LESSON 7

Generating a Hex Mesh Using Vector Sweep

Objectives:

- Import a geometric model from an IGES file and create surfaces in the quarter model.
- Create meshes for the surfaces and create a vector field.
- Using sweep option, create solid finite elements by extruding and using the vector field.

Model Description:

In this exercise you will read in a model from an IGES file into a new MSC/PATRAN database. Then you will create surfaces for the lower right quarter of the model.

This exercise will show you an alternative to creating solid finite elements from solid geometry. Instead of creating solids and then meshing them, you can mesh surfaces and then sweeping the surface elements to make solid finite elements.

To create the solid finite elements, you will use the Sweep option that is available under the Finite Elements menu. Using the quad elements created on the surface, you will create the solid model by using extrusion and a vector field.

The view of the quarter model is as shown here.

Suggested Exercise Steps:

- Start up MSC/PATRAN and open a new database called con_rod.db.
- Display QuickPick menu for quick display manipulations throughout
the exercise.
- Import IGES file called con_rod_new.igs.
- Create a curve to break a couple of existing curves to create the quarter model.
- Break a curve using an intersection point and delete the outer half.
- Change the geometric shrink to 0.20 to help grouping easier.
- Make a group called quarter_model that contains the lower right quarter of the model.
- Set the geometric shrink back to 0.0.
- Edit a corner curve before creating trimmed surfaces so that the meshes will be simpler.
- Complete the quarter model by creating additional curves.
- Create trimmed surfaces using the autochain feature.
- Create mesh seeds along the curved edges or entities.
- Create Quad4 meshes for the surfaces.
- Create lists the associate finite elements to the trimmed surfaces.
- Sweep the meshes into solid meshes using directional vectors and the lists.
- Create a vector spatial field.
- Complete the solid meshes by sweeping the remaining Quad4 elements using the vector field.
- Equivalence the elements to eliminate duplicate nodes.
- Verify the finite elements' boundaries.
- Close the database and quit MSC/PATRAN to end the exercise.

Files:

All the files used in this exercise are listed below. Each listing includes the file, where it originated, its format (text/binary) and summary information as to how it relates to this exercise.

File Supplied/CreatedFormatDescription

con_rod_new.igs Supplied text This is the IGES file that contains the basic connecting rod geometry. The data in this file will be used to create the all hex quarter model.
con_rod.db Created binary This is a MSC/PATRAN database which is created in this exercise and is used to import the IGES file and create the hex model.

Exercise Procedures:

1. Start up MSC/PATRAN by typing p3 at the shell prompt. Open up a new database and call it con_rod.db.

In the New Model Preference form set the following:

Tolerance:

Approximate Maximum
Model Dimension:
Analysis Code:
Analysis Type:

2. Import the IGES file con_rod_new.igs.

File/Import...

Import an
IGES file

Object:
Source:
Import File:

Model
IGES
con_rod_new.igs

Apply

An window containing the summary of the IGES file will appear. Click OK to import the entities from the file.
3. If the display seems to be empty at this time. From your Toolbar, select the icons below to get a good idea of the model.

Fit View

Iso View 1

The display should be similar to the one below:

4. To create the lower right quarter of the model, we will edit the model. Create a curve to intersect the two curves.

Geometry

Action:
Object:
Method:

Vector Coordinates List

Create

Curve
XYZ
<60 0 0>

Auto Execute

Origin Coordinates List \square
Apply

5. Break curves 27 and 28 using the intersection points with the previously created curve 43 .

Geometry
Action:
Object:
Method:
Option:

Edit
Curve
Break
Point

Click in the databox and a Select Menu appears beside the Geometry menu. Pick the intersection icon and the menu changes.

Pick the curve icon and then select the first and second intersecting curves in the viewport.

Click Yes when asked if you want to delete the original curves.
Repeat the procedures with curve 28 .
6. Now break curve 43 using the inside point created at the intersections. Click Yes when asked if you want to delete the original curves.

\square Delete Original Curves

\square Auto Execute

Curve List	Curve 43
Break Point List	Point 46

Of the two curves created, delete the one on the right.

Action:

Object:
Curve List

Delete
Curve
Curve 49

Apply

7. Change the geometric shrink using Display/Geometry... option to make picking the entities easier.

Display/ Geometry ...

Geometric Shrink

Apply

Cancel

The following is what the display should look like.

From the Toolbar menu, select the default view icon.

Front View
8. Create a group called quarter_model containing the lower right quarter of the model.

Group/Create...

New Group Name

> quarter_model

Make Current

■ Unpost All Other Groups
Entity Selection
select entities shown in figure below

Click in the databox and using the cursor in the viewport, pick the entities that made up the lower right quarter of the model (see the figure below).

Apply
Cancel

* Using Display/Geometry ...option, change the geometric shrink back to 0.0.

The view of the model should be like the one shown..

9. Break curve 33 using the parametric option.

Break a Curve

Geometry

Action:	Edit
Object:	Curve
Method:	Break
Option:	Parametric
Break Point	0.5
\square Delete Original Surfaces	
\square Auto Execute	
Curve List	

Click Yes when asked if you want to delete the original curves.
10. Turn on the point and curve labels.

Display/Entity Color/Label/Render...

Point:
Label

Curve:
Tsurf:

Label
Label

Apply
Cancel
Now, create 5 curves(51 through 55) to close the surfaces. Refer to the next graphic to locate the position of the curves to make.

- Geometry

Action:
Object:
Method:
Option:

Auto Execute

Starting Point List
Ending Point List

Point 47

Click on the Starting Point databox and make sure the point icon in the Select Menu is highlighted. Use the cursor to pick the points on the screen. The curves will be created automatically since the Auto Execute button is on. Repeat the steps until all five curves are created.

