LESSON 8

Preparing Geometry for a Hex Mesh

Model Description:

In this exercise, you will create a new database and then import CAD geometry. You will create several new surfaces by decomposing and editing some existing surfaces to complete the model.

Decomposition of the CAD geometry is required when IsoMeshing a solid. IsoMeshing requires that the solids must have 5 or 6 faces. Thus, one needs to decompose the n-edged surface into a number of 3- or 4-edged surfaces to create 5or 6-faced solids.

Shown on next page is a drawing of the surfaces you will be decomposing and suggested steps for their constructions.

Session files will also be used to complete some of the geometry. You will also create curves using the Point method, edit surfaces using the Break and Edge Match option.

After the solid model is completely decomposed into triparametric solids, you will mesh the completed solid model with hex elements.

Suggested Exercise Steps:

- Open a new database called Hex.db.
- Import the IGES file Gadget.igs and run a session file.
- Create solids on model using surface method.
- Decomposing surfaces into smaller three- or four-sided surfaces.
- Create Surfaces by Editing existing surfaces using the Break option.
- Edge match some of the surface edges of the model.
- Create solid on the model using B-rep method.
- Mesh the base part of the model using extrude method.
- Associate the finite elements of the base part of model to the
geometric solid.
- Mesh the extension part of the model using solid method.
- Equivalence and verify the whole model.

Files:

All the files used in this exercise are listed below. Each listing includes the file, where it originated, its format (text/binary) and summary information as to how it relates to this exercise.

File Supplied/CreateDescription

Hex.db Created This is a P3/PATRAN database (binary) that is created in this exercise.The geometry of the model is imported from an IGES file.

Gadget.igs Supplied $\begin{aligned} & \text { This is an IGES file which contains the } \\ & \text { geometry of the model for this exercise. }\end{aligned}$

Ex_5_setup.ses Supplied This is a session file which perform bounding of some surfaces of the model.

Exercise Procedure:

Open a New

Database

1. Create a new database called Hex.db.

File/New ...

New Database Name:

OK

Hex. db

In the New Model Preference form set the following:
Tolerance:

- Default

Analysis Code:
Analysis Type:

MSC/NASTRAN
Structural

OK

2. Import the IGES file Gadget.igs.

File/Import...

Object:
Source:
Import File:

Model
IGES
Gadget.igs

Apply

3. If the model is not visible, change the view by selecting the fit view icon in the toolbar:

Your viewport should appear as shown below.

4. Run the session file ex_5_setup.ses to complete the model with bounded surfaces.

Running a
File/Session/Play ...
Session File

Play from file:

Apply

The function of this session file is to use the curve method to create surfaces to bound the whole model.

After you run the file, the following should appear in your viewport.

Post Base

Part of Model
5. Now post only the base part of the model.

Group/Post

Select Groups to Post
geo_base

Apply

Cancel

Change the view to isometric 2.

Base part of the model:

6. Create surface using curve method

First you must create another curve to enclose the surface by translating an existing curve

Geometry

Action:
Object:
Method:

Translation Vector
Click in the Traslation Vector databox and then select the tip and base icon

Then click on the Point icon

Now screen select point 6 and 7.

Curve List
Surface 16.3
Apply
You need to trim the curve to fit the gap

Edit
Curve
Trim
Point 42
Curve 1 (and the end point on the side of the curve that you want to trim

Apply

Repeat this procedure for the top half of the curve

Action:

Object:
Method:
Trim Point List
Curve/Point List

Apply
Now you can create the surface

Geometry

Action:
Object:
Method:

Edit
Curve
Trim
Point 5
Curve 1 (and the end point on the side of the curve that you want to trim

Create

Surface

Using Curve
Method
Curve 1 (and the end point
on the side of the curve
that you want to trim

Create
Surface
Curve

Option:
Starting Curve List
Ending Curve List

2 Curve

Curve 1
Surface 14.2

Note: Geometric ID numbers may not match exactly in this exercise. Refer to a figure whenever possible

7. Change the view of the viewport as follows:

Viewing/Angles...

Angles
15500

Apply

Cancel
8. Create curve using point method.

Geometry
Create Curve
Using Point
Method
Action:
Object:

Create
Curve

Method:
Point

Option:

Starting Point List
2 Point

Point 17

For the end point, first select the following icon in the select menu:

After that, click the following icon and then select the edge of surface 11 as follows:

Lastly, click the following icon and screen pick point 17 again.

Ending Point List
Con..(Point 17)..(Surface
11.2)

Your model should appear as follows:

9. Create a curve on surface 11 as follows:

Geometry

Action:	 Oreate Object: Method: Vector Coordinates List
Origin Coordinates List	XYZ Apply

Edit Surface

 Using Break Method10. Edit surface 26 using break method.

Geometry

Answer Yes to delete the original surfaces.

Surface 31 and 32 should be created as shown below.

Again, apply the same method to surface 11 as follows:

- Geometry

Action: \square
Object:
Surface
Method: Break
Option:
Surface List
Break Curve List

Curve
Surface 11
Curve 3

Answer Yes to delete the original surfaces.

