LESSON 5

Geometry Construction

Objectives:

Create a fillet.

- Build a trimmed surface model.

Model Description:

In this lesson you will create the required 2-D geometry for a 3D model. You will construct geometry that you will use to form a chain that represents the outer boundary (loop) of the trimmed surface. In a later exercise you will define its finite element mesh, and create multi-point constraints. Shown below is the cross section of the 3-D model.

FGURE 1.

Suggested Exercise Steps:

- Open a new database called mpc.db with a maximum model dimension of 4 units and P3/FEA as the analysis code.
- Use straight lines and two 0.3 unit fillets to create the geometry shown above.
- Chain together the lines in your model to create one continuous curve.
- Use this chained curve to define the outer loops of a planar-trimmed surface.
- Display the normal direction of the surface.
- Create a cylindrical coordinate frame at -6 units in the y direction, having the local z-direction aligned with the global x-direction.

Files:

All the files used in this exercise are listed below. Each listing includes the file, where it originated, its format (text/binary) and summary information as to how it relates to this exercise.

File Supplied/Created Description
mpc.db Created This is a MSC/PATRAN database (binary) that is created in Exercise 2. The geometry for the model is created in this exercise. The mesh for the model will be generated in Exercise 6. Finally, multi-point constraints will be created in Exercise 7.

Exercise Procedure:

Open a New Database

Create the
Model

1. In your xterm window type p3 to start P3/ PATRAN. After that, Create a new database named mpc.db.

File/New...
New Database Name:
OK
mpc

In the New Model Preference form set the following:

Tolerance:

Approx. Max. Model Dimension:
Analysis Code:
MSC/PATRAN_FEA
Analysis Type:
Structural

OK

2. You will create a series of straight lines. Later, you will use its these to form the outer loop (outside boundary) for the trimmed surface you will create in the last part of this exercise.

To start creating your model, first click on Geometry in the Main Window, and then perform the following:

- Geometry

Action: \square
Create

Object:
Method:

Curve
$\mathbf{X Y Z}$

Vector Coordinates List
Origin Coordinates List

$\langle 2,0,0\rangle$
$[0,0,0]$

Apply

A line should appear in your viewport as follows:

Secondly, change the Origin Coordinates List as follows:
Origin Coordinates List \square
Apply

Your viewport should have two lines as shown below:

Next, enter the following on the Geometry form:

Vector Coordinates List	$\langle\mathbf{0}, \mathbf{0 . 4 , 0 \rangle}$
Origin Coordinates List	Point $\mathbf{1} 2$

Apply

Two more lines will show up in the viewport as shown below:

Next, create line 5 by entering the following:

Vector Coordinates List

<0.75, 0, 0>
Origin Coordinates List
Point 5

Apply

Your viewport should look like the one shown below.

Next, enter the following to create line 6:
Vector Coordinates List
$<-0.75,0,0>$
Origin Coordinates List
Point 6

Apply

Your model should now look like the one shown below.

To create line 7 and 8 :

Your viewport should look like the one shown below.

Lastly, create line 9 by entering:

Geometry

Action:
 Object:

Method:

Create
Curve
Point

Starting Point List:

Point 9

Ending Point List:

$$
\text { Point } 10
$$

Apply

Your viewport should appear as the one shown below.

Creating a Fillet

3. Place fillets of 0.3 fillet radius at the appropriate locations.

Geometry

Action:
Object:
Method:

Create
Curve
Fillet

0.3

Fillet Radius

Now click the Curve/Point List databox and screen select the curve that you wish to use as an edge, then the end point that is exterior to the fillet. Do this for both lines.

\square Trim Original Curves

\square Auto Execute
Curve/Point 1 List

Curve/Point 2 List

Construct Point CurveUO.. ..(Point 6)...(Curve 6))
Construct Point CurveUO.. ..(Point 10)...(Curve 8))

In order to get the above inputs in the Curve/Point databoxes, you should follow the pick order as shown below.

Repeat this step for the other side of the model. Your viewport should appear as the one shown below.

Geometry Construction

4. Chain together the lines in your model to create one continuous curve.

- Geometry

Action:
Object:
Method:

Create
Surface
Trimmed

Option \square
Planar

Chain

 together thelines

Now click the Auto Chain button and another menu will appear on the screen. Enter the following:

Auto Chain

Select a Start Curve
Curve 1
Delete Constituent Curves
Apply

Curve 1

When prompted to confirm deletion of the original curves, press Yes. Repaint/Refresh the screen.

Yes

Press Cancel to close the form.

Cancel

Creating a

 TrimmedSurface

Displaying

Surface

Normal
5. Use this chained curve to define the outer loops of a planar-trimmed surface.

Outer Loop List

Curve 12

Apply

Answer yes when asked if you wish to delete the original curves.
6. Display the normal direction of the surface.

First, use the Iso 1 View icon to change the model to an isometric display.

Now, enter the following to show the surface normal:

- Geometry

Action:
Object:
Method:

Show
Surface
Attributes

\square Auto Execute

Surface List
Surface 1

Draw Normal Vectors

The model should appear as shown below.

Notice the Show Surface Attribute Information Table appears with a variety of relative information such as edge information, area and surface type.

Press Cancel to close the table.
7. Create a cylindrical coordinate frame at -6 units in the y direction, having the local z-direction aligned with the global x -direction.

Geometry

Action:
Object:
Method:

Create
Coord
3Point

Type:

Cylindrical
$\left[\begin{array}{lll}0 & -6 & 0\end{array}\right]$
$\left[\begin{array}{lll}1 & -6 & 0\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$

Point on Plane 1-3

Apply

Next, change the view by select the following icon:

Fit Viw Icon

Your model should appear as shown below.

Lastly, close the database.

File/Quit...

You will need to keep the database for later exercises.

