LESSON 17

Linear Static - Rigid Element Analysis with RBE2 and CONM2

Objectives:

- Create a geometric representation of a tube.
- Use the geometry model to define an analysis model comprised of plate elements.
- Idealize a rigid end using RBE2 elements.
- Define a concentrated mass, to represent the weight of the rigid enclosure (CONM2).
- Run an MSC/NASTRAN linear static analysis.
- Visualize analysis results.

MSC/NASTRAN120 Exercise Workbook - Version 70 (MSC/PATRAN7.5)

MSC/NASTRAN 120 Exercise Workbook - Version 70 (MSC/PATRAN 7.5)

Model Description:

The goal of the example is to maintain a circular cross section at the rigid end of the tube, (using RBE2 elements), while applying a gravitational force of 2.7g in the z-direction.

Additionally, a concentrated mass needs to be defined to represent the weight of the rigid enclosure. It is very important to account for all the weight contribution since inertia loading is used in this problem.

Below is a finite element representation of the tube. One end of the tube is considered rigid, and the other end is fixed in all translational and rotational degrees of freedom. Table 17.1 contains all the necessary parameters to construct the input file.

Figure 17.1 - Grid Coordinates and Element Connectivites

Table 17.1 - Properties

Radius:	15 in
Thickness:	0.125 in
Length:	90 in
Elastic Modulus:	10E6 lb/in ²
Density:	0.101 lbs/in ³
Poisson's Ratio:	0.3

MSC/NASTRAN 120 Exercise Workbook - Version 70 (MSC/PATRAN 7.5)

Suggested Exercise Steps:

- Generate a finite element representation of the cylinder structure (i.e., The nodes (GRID) and element connectivities (CQUAD4) should be defined manually).
- Define material (MAT1) and element (PSHELL) properties.
- Create grid point 999 at the center of the rigid end. This point is to serve as the load application point, as well as the connection point for the rigid element.
- Idealize the rigid end with rigid elements (RBE2).
- Apply the fixed boundary constraints (SPC1).
- Apply a concentrated mass at the center of the top enclosure, Grid 999 (CONM2).
- Apply an inertial load to the entire structure (GRAV).
- Prepare the model for linear static analysis (SOL 101).
- Generate an input file and submit it to the MSC/NASTRAN solver for linear static analysis.
- Review the results, specifically the displacements along the free end.

ID SEMINAR, LESSON 17

CEND

BEGIN BULK

1	2	3	4	5	б	7	8	9	10
<u> </u>									
<u> </u>									

1	2	3	4	5	б	7	8	9	10

ENDDATA

Linear Static - Rigid Element Analysis with LESSON 17 **RBE2** and CONM2

Exercise Procedure:

1. Open database named lesson16.db.

File/Open Database

Existing Database Name:

lesson16

OK

2. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

3. Now you will create the inertial load.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Input Data...

Trans Accel <*A1 A2 A3*>

Analysis Coordinate Frame:

Create

Inertial Load

Element Uniform

Inertia

<0 0 1043.28>

Coord 0

Figure 17.3 - Model Showing All Labels With Interial Load

4. Now you are ready to run the analysis.

OK	
Apply	

An MSC/NASTRAN input file called **lesson17.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data from Table 17.1. The result should be similar to the output below.

5. MSC/NASTRAN input file: lesson17.bdf

SOL 101						
TIME 600						
CEND						
TITLE = 1	Linear St	tatic w/H	RBE2			
SUBCASE	1					
SUBTI	TLE=Defau	ılt				
SPC =	2					
LOAD	= 2					
DISPL	- ACEMENT(SORT1 RE	ΔT.) = ΔT.T.			
SPCEO		71 RFAL)	- AT.T.			
CTDFC	CLD(DOR)	DENT VON	-הםם אדפדפ סדו			
DECIN DI	J (JORIT, I		11969,611	UIN)-AUU		
C DADAME						
Ş PARAME	TERS	-				
PARAM	POST	-1				
PARAM	PATVER	3.				
PARAM	AUTOSPC	NO				
PARAM	WTMASS	.00259				
\$ PROPER	TIES					
PSHELL	1	1	.125	1		1
\$ ELEMEN	TS					
CQUAD4	1	1	1	2	8	7
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	б	1	7	8	14	13
=	*1	=	*1	*1	*1	*1
=3						
COUAD4	11	1	13	14	20	19
=	*1	=	*1	*1	*1	*1
= 3						
COLIAD4	16	1	19	20	26	25
-	*1	-	*1	*1	*1	*1
- 3	-		1	1	-	-
	21	1	25	26	30	21
CQUAD4	∠⊥ *1	-	2J *1	20 *1	J∠ *1	31 *1
-	T	-	T	T	T	T
	26	1	2.1	2.2		10
CQUAD4	20	Т	31 +1	3∠	44	43
=	*1	=	*1	*1	*1	*⊥
= 3		_				
CQUAD4	31	1	43	44	50	49
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	36	1	49	50	56	55
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	41	1	55	56	62	61
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	46	1	61	62	2	1

