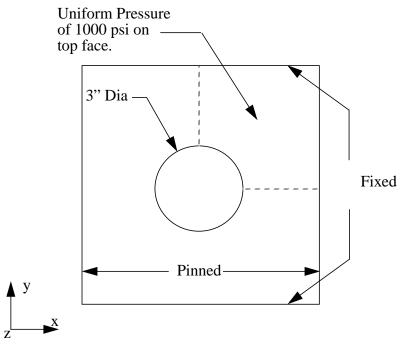
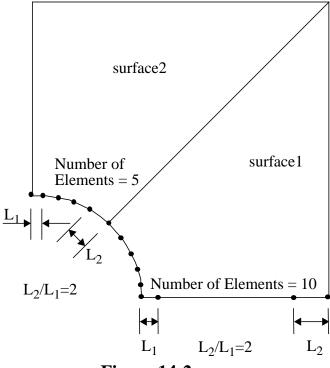

LESSON 14

Analysis Set-up of a Static Analysis


Objectives:

- Review all the steps necessary to build an analysis model.
- Understand how to setup a static analysis with MSC/PATRAN.

Model Description:


LESSON 14

In this exercise you will build a complete MSC/PATRAN *Main Form* model and set up a static analysis run for MSC/NASTRAN.

10" x 10" Plate 0.20" Thickness

Figure 14-1

Quarter Symmetry Model with mesh seeds.

Figure 14-2

Table 14-1

Element type:Quad8Element global edge length:1.0"

Material Constant Description

Name:	Steel
Modulus of Elasticity, E (psi)	29E6
Poisson's ratio, v	0.30
Linear Elastic Isotropic materia	al

Element Properties: Name: Material: Thickness:

Prop1 Steel 0.2"

Analysis Code:	MSC/NASTRAN
Analysis Type:	Full Run, Linear Static Analysis
Analysis Solution Parameters:	Linear Static
Analysis Translator:	Text Output 2 format
Analysis Output Requests:	Displacements, Element Stresses,
	Element Strain Energies

Suggested Exercise Steps:

LESSON 14

- Create a new database named plate_hole.db.
- Change the *Tolerance* to **Default** and the *Analysis Code* to MSC/NASTRAN.
- Create the quarter symmetry geometry and finite element mesh using the information in Figure 14-2 and Table 14-1.
- Equivalence and optimize the entire model. Verify that all element normals are in the same direction.
- Define the material and element properties using the information in Table 14-1.
- Assign a uniform pressure named **Pressure1** to the top surface of all elements.
- Assign the displacement boundary conditions to the appropriate edges of the model. Use the names, disp_lf, disp_rt, disp_tp and disp_bt for the left, right, top, and bottom displacement boundary condition set names.
- Prepare the model for a full analysis run using the information listed in Table 14-1.

Exercise Procedure:

1. Create a new database and name it **plate_hole.db**.

File/New Database...

New Database Name

plate_	hole
--------	------

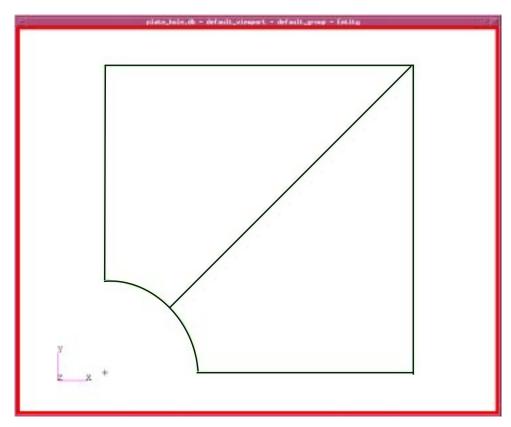
OK

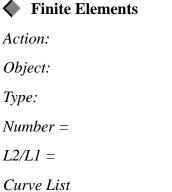
2. Change the *Tolerance* to **Default** and the *Analysis Code* to **MSC/NASTRAN**.

