LESSON 13

Cylinder with T-Beam Stiffeners

Objectives:

- Create a cylinder and apply loads.
- Use the beam library to add stiffeners to the cylinder.

13-2 PATRAN 302 Exercise Workbook - Release 7.5

Exercise Procedure:

1. Open a new database. Name it **nozzle**.

Type **p3** in your xterm. The *Main Window* and *Command Window* will appear.

File/New ...

New Database Name:

nozzle

OK

The viewport (PATRAN's graphics window) will appear along with a *New Model Preference* form. The *New Model Preference* sets all the code specific forms and options inside MSC/PATRAN.

Tolerance:

◆ Default

MSC/NASTRAN

Analysis Code:

Analysis Type:

Structural

OK

2. Create a cylindrical coordinate frame.

♦ Geometry

Action:

Object:

Method:

Type:

Apply

3. Create the geometry.

♦ Geometry

Action:

Object:

Method:

Create	
Coord	
3 Point	
Cylindrical	

Create	
Curve	
XYZ	

PATRAN 302 Exercise Workbook - Release 7.5

13-3

Refer. Coordinate Frame:	select new system
Vector Coordinates List:	<10, 0, 30>
Origin Coordinates List:	[10, 0, 0]
Apply	
Action:	Create
Object:	Surface
Method:	Revolve
Total Angle:	12
Curve List:	select curve

The function autoexecutes. Now, change the view by selecting the following toolbar icon:

Right Side View

4. Extract a curve down the middle of the model and scale it to 90%.

Action:

Object:

Method:

Option:

Curve Direction:

v Parametric Value:

Surface List:

Create Curve Extract Parametric

♦ u Direction

0.5	
select surface	

The function autoexecutes.

Action:	Create
Object:	Point
Method:	Extract
◆ Equal Arc Length	
u Parametric Value:	0.5
Curve List:	select extracted curve
	-

The function autoexecutes and creates a point in the center of the extracted curve. To better see where this point is located, turn on labels using the following toolbar icon:

Action:TransformObject:Curve

Method:	Scale
Origin of Scaling:	select extracted point
Scale Factor:	0.9, 1.0, 0.9
■ Delete Original Curves	
Curve List:	select extracted curve
The function autoexecutes. Wi original curves, respond with:	hen prompted if you wish to delete the
Yes	
Clean up the display using the	following icons:

R

⊒ੋ

Refresh Graphics Hide Labels

		т
		'
	Ζ	R
		•
		·
Y		
7 X		
х		

5. Associate the curve to the surface.

Action:

Object:

Associate
Curve

Method:	Surface
Curve List:	select extracted curve
Surface List:	select surface

The function autoexecutes. The curve is now associated with the surface, as indicated by the triangle.

6. Mesh the model.

♦ Finite Elements

Action:

Object:

Type:

Number of Elements:

Create	
Mesh Seed	
Uniform	
18	

LESSON 13

Curve List:

Apply

Number of Elements:

Curve List:

Apply

Number of Elements:

Curve List:

Apply

Action:

Object:

Type:

Global Edge Length:

select associated curve

2

shift click to select left and right edge

20

shift click to select top and bottom edge

Crea	ate
Mes	h
Sur	face
4	

PATRAN 302 Exercise Workbook - Release 7.5

7. Create the material **alum**.

♦ Materials

LESSON 13

Action:CreateObject:IsotropMethod:ManuaMaterial Name:alumInput Properties...10.0E6Poisson's Ratio:0.3

Isotropic	
Manual Input	
alum	

10.0E6	
0.3	

Density:

.101

Apply	
Cancel	

8. Create two fields to be used for the model. One will represent the thickness, and the other wil be used to apply a sinusoidally varrying pressure.

First, create the field thickness.

♦ Fields Action: Create **Object: Spatial** Method: **PCL Function** Field Name: thickness ♦ Scalar Field Type: Coord. System Type: Real Coordinate System: select cyl. coord. system 0.15+0.0025*'Z Scalar Function ('R 'T 'Z): Apply

Now, create the field **edge_load**.

Create Action: **Object: Spatial** Method: **PCL Function** Field Name: edge_load ♦ Scalar Field Type: Coord. System Type: ♦ Real Coordinate System: select cyl. coord. system 100*sinr('Z) Scalar Function ('R 'T 'Z): Apply

9. Create the element properties for both the cylinder and the T-beam stiffener.

First, create a 2D shell property called **plate** for the cylinder.

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

Material Name:

Thickness:

OK

Add

Apply

Select Members:

vunic.	L
rties	
ne:	Γ

select surface

f:thickness

Create

2D

plate

alum

Shell

Next, create a property set called stiffener.

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

■ Use Beam Section

Create	
1D	
Beam	
stiffener	

When done viewing the diminsional specifications, close the form.

Material Name:

Bar Orientation:

Select Members:

alum

<1, 0, 0> Coord 1

select associated curve

10. Create the sinusoidal pressure load called **press**.

♦ Loads/BCs

Action:

Create

13-12 PATRAN 302 Exercise Workbook - Release 7.5

Object:	Pressure
Type:	Element Uniform
New Set Name:	press
Target Element Type:	2D
Input Data	
Top Surface Pressure:	f:edge_load
ОК	
Select Application Region]
Select Surfaces or Edges:	select surface
Add	
ОК	
Apply	

11. Change the view of the model to better display the applied pressure.

Viewing/Angles ...

Angle:

40	~~	•	
-4/	-ny		
T£ .	-0		

Apply Cancel

Display / Load/BC/Elem. Props...

Vectors/Filters ...

Length:

Scale Factor:

Scaled - Screen Relative
0.1

Show LBC/El. Prop. Values

Apply	
Cancel	

Show on FEM Only

Show LBC/El. Prop. Vectors

Apply	
Cancel	

If the pressure load is not seen on the screen, plot it by doing the following:

Action:

Assigned Load/BC Sets:

Plot Markers
Press_press

default_group

Select Groups:

Apply

12. Transform the model by rotating the surface about the cylindrical axis.

Group/Transform ...

Action:

Method:

Transform	
Rotate	

Properties:

Reference Coord. Frame:

Rotation Angle:

Repeat Count:

Transform
select cyl. coord. system
12.0
14

Apply	
Cancel	

This leaves the screen a little messy, though, with all the loads applied. Clean up the display by doing the following:

Display /Loads/BCs/El. Props...

Loads/BCs:

Hide	All		

Apply	
Cancel	

13. Equivalence the nodes of the model that you just rotated. .

♦ Finite Elements

Action:

Object:

Method:

Equivalence
All
Tolerance Cube

Apply

14. Show the properties of the shell thickness.

♦ Properties

Action:

Select Property:

Display Method:

Show	
Thickness	
Scalar Plot	

Select Groups:

♦ Current Viewport

default_group

Apply

To get a better view of the curvature of the model, select the following toolbar icon:

Smooth Shaded

Close the database.

File/Close...

This ends the exercise.