LESSON 18

Parameterized Pipe Pipe Intersection

Objectives:

- Model a pipe pipe intersection.
- Create a PCL Function from the resulting session file.

Model Description:

In this exercise you will model a cylinder (pipe) of one radius intersecting a cylinder of a different radius. The resulting session file will be used to create a PCL function which will allow you to vary the two radii to solve a set of modeling problems.

Shown below is the resulting pipe intersection model.

Suggested Exercise Steps:

- Start PATRAN.
- Open a database (pipe.db).
- Define two real variables, rad_1 and rad_2.
- Model a pipe pipe intersection using those two variables.
- Exit PATRAN and edit the session file to make a PCL function.
- Change the values of the variables rad_1 and rad_2 and execute the function to verify that it works.

Files:

All the files used in this exercise are listed below. Each listing includes the file, where it originated, its format (text/binary) and summary information as to how it relates to this exercise.

File	Supplied/Create	Description
pipe.db	Created	This is a P3/PATRAN database (binary) that is created in this exercise. The geometry for the model is created in this exercise using parametric variables rad_1 and rad_2.
patran.ses	Created	This is a session file (text) that is created when the pipe.db is made. This file contains the basic instructions for making the pipe-pipe intersection. This file will be copied to pipe.pcl and modified.
pipe.pcl	Created	This file is a modified version of the patran.ses file (above). Additional logic is added to check for one pipe being larger than the other.

Exercise Procedure:

Model the

Pipe Pipe Intersection

1. In your xterm window type $\mathbf{p 3}$ to start P3/PATRAN. After that, create a new database named pipe.db.

File/New ...

New Database Name:
OK
pipe

In the New Model Preference form set the following:

Tolerance:

Analysis Code:

Default

MSC/PatranFEA
Analysis Type:
Structural

OK

Enter the following in the command window:
REAL rad_1 = 1., rad_2 = . 5

Click on Geometry in the Main Window, and then perform the following:

- Geometry

Action:

Point Coordinates List

Apply

A point should show up on the screen.
2. Secondly, create Curve 1 as follows:

- Geometry

Curve 1 should appear as follows:

3. Thirdly, create a surface as follows:

Geometry

Action:
Object: \square
Method:
Surface
Extrude

Translation Vector
Curve List
<0 0 '2. * rad_1'>

Curve

Curve 1

Use the Iso 1 View icon to change the model to an isometric display.

Surface 1 should appear as follows:

4. Now perform the following to create Point 5:

Geometry

Action:
Object:
Method:

Point Coordinates List

[00 'rad_2']
5. Fifthly, create Curve 2 as follows:

- Geometry

Action:	Create
Object:	 Method:
Axis	Revolve Total Angle Point List
	$\left.[0000]\left[\begin{array}{ll}1 & 0 \\ 0\end{array}\right]\right\}$ -90.0

Your model should appear as shown below.

6. Next, create another surface as follows:

Geometry

Action:	Create
Object:	Surface
Method:	Extrude
Translation Vector	
Curve List	$<^{\prime 2} .^{*}$ rad_1' 0 0>
	Curve 2

Two surfaces should appear in your viewport as follows:

7. Break up Surface 2 into two pieces at the intersection of Surface 1 and Surface 2:

Geometry

Action:	Edit
Object:	Surface
Method:	Break
Option:	Surface
Surface List	Surface 2
Break Surface List	Surface 1

Answer Yes to the prompt to delete the original surface. Your model should look like the following:

Break the

Edge

8. Now create Curve 3 and 4 by breaking Surface 3.1 as follows:

Geometry

Action:
Object:
Method:

Edit
Curve
Break

Option:
u Parametric Value

Parametric
0.5

Delete Original Curves
Curve List
Surface 3.1

Your model should appear as follows:

9. Next, create more surfaces as follows (use the above picture for reference).:

- Geometry

Action:
Object:
Method:

Option:
2 Curve
Manifold
\square Autoexecute
Manifold Surface
Start Curve List
Ending Curve List
Apply

The following should appear in your viewport.