New Model Preference

Tolerance

Analysis Code:


OK


Create the Geometry

3. Create the quarter symmetry geometry and finite element mesh using the information in Figure 14-2 and Table 14-1.

The surface representing the geometry of the plate is shown below:

4. Create the mesh seeds and mesh the model

Create	
Mesh Seed	
One Way Bias	5
10	
2	

Select the bottom edge

Apply

For the bottom of the arc change:

Number =

5

Analysis Set-up of a Static Analysis

L2/L1 =

LESSON 14

Curve List

Select the bottom half of the arc

Apply

Change *L2/L1* to **-2** and click on the top half of the arc.If necessary, click **Apply**.

L

2

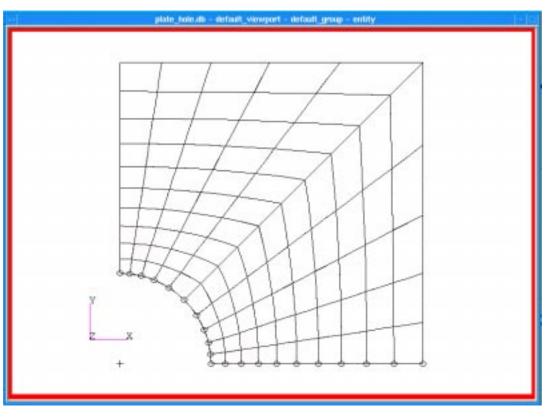
Now mesh the surface

Action:

Object:

Type:

Global Edge Length


Element Topology

Mesher

Surface List

Apply

Create	
Mesh	
Surface	
1.0	
Quad 8	
IsoMesh	
Surface 1, 2	

Your model's finite element mesh should look like the one shown in the figure below.

5. Equivalence the entire model. Verify that all element normals are in the same direction.

Equivalence

Action:

Object:

Method:

Equivalence All Tolerance Cube

Apply

Verify

Verify the element normals

Action:

Object:

Test:

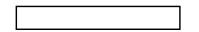
Display Control

Apply

Verify	
Element	
Normals	
Normals	

Draw Normal Vectors

You may need to change the view to **isometric_view** by clicking on this icon in the toolbar.


All elements normal must point in the same direction. In this exercise we choose them to point in the positive Z-direction. If the normals are not pointing in the same direction there are two methods to reverse element normals. The first is under Verify/Element/Normals. Under *Test Control* click on **Display Only**

This will change to **Reverse Elements**

Guiding Element

Select a guiding element that has a normal pointing in the direction you desire then click on **Apply**. All of the normals will then point in that same direction.

The second method is found in **Modify/Element/Reverse**. Here Patran will simply reverse the normals of any elements selected.

6. Define the material and element properties using the information in Table 14-1.

♦ Materials

Action:

Object:

Method:

Material Name

Input Properties...

Constitutive Model

Elastic Modulus

Create	
Isotropic	
Manual Input	
steel	

Linear Elastic
29E6

Material Properties

Create the

Poisson's Ratio

0.3

Apply

Create the element property definition for the model.

Create the Element **Properties**

Apply Loads

and Boundary **Conditions**

Properties \bigcirc

Action:

Dimension: Type:

Property Set Name

Options

Input Properties...

Material Name

Thickness

OK

Select Members

Add	
Apply	

Create
40
2D
Shell
Shen
prop1
Homogeneous

Standard Formulation

m:steel	
0.20	
0.20	

Surface 1, 2

7. Assign a uniform pressure named **Pressure1** to the top surface of all elements.

♦ Load/B	SCs
----------	-----

Action:	Create
Object:	Pressure
Type:	Element Uniform
Analysis Type	Structural
New Set Name	pressure1
Target Element Type	2D
Input Data	

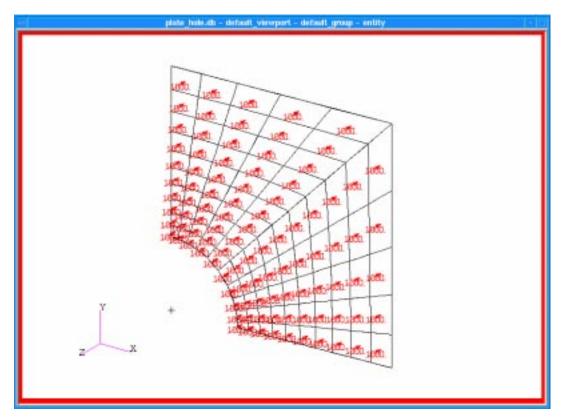
1000

Top Surface Pressure

Select Application Region...