=	*1	=	*1	*1	*1	*1				
=3										
\$ CONCENT	FRATED MA	ASS								
CONM2	51	999		500.						
\$ MATERIA	ALS									
MAT1	1	1.+7		.3	.101					
\$ MPCS										
RBE2	52	999	123	6	12	18	24	30	+	А
+ A	36	48	54	60	66					
\$ NODES										
GRID	1	1	15.	0.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	7	1	15.	36.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	13	1	15.	72.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	19	1	15.	108.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	25	1	15.	144.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	31	1	15.	180.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	43	1	15.	216.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	49	1	15.	252.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	55	1	15.	288.	0.	1				
=	*1	=	=	=	*18	=				
=4						_				
GRID	61	1	15.	324.	0.	1				
=	*1	=	=	=	*18	=				
=4		_				_				
GRID	999	1	0.	0.	90.	1				
Ş LBCS		_								
SPCADD	2	1	-	-						
LOAD	2	1.	1.	1	1.0	1.0	0.5			_
SPCI -	⊥ 4 2	123456	1	/	13	ТЭ	25	31	+	В
+ B	43 1	49	55	ρT	0	1				
GRAV	1	U	1043.28	υ.	υ.	⊥.	0	1		C
CORD2C	1	0	υ.	υ.	υ.	υ.	υ.	⊥.	+	Ċ
+ C	⊥.	υ.	υ.							
LNDDATA										

Submit the input file for analysis:

- 6. Submit the input file to MSC/NASTRAN for analysis.
 - 6a. To submit the MSC/PATRAN **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran lesson17.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 6b. To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran lesson17 scr=yes. Monitor the run using the UNIX ps command.
- 7. When the run is completed, edit the **lesson17.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 8. While still editing **lesson17.f06**, search for the word:

DISPLACEMENT (spaces are necessary)

What is the T3 displacement at Node 6, 12, 18, 24, 30, 36, 48, 54, 60, 66 and 999?

T3 Displacement = _____

Comparison of Results:

