more reasonable approximation. The geometric nonlinearity of the problem has been better accounted for by using the Large Displacements option.

To clear the post-processing results and obtain the original model in the viewport, select the **Reset Graphics** icon.

Reset Graphics

Quit MSC/PATRAN when you have completed this exercise.

MSC/PATRAN .bdf file: prob1b.bdf

```
$ NASTRAN input file created by the MSC MSC/NASTRAN input file
$ translator ( MSC/PATRAN Version 7.5 ) on January 16, 1998 at
$ 09:01:56.
ASSIGN OUTPUT2 = 'prob1b.op2', UNIT = 12
$ Direct Text Input for File Management Section
$ Nonlinear Static Analysis, Database
SOL 106
TIME 600
$ Direct Text Input for Executive Control
CEND
SEALL = ALL
SUPER = ALL
TITLE = MSC/NASTRAN job created on 16-Jan-98 at 08:25:44
ECHO = NONE
MAXLINES = 999999999
$ Direct Text Input for Global Case Control Data
SUBCASE 1
$ Subcase name: Default
 SUBTITLE=Default
 NLPARM = 1
 SPC = 2
 LOAD = 2
 DISPLACEMENT(SORT1,REAL)=ALL
 FORCE(SORT1, REAL, BILIN) = ALL
$ Direct Text Input for this Subcase
BEGIN BULK
PARAM POST -1
PARAM PATVER 3.
PARAM AUTOSPC NO
PARAM COUPMASS -1
PARAM K6ROT 100.
PARAM WTMASS 1.
PARAM LGDISP 1
PARAM, NOCOMPS,-1
PARAM PRTMAXIM YES
NLPARM 1
                       AUTO 5
                                   25 PW
                                              NO + A
              4
   Α
          .001 1.-7
$ Direct Text Input for Bulk Data
$ Elements and Element Properties for region : prop_1
PROD
       1
            1
                 .01
            1
                 1
CROD
       - 1
$ Elements and Element Properties for region: prop_2
PELAS 2
            1000.
CELAS1 2
             2
                1
```

Time: 15:12:40

- \$ Referenced Material Records
 \$ Material Record : mat_1
 \$ Description of Material : Date: 19-Jun-97
 MAT1 1 1.+7
 \$ Nodes of the Entire Model
- GRID 1 0. 0. 0. 0. GRID 2 0. 10. 0. \$ Loads for Load Case : Default
- SPCADD 2 1 3 LOAD 2 1. 1. 1
- \$ Displacement Constraints of Load Set : constraint_1
- SPC1 1 123456 2
- \$ Displacement Constraints of Load Set : constraint_2
- SPC1 3 23456 1
- \$ Nodal Forces of Load Set : load_3
- FORCE 1 1 0 29000. 1. 0. 0.
- \$ Referenced Coordinate Frames
- ENDDATA f7b9b4a4