APPENDIX 2

Sliding Block

Objectives:

- Demonstrate the use of Contact LBCs in a simple exercise.
- Present method for monitoring a non-linear analysis' progress.

Model Description:

As shown in the figure above, this exercise consists of a small block sitting on a baseplate. A pressure is applied to the top of the block, and it is moved 5 units to the right.

The purpose of this exercise is to introduce you to setting up a problem involving a Contact boundary condition. In addition, it gives a method for monitoring the progress of a nonlinear analysis.

Exercise Procedure:

1. Open a new database. Name it **slide_block.db**.

Type **p3** in your xterm. The *Main Window* and *Command Window* will appear.

File/New ...

New Database Name:

slide_block.db

OK

The viewport (PATRAN's graphics window) will appear along with a *New Model Preference* form. The *New Model Preference* sets all the code specific forms and options inside MSC/PATRAN.

In the *New Model Preference* form set the *Analysis Code* to **MSC/ADVANCED_FEA.**

Tolerance:

♦ Default

Analysis Code:

MSC/ADVANCED_FEA Structural

Analysis Type:

OK

2. Create the model geometry.

♦ Geometry

Action:

Object:

Method:

Vector Coordinate List:

Create
Surface
XYZ
<10, 1, 0>

Apply

Vector Coordinate List:

Origin Coordinate List:

Apply

[1, 1, 0]

<1, 1, 0>

Group/Create ...

New Group Name:

Group Contents:

Apply

geom
Add All Geometry

3. Create a mesh for the block and base.

New Group Name:

Group Contents:

Apply

fem_block
Add Entity Selection

A2-4 PATRAN 322 Exercise Workbook

Sliding Block

Cancel

♦ Finite Elements

Action:

Object:

Method:

Number of Elements:

L2 / L1 =

Curve List:

Action:

Object:

Method:

Global Edge Length:

Mesher:

Surface List:

Apply

Group/Create ...

New Group Name:

Apply Cancel

Global Edge Length: Mesher:

Surface List:

Apply

Create

Mesh Seed

One Way Biased

4

-2

select the bottom

Create

Mesh

Surface

.25

♦ IsoMesh

select the block (top)

fem_base

.15

♦ IsoMesh

select the base (bottom)

PATRAN 322 Exercise Workbook **A2-5**

What you have just done is meshed both the block and the base, and assigned each mesh to its own group. Now, create a group for all the FEM.

Group/Create ...

New Group Name:

Group Contents:

Apply	
Cancel	

fem_all	
Add All FEM	

4. Make sure that the element normals point in the positive zdirection.

To get a better view of the normals' direction, use the following toolbar icon:

zĻx	Iso 1	View
-----	-------	------

Action:

Object:

Test:

Display Control:

Verify	
Element	
Normals	

Apply

◆ Draw Normal Vectors

All of the vectors should be pointing in the positive z-direction already. If for some reason they are not, you can correct this by doing the following:

NOTE: You only need to do this if the normals are pointing in the wrong direction!

Action:

Object:

Method:

Element List:

Modify
Element
Reverse
select all incorrectly oriented elements

Apply

If you didn't need to reverse any elements, clear up the screen by pressing:

Reset Graphics

Change the view back to the default by using the following toolbar icon:

Ť۲	Front View
zχ	

5. Create two materials, **steel** and **aluminum**, to be used in the model.

Create the first material.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

Elastic Modulus:

Poisson's Ratio:

Apply	
Cancel	

Create the second material.

Material Name:

Input Properties...

Elastic Modulus:

Poisson's Ratio:

Apply	
Cancel	

aluminum

Create

steel

30E6

.3

Isotropic

Manual Input

10E6	
.33	

6. Create and assign properties for both the block and the base.

fem block

First, lets deal with the block.

Group/Post ...

Select Groups to Post:

Apply	
Cancel	

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

Material Name:

Thickness:

OK

Create	
2D	
2D Solid	
block	

steel	
1.0	

In order to select the elements on the screen, be sure to use the following entity select icon:

Select Members:

Add	
Apply	

Post only the entities belonging to the base.

Group/Post ...

Select Groups to Post:

Apply	
Cancel	

select all on screen

A2-8

PATRAN 322 Exercise Workbook

Now, create the properties for the base.