10. Delete some of the unnecessary entities as follows:

Geometry

Action:
Object:

Geometric Entity List

Apply

Your model should appear as follows:

18-12 PATRAN 302 Exercise Workbook - Release 7.5
11. Break up Surface 4 at Point 11 as follows:

Geometry

Action:

Option:

Point

Delete Original Surfaces

Surface List
Break Point List

Surface 4

Point 11
Object:
Method:

Break the

Surface

Apply

Respond Yes to the prompt to delete Surface 4. The following should appear in your viewport.

12. Lastly, transform your model as follows:

First, mirror the surfaces in the z-direction as follows:

Geometry

Action:
Object:

Method:

\square
Define Mirror Plane Normal
Offset Parameters
Surface List

$\left\{\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right.$
0.0
Surface 5:8 (Select all surfaces on screen)

Apply

Your model should appear as follows:

Second, mirror the model in the x-direction as follows:

Geometry

Action:
Object:
Method:

Transform
Surface
Mirror

Define Mirror Plane Normal
Offset Parameters
Surface List

$\left\{\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\right.$
0.0
Surface 5:12 (Select all surfaces on screen)

Apply

The following should appear in your viewport

Finally, mirror the model in y-direction as follows:
Geometry

Action:
Object:
Method:

Define Mirror Plane Normal
Offset Parameters
Surface List

Transform
Surface
Mirror

$\left\{\left[\begin{array}{llll}0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\right.$
0.0

Surface 5:20 (Select all surfaces on screen)

Apply

Your model should appear as shown below.

13. Exit PATRAN. Copy the latest version of the patran

Create a PCL Function from the session file session file (patran.ses.*) to pipe.pcl as follows:

```
cp patran.ses.* pipe.pcl
```

Edit the file by deleting all the lines before the lines shown below (but not including):

STRING asm_create_grid_xyz_created_ids[VIRTUAL] asm_const_grid_xyz('1", '[`rad_1 0 0]", "Coord 0", @ asm_create_grid_xyz_created_ids)
14. Remove the following lines from the end of the file:
uil_file_close.goquit()
\$\# Journal file stopped recording at 21-Mar-95 17:10:52
\$\# P3/PATRAN 1.3-2 has released 68 license(s) to NetLS at 21-Mar-95 17:10:55.
\$\# Session file patran.ses. 08 stopped recording at 21-Mar-95 17:10:55
15. Add the following lines to the beginning of the file:

> FUNCTION pipe()

GLOBAL REAL rad_1, rad_2
REAL temp
IF(rad_2 > rad_1) THEN
temp = rad_1
rad_1 $=$ rad_2
rad_2 $=$ temp
END IF

> ui_override_message(38000219, "YES')
16. At the end of the file add the line:

END FUNCTION

17. To debug and verify the pipe pcl function, start PATRAN and open a new database (test.db). After that, type in the command shown below:

!!input pipe.pcl

At this point, the following lines appear in the command window:
\$\# Compiling: pipe
\$\# (PCL) Duplicate name defined: ASM_CREATE_GRID_XYZ_CREATED_IDS
\$\# File:pipe.pcl, Line 25
\$\# Line is "string asm_create_grid_xyz_created_ids[virtual]"

\$\# Compilation aborted

When PATRAN tried to compile our pipe function, it encountered a problem. Notice that PATRAN tells us that it is on line 25, which is "string asm_create ..." The compiler has found a line where the previous session file re-defined a variable which had already been defined. When a surface is first extruded from a curve, PATRAN version 5.0 somehow "forgets" if it has already defined a variable needed when points are first created. Thus, it re-defines the variable. This is particularly bad when the session file is compiled, since the
function cannot define the variable twice. To remedy the situation, simply delete the second line in which the variable is defined. (remove line 25 of the file pipe.pcl)

Once again, start a test database and type in the command window:

!!input pipe.pcl

and

> REAL rad_1=3,rad_2=4
and finally

```
pipe()
```

in the command line. The model should be rebuilt with the new values as shown below.

Close the database to complete this exercise.

