LESSON 9

Finite Element Model

Objectives:

- Build an initial surface mesh that will be used as a pattern to create the final 1, 2 and 3D mesh.
- Edit and smooth the mesh.
- Build a finite element model by sweeping a node, 1D and 2 D elements in a 30° arc.

Model Description:

In this lesson you will use the finite element construction method called mesh sweep to create your finite element model. This algorithm is different than the IsoMesh hexahedral mesher because it creates elements by sweeping existing elements, therefore no supporting geometry is required.

Suggested Exercise Steps:

- Open the old database mpc.db.
- Create a mesh seed of 3 elements per edge along the fillets, and 1 element per edge at the far right and left edges of the trimmed surface.
- Create a "base mesh" with a global edge length of 0.25 on the trimmed surface and the curve in your model.
- Modify some quads around the fillet on the right and where it is needed by splitting them into 3 smaller quads.
- Equivalence the model and smooth the mesh.
- Sweep the elements defining the base of the model in a 30° arc about the cylindrical coordinate frame, to create 12 layers of hex, quad, and bar elements in the swept direction. Nodes should reference the cylindrical coordinate frame.
- Display the model in Element Fill render style.

Files:

All the files used in this exercise are listed below. Each listing includes the file, where it originated, its format (text/binary) and summary information as to how it relates to this exercise.

File Supplied/CreateDescription
mpc.db Created in ex2 This is a PATRAN database (binary) created in Exercise 2. The geometry for the model was created in Exercise 2. The mesh for the model is generated in Exercise 6. Finally, multi-point constraints will be created in Exercise 7.

Exercise Procedure:

1. Open the old database mpc.db.
2. Create a mesh seed of 3 elements per edge along the fillets, and 1 element per edge at the far right and left edges of the trimmed surface.

First, for the fillet curves,

- Finite Elements

Action:
Object:
Method:

- Number of Elements

Number
Curve List

Surface 1.41 .8 (see figure below)

Apply

The current model is shown below.

Next, for the far right and left edges of the trimmed surfaces,

- Number of Elements

Number

Curve List
Surface 1.21 .10

Apply

Your model should look like the one shown below.

3. Create a "base mesh" with a global edge length of 0.25 on the trimmed surface and the curve in your model.

To mesh the surface, enter the following:

- Finite Elements

Action:	Create
Object:	Mesh
Method:	Surface
Global Edge Length	$\mathbf{0 . 2 5}$
Element Topology	Quad4
Mesher	Paver
Surface List	Surface 1

Now click the Node Coordinates Frames and a Node Coordinate Frames Menu will appear on the screen. Change the Analysis Coordinate Frame to the cylindrical coordinate frame.

Node Coordinate Frames...

Analysis Coordinate Frame

coord 1

OK

Click Apply to create the mesh.

Apply

If you have the labels turned off and geometric display lines set to zero, your model should look like either one of the following:

Model with symmetrical mesh.

Model with unsymmetrical mesh.

Meshing by paver is dependent on a lot of geometric factors such as surface orientation, meshing direction and direction of surface normal etc. Therefore, different meshes may result even using the same meshing techniques.
(For your convenience, we will only show illustration and entity number for the unsymmetrical mesh model.)

Now to mesh the curve, apply the following:

- Finite Elements

Action:	 Create Object: Method: Global Edge Length Element Topology Curve List
Apply	
	Curve

Modify Quads

4. Modify some quads around the fillet on the right by splitting them into 3 smaller quads.

- Finite Elements

Action:

Modify
Quad
Split

Select the Replacement Pattern with three quads.

Then, screen select the three elements as shown below for the Quad Element List.

Quad Element List
Element \#'s will differ with each mesh

Click in the Node List databox and select the upper corner node (as shown above) that is common to these three elements three times.

Node List
Node \#'s will differ also

Apply

Your model should appear as follows:

(You may want to apply the above procedure again to modify the quad elements in any other locations, such as the left side of the model shown above. It should be noted, that doing so may change the later node and element numbering.)
5. Equivalence the model and smooth the mesh.

First, to equivalence, perform the following:

- Finite Elements

Action:
Equivalence
Object:
All
Method:
Tolerance Cube

Apply

Then, to perform the mesh smoothing operation:

- Finite Elements

Action:	Modify
Object:	Mesh
Method:	Surface
Surface List	Surface 1

Apply

Your model should appear as shown below.

6. Sweep the elements defining the base of the model in a 30° arc about the cylindrical coordinate frame, to create 12 layers of hex, quad, and bar elements. Nodes should reference the cylindrical coordinate frame.

Finite Elements

Action:
Object:
Method:
The Mesh Control form should automatically display. If it does not, then click on the Mesh Control... button. Enter the following in this menu:

Mesh Control

Method:

Uniform

- Number of Elements

Number

OK

Click on the FE Parameters... button. On the Sweep FEM Parameters form, you need to change the Analysis Coordinate Frame to the cylindrical coordinate frame, Coord 1.

FE Parameters

Analysis Coordinate Frame

coord 1

OK

On the Finite Elements form, change the Refer. Coordinate Frame to Coord 1 and then enter the Axis and Sweep Angle as follow:
Refer. Coordinate Frame
Axis
Sweep Angle

coord 1
$\left\{\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right.$
30.0

Click in the Base Entity List databox. On the Select Menu that appears, select the icon shown below to allow the selection of finite elements.

Now in that Select Menu select the icon for node,

sweep your point element at the end of Curve 2, deleting the original element.

Delete Original Elements

Base Entity List

$$
\text { Node } 48
$$

Apply

Next select the icon for beam elements and sweep the original bar elements along Curve2.

Base Entity List
Elm 27:34

Apply

Finally, select and sweep the quad elements on Surface 1 using the following icon for quad element.

Base Entity List
Elm 1:6 8:19 22:26 35:43

Apply

The model should appear as shown below.

7. Equivalence the model.

- Finite Elements

Action:
Equivalence

Object:
Method:
All

Apply
8. Display the model in Element Fill Style.

Display/Entity Color/Label/Render...

Render Style:
Hidden Line

Your model should appear as the one shown below.

Reset the Render Style back to Wireframe.
Render Style:
Wireframe
Apply
Cancel
Close the database and quit PATRAN to complete this exercise.

File/Quit

