
EXERCISE 6

Load Lug Model

Objective:

■ Write a function to apply the loads and element properties to the finite element mesh of the lug.

6-2 PATRAN 304 Exercise Workbook

Exercise Description:

This exercise, lug_load (), applies the loads and boundary conditions, material and element properties to the lug model. When complete, the model will have material properties, element properties, a fixed end, and a spatially varying distributed load in the lower half of the pin hole.

Exercise Procedure:

- 1. Open the database that you have been using for the previous two exercises if it is not already open.
- 2. Start recording a new session file called **lug_load.ses**.

File/Session/Record	
	lug_load.ses
Apply	

3. Create the materials that you are going to put on the model.

♦ Materials	
Action:	
Object:	
Method:	
Material Name:	1
Input Properties	
Elastic Modulus	

Poisson Ratio

Cancel

Create

Isotropic

Manual Input

steel

30E6 0.3 4. Create the properties for the steel material.

♦ Properties

Action:

Dimension:

Type:

Property Set Name

Input Properties...

Material Name

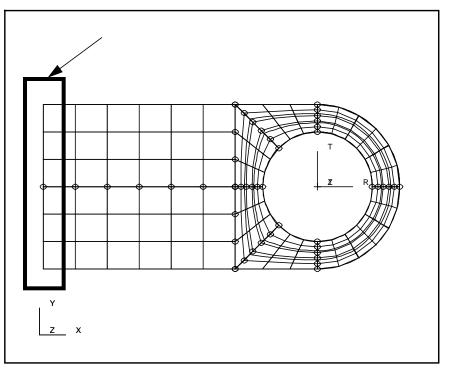
Thickness

OK

Select Members

Add	
Apply	

Create 2D Shell


eighth_in_steel_plate

m:steel

'thickness'

Select all on screen

5. Secure the left side of the lug.

Create

Nodal

<0 0 0>

Coord 0

Curve or Edge Icon

solid_wall

Displacement

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Translations

Analysis Coordinate Frame

OK

Select Application Region...

♦ Geometry

Select Geometry Entities

See the graphic shown above

PATRAN 304 Exercise Workbook 6-5

Add	
OK	
Apply	

6. Create the fields on the model

♦ Fields

Action:

Object:

Method:

Field Name

Field Type

♦ Vector

Coordinate System Type

◆ Real

Coordinate System

Vector Function ('R, 'T, 'Z)

Second Component

Create

Spatial

PCL Function

lug_force

Coord 1

amplitude*sinr('T)

Apply

7. Apply a force to the inner radius of the lug.

Create

Force

Nodal

lug_force

lug_force

f:lug_force

Coord 0

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Spatial Fields

Force

Analysis Coordinate Frame

OK

Select Application Region...

♦ Geometry

Select Geometry Entities

See the graphic shown above

Add

OK	
Apply	

8. Stop recording the session file.

File/Session/Record	

lug_load.ses

Stop	
Cancel	

- 9. Use a vi editor or jot to create a PCL function from the session file. Name the function **lug_load()**. Make sure to end the function.
- 10. Rename the session file **lug_load.pcl**.
- 11. Instead of deleting all the Loads/BCs, Materials, Fields, and Properties close the database and quit PATRAN.

File/Quit

12. Create a new file call **p3epilog.pcl**. Enter the following into the file:

!!input lug_create.pcl
!!input lug_mesh.pcl
!!input lug_load.pcl

Make sure that the p3epilog.pcl file is in your current working directory.

- 13. Start PATRAN again by typing p3 in your xterm window.
- 14. Open an new database.

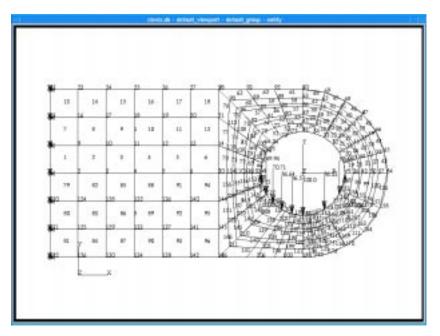
File/New	
	completed_lug.db
ОК	

Click **OK** when the New Model Preferences Form appears.

15. Enter the following command:

```
lug_create()
```


After commiting this command the geometry for your lug should be created.


16. Enter the name of the function that should create the mesh seeds and mesh for the lug.

lug_mesh()

17. After executing this last command the lug model should appear the same as when you created it by hand

lug_load()

Your model should appear as shown.

18. Quit MSC/PATRAN.

File/Quit	

Sample Solution:

```
FUNCTION lug_load( )
```

```
/*
 * Purpose:
           Load a previously created 2-dimensional model of a lug with
           parametric cubic patches.
 * INPUT:
           lug_geometry STRING[VIRTUAL] Picklist of the geometry contained
                                       in the lug.
 * OUTPUT:
 *
           none
 * Side effects:
 *
          A 2D lug is loaded from the specified dimensions
 */
       STRING
                   lug_geometry[], surface_1[], surface_5[]
       STRING
                   surface_6[], surface_7[], surface_8[]
       STRING
                  temp[VIRTUAL](VIRTUAL)
material.create( "Analysis code ID", 1, "Analysis type ID", @
                  1, "steel", 0, @
                   "Date: 16-Mar-93 Time: 11:32:24", @
                   "Isotropic", 1, @
                   "Directionality", 1, "Linearity", 1, @
                   "Homogeneous", 0, "Linear Elastic", 1,@
                   "Model Options & IDs", ["","","","",""], @
                   [0,0,0,0,0], "Active Flag", 1, @
                   "Create", 10, "External Flag", FALSE, @
                   "Property IDs", ["Elastic Modulus",@
                   "Poisson Ratio"], [2,5,0], "Property Values", @
                   ["30e+6",".3",""] )
elementprops_create( "eighth_in_steel_plate", 57, 25, 19, 1, 1, @
                   20, [13,20,@
                   36,4037], [5,9,1,1], @
                   ["m:steel",""," `thickness`",""], @
                  lug_geometry )
loadsbcs_create( "solid_wall", "Displacement", "Nodal", "", @
                  "Static", temp, @
                   "Geometry", "Coord 0", 1., @
                   ["< 0 0 0 >","< >"], ["",""])
fields_create( "lug_force", "Spatial", 1, "Vector", "Real", @
                   "Coord 1", "", "Function", 1, "", "T", "", @
                   "amplitude * sinr( 'T )", @
                   "", FALSE, [0.], @
                   [0.], [0.], [[[0.]]] )
sys_reallocate_string( temp, str_length( surface_6//".1 "//surface_7//@
                       ".1 "//surface_8//".1 "))
sys_reallocate_array( temp, 1, 1 )
temp(1) = surface_6//".1 "//surface_7//".1 "//surface_8//".1 "
loadsbcs_create( "lug_force", "Force", "Nodal", "", "Static", @
                  temp, "Geometry", "Coord 0", 1., @
                   ["f:lug_force","< >"], ["",""])
```

END FUNCTION

PATRAN 304 Exercise Workbook 6-11