9. Compare the results obtained in the **.f06** file with the results on the following page:

LESSON 17

DISPLACEMENT VECTOR

POINT ID.	Т	YPE	T1	Т2	Т3	Rl	R2	R3
1		G	0.0	0.0	0.0	0.0	0.0	0.0
2	G	-7	.674323E-05	1.372193E-19	2.409957E-04	-9.910285E-20	-2.822520E-06	6.485096E-20
3	G	-5	603609E-05	-5 136196E-19	4 840313E-04	-2 239343E-20	1 951360E-06	4 936085E-19
4	c	5	46551000E 05	1 2721020 10	7 1504468 04	2.2000100 20	1 202222 06	E 2706E0E 10
4	G	-5	.405512E-05	-1.3/2193E-10	7.130440E-04	3.212372E-19	-1.302233E-00	5.378059E-19
5	G	-6	.735860E-05	-2.507218E-18	9.400494E-04	2.028379E-19	1.370978E-06	6.966846E-20
6	G	8	.463973E-18	-4.330222E-18	1.147170E-03	5.227781E-21	4.927580E-06	1.524659E-20
7		G	0.0	0.0	0.0	0.0	0.0	0.0
8	G	-7.	.674323E-05	-4.572545E-19	2.409957E-04	-1.247482E-19	-2.822520E-06	3.298314E-19
9	G	-5	.603609E-05	-1.846203E-18	4.840313E-04	1.092950E-19	1.951360E-06	6.996232E-19
10	G	-5	465512E-05	-3 398586E-18	7 150446E-04	2 259813E-21	-1 302233E-06	5 738582E-19
11	C	-6	7258608-05	-5 424264E-19	9 400494E-04	2 /11150F-10	1 2700798-06	4 079510E-19
10	G	-0	.733800E-03	-J.434204E-10	1 1451505 02	2.4111396-19	1.370978E-00	4.076510E-19
12	G	3	.008909E-18	-8.2/2454E-18	1.14/1/08-03	2.2/2510E-19	4.92/580E-06	-0.19005/E-20
13		G	0.0	0.0	0.0	0.0	0.0	0.0
14	G	-7	.674323E-05	1.183147E-19	2.409957E-04	1.589047E-19	-2.822520E-06	-1.637485E-19
15	G	-5	.603609E-05	-3.365452E-19	4.840313E-04	2.009416E-19	1.951360E-06	-7.818081E-19
16	G	-5	.465512E-05	-2.110810E-18	7.150446E-04	1.300153E-19	-1.302233E-06	-6.505722E-19
17	G	-6	.735860E-05	-5.039693E-18	9.400494E-04	-2.563982E-20	1.370978E-06	-1.736464E-19
18	G	-2	527457E-18	-8 643353E-18	1 147170E-03	2 881146E-19	4 927580E-06	2 503077E-19
10	0	с ²	. 52/15/11 10	0.01353551 10	1.11,1,01 05	0.0	0.0	2.3030771113
19	~	G	0.0	0.0	0.0	0.0	0.0	2 250000 00
20	G	- /	.6/4323E-05	1.661288E-19	2.409957E-04	-8.324359E-20	-2.822520E-06	3.350880E-20
21	G	-5	.603609E-05	-1.932965E-19	4.840313E-04	-2.151239E-19	1.951360E-06	5.835859E-19
22	G	-5	.465512E-05	-1.436422E-18	7.150446E-04	4.760325E-19	-1.302233E-06	5.369031E-19
23	G	-б	.735860E-05	-3.045354E-18	9.400494E-04	3.320337E-19	1.370978E-06	2.174347E-21
24	G	-7	.758479E-18	-5.301250E-18	1.147170E-03	-1.730335E-19	4.927580E-06	-1.162047E-19
25		G	0.0	0.0	0.0	0.0	0.0	0.0
26	G	-7	674323E-05	2 402950E-19	2 409957E-04	7 2765858-20	-2 822520E-06	-3 738481E-20
20	c	- 5	602600E-05	1 549120F-10	4 940212E-04	2 722622E-10	1 951260E-06	-5 729545F-10
27	G	-5	.003009E-05	4.3401396-19	4.0403136-04	2.732023E-19	1.991300E-00	-5.726545E-19
28	G	-5	.465512E-05	4.32115/E-19	/.15U446E-U4	-3.9962968-19	-1.302233E-06	-3.922050E-19
29	G	-6	.735860E-05	4.609046E-19	9.400494E-04	-8.551355E-20	1.370978E-06	2.382501E-19
30	G	-1	.002603E-17	4.772865E-19	1.147170E-03	1.612288E-19	4.927580E-06	2.290300E-19
31		G	0.0	0.0	0.0	0.0	0.0	0.0
32	G	-7	.674323E-05	1.368788E-19	2.409957E-04	-2.286989E-19	-2.822520E-06	2.288140E-19
33	G	- 5	603609E-05	6 339022E-19	4 840313E-04	-2 863123E-19	1 951360E-06	9 099107E-19
34	G	-5	4655128-05	2 220775F-18	7 150446E-04	2 4129858-19	_1 302233E-06	7 099840F-19
34	G	- 5	.405512E-05	2.220773E-10	7.130440E-04	2.41290JE-19	1 20022335-00	1.039040E-19
35	G	-0	./35860E-05	4.358/38E-18	9.4004948-04	-1.118061E-19	1.3/09/8E-06	4.230405E-20
36	G	-8	.463973E-18	6.485052E-18	1.147170E-03	-1.170949E-19	4.927580E-06	-4.758133E-20
43		G	0.0	0.0	0.0	0.0	0.0	0.0
44	G	-7	.674323E-05	8.666162E-19	2.409957E-04	4.084986E-20	-2.822520E-06	-9.233857E-20
45	G	- 5	.603609E-05	2.639956E-18	4.840313E-04	-1.547968E-19	1.951360E-06	-4.171795E-19
46	G	-5	.465512E-05	4.775099E-18	7.150446E-04	2.031357E-19	-1.302233E-06	-4.034793E-19
47	G	-6	.735860E-05	7.323148E-18	9.400494E-04	-3.976857E-19	1.370978E-06	-6.044355E-22
4.8	G	_ 3	668969F-18	1 0427288-17	1 1471708-03	_3 592464F_20	4 9275808-06	1 00111111-19
-10	G	~ ~	.00000001 10	1.042/201 1/	1.14/1/05 05	J.JJZ-10-16 20	4.92/3002 00	1.00111115 12
49	~	G	0.0	0.0	0.0	0.0	0.0	0.0
50	G	- /	.6/4323E-05	1.01906/E-18	2.409957E-04	4.912/918-20	-2.822520E-06	-1.99/256E-19
51	G	-5	.603609E-05	2.801852E-18	4.840313E-04	2.801002E-20	1.951360E-06	-5.377430E-19
52	G	-5	.465512E-05	4.807018E-18	7.150446E-04	-6.522154E-19	-1.302233E-06	-2.478299E-19
53	G	-б	.735860E-05	7.458112E-18	9.400494E-04	-1.949815E-19	1.370978E-06	9.724147E-20
54	G	2	.527457E-18	1.079818E-17	1.147170E-03	-7.271527E-20	4.927580E-06	2.153954E-19
55		G	0.0	0.0	0.0	0.0	0.0	0.0
56	G	-7	674323E-05	4 905100E-19	2 409957E-04	-3 377130E-19	-2 822520E-06	4 420561E-19
50	c	- 5	602600E-05	1 2725205-10	4 940212E-04	_1 606997E-19	1 9513608-06	1 4209268-19
57	G	- 5	.003009E-05	1.2/3J20E-10	4.040313E-04	-1.000037E-19	1.2000227 00	1.420030E-10
58	G	-5	.4000128-05	∠.90UIU4E-18	/.1504468-04	-2.1045/5E-19	-1.3UZZ33E-06	1.1422058-18
59	G	-6	.735860E-05	5.243138E-18	9.400494E-04	3.361054E-19	1.370978E-06	2.099659E-19
60	G	7	.758479E-18	7.456079E-18	1.147170E-03	-4.204996E-19	4.927580E-06	-2.340922E-19
61		G	0.0	0.0	0.0	0.0	0.0	0.0
62	G	-7	.674323E-05	9.899912E-19	2.409957E-04	2.100642E-19	-2.822520E-06	-3.638672E-19
63	G	-5	.603609E-05	2.111067E-18	4.840313E-04	1.487363E-19	1.951360E-06	-1.357386E-18
64	G	_5	4655128-05	2 5060798-18	7 1504468-04	-2 194874E-19	-1 302233E-06	-1 2075428-19
65	9	- 5	7250607 05	2.3000/95-10	0 4004040 04	2.1210/10-19	1 2700705 00	1 0510405 10
05	G	o –	. / 3 3 6 0 0 1 - 0 5	2.099030E-18	2.400494E-04	-3.439/036-19	1.3/09/88-06	-1.0312488-19
66	G	1	.002603E-17	1.0//543E-18	1.14/1708-03	1.903853E-19	4.92/580E-06	3.59/520E-19
999	G	R	4639738-18	-5 407637E-18	1 1471708-03	1 2019288-19	1 7750748-19	7 1827668-20
	5	5		5.15.55/1 10				