Geometry Filter

Select 2D Elements or Edges


Select Entire Model

Click on the **Tri or Quad Element** icon in the select menu then screen select the entire model.

Add	
OK	
Apply	

The uniform pressure load is shown below. Of course, the orientation of the pressure load will depend on original orientation of the element normals.

8. Assign the displacement boundary conditions to the appropriate edges of the model. Use the names, **disp_lf**, **disp_rt**, **disp_tp** and **disp_bt** for the left, right, top, and bottom displacement boundary condition set names.

Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name	disp_lf
Input Data	
Translations	<0, , >
Rotations	<, 0, 0>
ОК	
Select Application Region	
Geometry Filter	FEM
Select Nodes	Select the left edge
Add	
ОК	

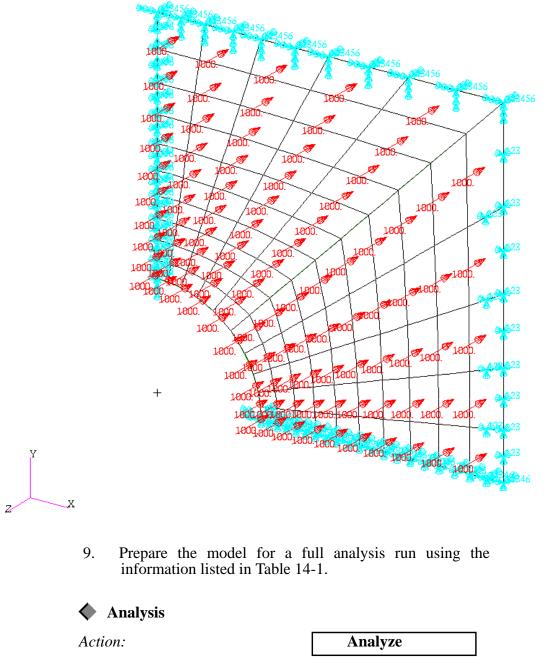

Using the Table below, define the remaining displacement boundary conditions.

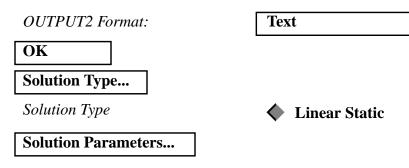
Table	14-2:
-------	-------

Name	Translations	Rotations	Application Region
disp_rt	<0,0,0>	<>	Nodes on right edge.
disp_tp	<0,0,0>	<0,0,0>	Nodes on top edge.
disp_bt	<,0,>	<0, ,0>	Nodes on bottom edge.

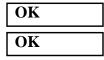
Apply

When you are finished your model's displacement boundary conditions should look like those shown in the figure below.

Object;


Method:

Translation Parameters...


Anaryze
Entire Model
Full Run

PATRAN 301 Exercise Workbook - Release 7.5 14-13

Set-up the Analysis

Review the form, but do not change its default settings.

In MSC/NASTRAN, the subcases provide a tool to associate loads and boundary conditions, output requests and various other parameters depending on the solution type selected. These subcases are essential to perform portions of a full run like performing nonlinear analysis and analyzing a model with super elements.

Click on the **Subcase Create...** button, you will notice a subcase already created. The name of the subcase is the same as the loadcase which is **Default**. This subcase consists of the Default load case, and the requested outputs that can be inspected by pressing the *Output Requests* button.

When done inspecting the form, you may press the **Cancel** buttons.

File/Quit