The display should now be like this:

11. Turn off the Point labels. Create trimmed surfaces.

Create

- Geometry

Action:	Create
Object:	Surface
Method:	Trimmed
Option:	Surface

Auto Chain...

Current Group Only

Highlight Chain Creation
\square Delete Constituent Curves
You do not want to delete the constituent curves because you need the curves to complete other trimmed surfaces.

Auto Execute

You will be using the autochain feature to create a closed loop bonded by curves $26,49,54,7,3$, and 55 (Your ID numbers may differ due to the order in which you created the curves. Refer to the figure below).

Click in the databox and using the cursor, pick curve 26 to start the chain in the viewport.

Select a Start Curve
Curve 26
The curve selected to be the next in the chain is highlighted in magenta color and has a filled circle on its midlength. The identity of the curve is also shown in the Choose Curve to Continue databox.

Click Next if the curve selected is not the one you want and/or click OK to accept the selection. Please refer to the next graphic to determine which surfaces need to be created.

When a chain is completed, the chained curve is shown in magenta color.

Cancel

Now continue with the geometry form.

Delete Outer Loop

Outer Loop List
Curve 56

Curve 56 is the chained curve just created..

Apply

Click Yes when asked if you want to delete the original curves. A trimmed surface is created. Repeat the steps to create the rest of the surfaces. The resulting surfaces are shown below.

12. Prepare the geometry for meshing. Create mesh seeds along the curved entities. See the next graphics to determine where the mesh seeds are to be.

- Finite Elements

Action:
Object:
Type:

Create
Mesh Seed
Uniform

- Number of Elements

Number:
Curve List:

$\mathbf{3}$
See Figure

Apply

Repeat the seeding with an element number of 5 on curves 7,8 , and 35 .

Shown here are the curves and number of elements needed.

Change the view using Viewing/Angles... to see the other curved entities.

Viewing/ Angles...

Model Absolute
55.05 .00 .0

Apply

Cancel
Use the Select Corners icon in the Toolbar to zoom into the area shown in the graphic below.

Select Corners
Change the type in the Finite Elements form to One Way Bias and you will see arrows displayed on the model.

Type:
One Way Bias

Here is what the display looks like.

Since the arrows for curve $9-12$ are pointing in the same direction, remember to change the ratio of L2/L1 for the different curve.

Create Mesh

Num Elems and L2/L1

Number:

L2/L1

Auto Execute
Curve List:
Curve 1011

L2/L1
0.5

Auto Execute

Curve List:
Curve 912
Select Fit View icon from the QuickPick menu.

Fit View

The resulting mesh seeds are as follows:

13. Set the view to default view and turn off all labels. Create meshes for the surfaces.

\checkmark Finite Elements

Action:
Object:
Type:

Global Edge Length

Create
Mesh
Surface

- Paver

Surface List
Surface 1:3

Apply

Also mesh the rest of the surfaces using the 2 Curves option.
Type:

```
2 Curves
```

Global Edge Length \square
\square Auto Execute

Curve 1 List
Curve 11112
Curve 2 List
Curve 2109

Apply

The resulting meshes are as shown below.

14. Create two lists. One containing the elements associated with the connector rod inner web, Surface 3, and the other containing elements associated with the other surfaces, Surface 1 and 2.

Tools/ List/Create...

Model:
Object:
Method:

FEM
Element
Association

Pick Surface from the Association List by highlighting it.

Surface
Target List

\section*{| Surface 3 |
| :--- |
| \mathbf{A} |}

Apply

The List A now shows Element 162:196 in the 'lista' contents databox (numbers will vary, depending on how many elements are created by the paver during meshing).

Surface
Target List

Apply

The List B shows Element 1:161 in the 'listb' contents databox.

Cancel

15. Create solid meshes by sweeping the surface meshes.

- Finite Elements

Action:	Sweep
Object:	Element
Type:	Extrude

Set the number of elements in the Mesh Control form equal to 2 .
Number=
OK
Direction Vector
<0 0 10>
Delete Original Elements
Base Entity List
'listb'
Apply

Change the number of elements in the Mesh Control form to 4.

Number=

OK

Direction Vector
Base Entity List

$<0020>$
'lista'

Apply

The resulting solid meshes are as follows:

To get a better view, click on the Hidden Line and Isometric View icons in the Toolbar.

Hidden Line

Isometric View

16. Create a vector spatial field.

- Fields

Action:
Object:
Method:

Create
Spatial
PCL Function

Field Name
Field Type
First Component
Second Component
Third Component

0.
0.
20.0 - 'z

Apply

Set the display back to Wireframe and Default View before continuing to the next step.
17. Create the rest of the solid elements by sweeping the surface elements along the vector field.

- Finite Elements

Action:
Object:

Sweep
Element
Vector Field

Make sure that the Mesh Control form is still showing 4 as the number of elements. Click OK.

Field Name

\square Delete Original Elements

Base Entity List
Elm 197:276
Click in the databox and use the cursor to select the rest of the existing surface elements.
Apply

Equivalence the finite elements to eliminate duplicate nodes.

Equivalence

the Meshes

Action:

Object:
Method:

Equivalence
All
Tolerance Cube

Apply

Now you can verify the finite elements' boundaries.

Action:	Verify
	Element
Method:	Boundaries
Display Type	\bullet Free Edges

Apply

Set the display to Isometric View and the resulting display of the model is as follows:

Hit the Hidden Line icon in the Toolbar and the display changes to hidden line representation of the element boundaries.

Hit Reset Graphics to go back to the wireframe model and close the database. Quit MSC/PATRAN to end this exercise.

