LESSON 13

Cylinder with T-Beam Stiffeners

Objectives:

- Create a cylinder and apply loads.
- Use the beam library to add stiffeners to the cylinder.

Exercise Procedure:

1. Open a new database. Name it nozzle.

Type p3 in your xterm. The Main Window and Command Window will appear.

File/New ...
New Database Name:

nozzle

OK

The viewport (PATRAN's graphics window) will appear along with a New Model Preference form. The New Model Preference sets all the code specific forms and options inside MSC/PATRAN.

Tolerance:

- Default

Analysis Code:

> MSC/NASTRAN

Analysis Type:

Structural

OK

2. Create a cylindrical coordinate frame.

- Geometry

Action:	Create
Object:	Coord
Method:	3 Point
Type:	Cylindrical

Apply

3. Create the geometry.

- Geometry

Action:	Create
Object:	Curve
Method:	$\mathbf{X Y Z}$

Refer. Coordinate Frame:	select new system
Vector Coordinates List:	<10, 0, 30>
Origin Coordinates List:	$[\mathbf{1 0 , 0 , 0]}$
Apply	
Action:	Create
Object:	Surface
Method:	Revolve
Total Angle:	12
Curve List:	select curve

The function autoexecutes. Now, change the view by selecting the following toolbar icon:

Y	Right Side View
$2 \quad 8$	

4. Extract a curve down the middle of the model and scale it to 90%.

Action:
Object:
Method:
Option:
Curve Direction:
v Parametric Value:
Surface List:

Create
Curve
Extract
Parametric
u Direction
0.5
select surface

The function autoexecutes.

Action:

Create
Point
Extract

Object:
Extract
Method:

The function autoexecutes and creates a point in the center of the extracted curve. To better see where this point is located, turn on labels using the following toolbar icon:

Action:
Object:
Transform

Method:
Origin of Scaling:
Scale Factor:

Scale
select extracted point
$0.9,1.0,0.9$

Delete Original Curves
Curve List:
select extracted curve
The function autoexecutes. When prompted if you wish to delete the original curves, respond with:

Yes

Clean up the display using the following icons:

Refresh Graphics Hide Labels

5. Associate the curve to the surface.

Action:

Associate
Curve

Method:
Curve List:

Surface List:

Surface
select extracted curve
select surface

The function autoexecutes. The curve is now associated with the surface, as indicated by the triangle.

X
6. Mesh the model.

- Finite Elements

Action: \square
Object:
Mesh Seed
Type:
Number of Elements:

Uniform
18

Curve List:
select associated curve
Apply

Number of Elements:

Curve List:

shift click to select left and right edge

Apply

Number of Elements:
Curve List:
shift click to select top and bottom edge

Apply

Action:

Create
Mesh
Surface
4

Mesher:
Surface List:

Apply

The model should now be meshed as follows:

x
7. Create the material alum.

- Materials

Action:

Object:

Create
Isotropic
Manual Input
alum

Input Properties...

Elastic Modulus:
Poisson's Ratio:
10.0 E 6 0.3

Density:

Apply

Cancel

8. Create two fields to be used for the model. One will represent the thickness, and the other wil be used to apply a sinusoidally varrying pressure.

First, create the field thickness.

- Fields

Action:	Create
Object:	Spatial
Method:	PCL Function
Field Name:	thickness
Field Type:	Scalar
Coord. System Type:	Real
Coordinate System:	select cyl. coord. system
Scalar Function (' R ' T ' Z):	$0.15+\mathbf{0 . 0 0 2 5 * ' Z}$
Apply	

Now, create the field edge_load.

Action:	Create
Object:	Spatial
Method:	PCL Function
Field Name:	edge_load
Field Type:	Scalar
Coord. System Type:	Real
Coordinate System:	select cyl. coord. system
Scalar Function (' R ' T ' Z):	100^{*} Sinr('Z)
Apply	

9. Create the element properties for both the cylinder and the T-beam stiffener.

First, create a 2D shell property called plate for the cylinder.

- Properties

Action:	Create
Dimension:	2D
Type:	Shell
Property Set Name:	plate

Input Properties...

Material Name:
Thickness:

OK

Select Members:
select surface

Add

Apply
Next, create a property set called stiffener.

Action:	Create
Dimension:	1D
Type:	Beam
Property Set Name:	stiffener

Input Properties...

Use Beam Section

Click on the following icon to create the beam cross section:

New Section Name: \square
Click on the following section type icon:

$W:$	1.0
$H:$	1.0
$t 1:$	0.1
$t 2:$	0.08

Calculate/Display

When done viewing the diminsional specifications, close the form.

Close

OK

Material Name:
Bar Orientation:

alum
$\langle 1,0,0\rangle$ Coord 1

OK

Select Members:
select associated curve
Add
Apply
10. Create the sinusoidal pressure load called press.

- Loads/BCs

Action: \square
Create

Object:
Type:
New Set Name:
Target Element Type:

Pressure
Element Uniform
press
2D

Input Data...

Top Surface Pressure:
f:edge_load

OK

Select Application Region...
Select Surfaces or Edges:
select surface

Add

OK

Apply

11. Change the view of the model to better display the applied pressure.

Viewing/Angles ...
Angle:

Apply
Cancel

Display / Load/BC/Elem. Props...
Vectors/Filters ...
Length:
Scale Factor:

- Scaled - Screen Relative

0.1

Show LBC/EI. Prop. Values
Apply

Cancel

Show on FEM Only

■ Show LBC/El. Prop. Vectors
Apply
Cancel
If the pressure load is not seen on the screen, plot it by doing the following:

Action:
Assigned Load/BC Sets:
Select Groups:

Plot Markers
Press_press
default_group

Apply

The following should now be seen:

12. Transform the model by rotating the surface about the cylindrical axis.

Group/Transform ...

Action:	Transform
Method:	Rotate

Properties:
Reference Coord. Frame:
Rotation Angle:
Repeat Count:

Transform
select cyl. coord. system
12.0

14

Apply

Cancel

This leaves the screen a little messy, though, with all the loads applied. Clean up the display by doing the following:

Display /Loads/BCs/El. Props...
Loads/BCs:

Hide All

Apply

Cancel

13. Equivalence the nodes of the model that you just rotated.

- Finite Elements

14. Show the properties of the shell thickness.

- Properties

Action:

Select Property:
Display Method:

Show
Thickness
Scalar Plot

Select Groups:

- Current Viewport

To get a better view of the curvature of the model, select the following toolbar icon:

Smooth Shaded

Close the database.

File/Close...

This ends the exercise.