10. Proceed with the Reverse Translation process, that is importing the **lesson17.op2** results file into MSC/PATRAN. To do this, return to the *Analysis* form and proceed as follows:

Analysis Action: Read Output2 Object: Result Entities Method: Translate Select Results File... Select Results File: lesson17.op2

11. When the translation is complete bring up the **Results** form.

Select Fringe to view different results with color spectrum analysis.

◆ Results

Action:

OK

Apply

Object:

17-16

Create	
Fringe	

Select Result

Select Result Case(s):Default, Static SubcaseSelect Fringe Result:Stress TensorPosition...(AtZ1)At Z2Positions:At Z2CloseXY Component

Target Entities

Target Entity: Select Materials: Addtl. Display Control:

Materials	
mat_1	
Faces	

Continuous

Element Edges

Exponential

0.05

5

Display Attributes

Style:

Element Shrink Factor:

Display:

Style:

Label Style...

Label Format:

Significant figures:

OK

Plot Options

Coordinate Transformation: Select Coordinate Frame:

CID	
Coord 1	

Apply

Select **Deformation** to view physical changes of the model.

♦ Results

Action:

Object:

Create]
Deformation	_

Select Result

Select Result Case(s): Select Deformation Result: Show As: **Default, Static Subcase**

Displacements, Translational

Component

Display Attributes

Render Style:

Shaded

Show Undeformed

□ Show Max/Min Label

Coordinate Transformation:

Select Coordinate Frame Axis:

Projected CID Coord 1.1

Apply

17-18

12. If you wish to reset your display graphics to the state it was in before you began post-processing your model, remember to select the **Reset Graphics** icon.

Reset Graphics

To view different results, after **Reset Graphics** repeat step 11 and change *Result Case(s)*, *Fringe Result*, and *Deformation Result*.

Quit MSC/PATRAN when you are finished with this exercise.