Surface 33 and 34 should appear as shown below.

11. Delete curve 2 and 3 as follows:

Geometry

Action:
Object:

Geometric Entity List

Curve 23

Apply

12. Now, try to change the geometry into a solid.

Geometry

Action:
Object:
Method:

Solid
B-rep
\square Delete Original Surfaces
Auto Execute
Surface List
(Select all the surfaces on screen)

Notice that an error message will come up since some of the edges are not matched (see figure below). Hence, we need to edge match the model before changing it into solid.

13. We must create a Trimmed Surface so the edges will match up

Geometry

Action:
Object:
Method:
Director Curve List
Base Curve List

Create
Surface
Glide
Surface 21.2
Surface 16.3

Surface 16.3

Apply

Now you will trim the surface you just created

Action:
Object:
Method:

Auto Chain...

Select a Start Curve

Surface 30.3

Choose a Curve to Continue

Surface 29.2

OK

Click on next if the curve in the box is not the curve you want to select. If it is press OK. Continue around the edge of the surface clockwise until it is completely enclosed.

Cancel

Outer Loop List
Surface List

Curve 2

Surface 32

Apply
Respond Yes to both when promted to delete the original surface and curves
14. Edit surface using edge match method:

Edge Match the Model

Create Solid
by B-rep Method

- Geometry

Action:
Object:
Method:

Edge Match

Option:
Surface 1 List
Surface 2 List

$$
2 \text { Surface }
$$

Surface 30
Surface 33

Apply
15. Now try to create solid using B-rep method again.

- Geometry

Action:
Object:
Method:

\square Delete Original Surfaces

Surface List
(Select all the surfaces on screen)

Apply

A message should come up in the command window to state that solid 6 is created.
16. Create mesh seeds on the model.

- Finite Elements

Action:
Object:

Create
Mesh Seed

Method:

Create

Group

17. Create a group for the finite elements of the base part of model.

Group/Create...

New Group Name
fem_base

Make Current

Apply
Cancel

Create Mesh

18. Create mesh on model.

- Finite Elements

Action:
Object:
Method:

Global Edge Length
Element Topology
Mesher

Quad4

- Paver

Surface List
Surface 14
Apply
and
Global Edge Length
Element Topology
Mesher

4
Quad4
Isomesh

Surface List
Surface 30
Apply

Turn off all the entity labels and your model should appear as shown below.

19. Sweep the elements using extrude method.

- Finite Elements

Action:

Object:
Method:
Sweep

Element
Extrude

Mesh Control

- Number of Elements

Number

OK

Now click the Direction Vector databox and then select the following icons in the select menu:

First select this icon:

Then select this:

Select point 38 to point 22 as the Direction Vector as follows:

Direction Vector
Delete Original Elements
Base Entity List

Elm 1:74
(Select all the elements on surface 14 and 30)
Con..(Point 38)..(Point 22).. (14 and

Apply
 Apply

The mesh should appear as follows:

20. Perform the above procedure again for the following entities:

Mesh Control

- Number of Elements

Number

OK

Use the beam, point, and node icons to select the Direction Vector.

Select node 323 to point 23 as the Direction Vector.

(Note: value of node may vary, due to meshing by paver.)

Now change the view to Top view by select the following icon in the toolbar:

Top view icon

Click in the Base Entity List databox and then select the element face icon:

Select the sweep elements as follows:

Direction Vector
\square Delete Original Elements
Base Entity List
Elm 223.5 296.5

Apply

Now change the view angle back to 15500 and the following should appear in your viewport.

21. Change the view to default view by select the following icon in the toolbar.

22. Now create some mesh on the model as follows:

- Finite Elements

Action:
Object:
Method:

Global Edge Length
Element Topology
Mesher
Surface List
Apply

Create
Mesh

Surface

4
Quad4
Paver
Surface 6

The new mesh is shown below.

23. Again, sweep elements using the extrude method.

- Finite Elements

Action:

Object:
Method:

Sweep
Element
Extrude

Mesh Control...

- Number of Elements

Number

OK

Use the same direction vector as last time (node 323 to point 23) and use the following select menu icons to select all the new created elements on surface 6 as the base entities.

First select this icon:

Then select this

Direction Vector
Con..(Node 312)..(Point 23).
Delete Original Elements
Base Entity List

Surface 6

Apply

A message should show up in the command window to state that 4 elements have been created.
24. Change the view to Top view and then perform the sweep element procedure again for the following entities:

Mesh Control...

- Number of Elements

Number

OK

Use point 1 to point 8 as the Direction Vector and use the following select menu icon to select the element faces shown below as the sweep elements.

Direction Vector
Con..(Point 1)..(Point 8)..
\square Delete Original Elements
Base Entity List

Elm 297.5..370.5 375.5..378.5

Apply

Change the view angle to $\mathbf{1 0} \mathbf{1 0} \mathbf{0}$ and your model should appear as follows:

Next, create mesh on the final surface of the model.

Finite Elements

Action:

Object:
Method:

Global Edge Length
Element Topology
Mesher
Surface List

Apply

\square
Quad4
Paver
Surface 3334
(The two unmeshed surfaces at the left of the model)

Mesh on surfaces 33 and 34 is shown below.

25. Sweep elements on surface 33 and 34 using extrude method.

- Finite Elements

Action:
Object:
Method:

Mesh Control...

- Number of Elements

Number

\square
\square
\square
Element
Extrude
\square 8 OK

Again, use point 1 to point 8 as the Direction Vector and click on the following select menu icon to select the elements on the surface 33 and 34 as base entities.

Highlight all newly created elements on the two surfaces.

Delete Original Elements

Base Entity List
Elm 1003:1038

Apply

The model should appear as follows:

26. To get a better view of the model, apply the following:

Display/

Entity Color/Label/Render...

Render Style:

> Element Fill

Apply

and

Display/Plot Erase...

Erase All Geometry

Click the repaint button in the Main window and your model should appear as shown below.

Change the display back to Wireframe and Plot All Entities.
27. Associate the finite elements of the base part of model to the geometric solid.

Create Finite
Element

- Finite Elements

Element List

(select all hex elements on screen)

Solid 6

Solid List

Apply

When the process is done, the number of nodes that have been associated to the solid will be shown in the command window.
28. Now, post only the extension part of the model.

Post

Extension
Part of Model
Group/Post ...
Select Groups to Post

> geo_extension

Apply

Cancel

29. Change the display of your viewport as follows:

Select the following icon:

Iso 1 View

The extension part of the model:

30. Next, create some solids at the model.

Frist you must create a surface on top

- Geometry

Action:
Object:
Method:

Option:
Starting Curve List
Ending Curve List

2 Curve
Curve 1
Surface 3.4

Apply
Now Create the solids

Create
Solids Using
Surface
Method

Solid 1 should appear as shown below.

Using Surface 3 and 4, perform the above procedure again to create solid 2.

Option:
Starting Surface List
Ending Surface List

2 Surface
Surface 3
Surface 4

Apply

31. Next, create surfaces using decompose method as follow:

- Geometry

Action:
Object:
Method:

Surface
Surface Vertex 1 List
Surface Vertex 2 List
Surface Vertex 3 List

Surface 25
Point 16
Point 25
Point 26

For the first 3 vertices, use the point select icon

For the fourth vertex, first select the second icon in the select menu, edge point:

then select a point at the circular edge as follows:

Surface Vertex 4 List
Surface 25 (u 0.744...

Apply

Your model should appear as follows:

Perform the above procedure again using the following entities: 2D elements

Surface

Surface 25

For the first, second and third vertex, use the point pick icon in the select menu to pick the point.

Again, to pick the fourth vertex, use the second icon in the select menu.

Surface Vertex 1 List
Surface Vertex 2 List
Surface Vertex 3 List
Surface Vertex 4 List

Point 9
Point 16
Point 43
(Point on curve as shown below)

\square
Apply

Your model should appear as follow:

Once again,
Surface Vertex 1 List
Surface Vertex 2 List
Surface Vertex 3 List
Surface Vertex 4 List

Point 44

Point 27
Point 12
Point 9

32. Next, using extrude method to create solid 3, 4 and 5 as shown below.

Create Solid
Using Extrude
Method

Action:
Object:
Method:

Create
Solid
Extrude

Now click the Translation Vector databox and then select the following icons in the select menu:

First select this icon:

Then select this:

Select point 12 to point 11 as the Direction Vector.

Autoexecute

Translation Vector
Surface List

Con..(Point 12)..(point 11)..
Surface 272829

Apply

Your model should appear as shown below.

33. Create a group for the finite elements of the extension part of model.

Group/Create

New Group Name	fem_extension
Make Current	
Apply	
Cancel	

34. Change the view to Iso $\mathbf{1}$ View and then create a mesh on the model as follows:

\checkmark Finite Elements

Action:
Object:
Method:
Global Edge Length
Element Topology

Isomesh
Solid List
Solid 1:5
(Select all solids on screen)

Apply

The meshed model is shown below.

Create Group

35. Create a group for all the geometric part of the model.

Group/Create

New Group Name
Group Contents:
geo
Add All Geometry

Apply

After that, create a group for all the finite elements of the model.

New Group Name
fem
■ Make Current

- Unpost all other groups

Group Contents:
Add All FEM
Apply
Cancel

The following should show up in your viewport.

36. Equivalence the model.

Finite Elements

Action:
Object:
Method:
Tolerance Cube

Apply

37. Verify the model.

The following should show up in your viewport.

38. Finally, change the display of the model as follows:

Display/

Entity Color/Label/Render...

Render Style:
Element Fill

Apply

Your model should appear as show below.

Reset the Render Style back to Wireframe.
39. Close the database and quit PATRAN to complete this exercise.

File/Quit