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

Material Name:

Thickness:

OK

Select Members:

Add	
Apply	

Create2D2D Solidbase

aluminum	
1.0	

select all on screen

Create a group containing all FEM and Geometry.

Group/Create ...

New Group Name:

Group Contents:

all	
Add All Entities	

Apply	
Cancel	

7. Create the Loads and Boundary Conditions for the model.

First, let's fix the base in all degrees of freedom.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Displacement Nodal	Create	
Nodal	Displacement	
	Nodal	
base_fixity	base_fixity	

Input Data	
Translations:	<0, 0, 0>
Rotations:	<0, 0, 0>
ОК	
Select Application Region]
Geometry Filter:	♦ Geometry

In order to select the bottom edge of the base, use the following entity select icon:

Edge or Curve

Select Geometric Entities:

select bottom edge of base

Add	
OK	
Apply	

Now, create the displacement for pushing the block.

Add	
ОК	
Apply	

Create a BC to fix the block in the x-direction while the load is being applied.

New Set Name:

horiz_hold

A2-10 PATRAN 322 Exercise Workbook

Sliding Block

Input Data...

Translations:

Rotations:

OK

Select Geometric Entities:

Add	
OK	
Apply	

<0, , >	
<,,>	

select left edge of block

Now, create a pressure on the top edge of the block (to simulate weight, load, or whatever - basically to keep the block pressed against the base).

Action:

Object:

Type:

OK

New Set Name:

Target Element Type:

Input Data...

Edge Pressure:

CreatePressureElement Uniformtop_pressure2D100

Select Application Region...

Geometry Filter:

♦ FEM

Be sure to use the following entity select icon:

Edge of Element

Select 2D Elements or Edge:

select the top edges of the top elements of the block

Add	

OK Apply

Create a contact definition for the block and the base.

Action:	Create
Object:	Contact
Type:	Element Uniform
Option:	Deform-Deform
New Set Name:	interface
Select Application Region]
Geometry Filter:	◆ Geometry
Master Surface:	2D Solid Edge
Slave Surface:	2D Solid Edge
Active Region:	Master
Select Surface Edges:	select left, bottom, and right edges of block
Add	

Active Region: Select Surface Edges:

Slave

select top edge of base

Add	
OK	
Input Data	

This is where you can add complications and customizations to the interface, such as friction.

Contact Type: Sliding Type: Surface Behavior: Friction Formulation: Viscous Damping:

General	
Large	
Hard	
Penalty	
Off	

Penetration Type:

One-Sided

OK	
Apply	

8. Create two load cases for the analysis.

The first load case will consist of applying pressure to the top of the block, while the second will be a forced displacement with the pressure still on the block.

♦ Load Cases

Action:	Create		
Load Case Name:	press		
Assign/Prioritize Loads/BCs]		
<i>Select LBCs to Add to Spreadsheet:</i>	Conta_interface Displ_base_fixity Displ_horiz_hold Press_top_pressure		
ОК			
Apply			
Load Case Name:	push		
Assign/Prioritize Loads/BCs			
Select LBCs to Add to Spreadsheet:	Displ_block_push		
(select rows containing)	Displ_horiz_hold		
Remove Selected Rows			
ОК			
Apply			

- 9. Submit the nonlinear analysis, creating two steps corresponding to the two load cases.
- ♦ Analysis

Action:

Object:

Method:

Step Creation...

Job Step Name:

Solution Type:

Select Load Cases...

Available Load Cases:

OK

Apply

OK

Job Step Name: step_2 Solution Type: **Solution Parameters...** 30 Max No of Increments: Select Load Cases...

Available Load Cases:

OK Apply Cancel

Step Selection...

Selected Job Steps:

Apply	
Apply	

Analyze

Entire Model

Full Run

step_1

Nonlinear Static

press

Nonlinear Static

push

step_1 step_2

The non-linear analysis job slide_block will then be submitted for analysis to the workstation designated in the Submit Script (usually your local workstation).

APPENDIX 2

The analysis job will take (on average) 5 to 10 minutes to run. When the job is done there will be a results file titled **slide_block.fil** in the same directory you started MSC/PATRAN in and the **slide_block.023** file will disappear.

You can monitor the progression of the job by looking at **slide_block.msg** and **slide_block.sta** files using the UNIX command **tail-lf [filename]**. You can also monitor the analysis in the background using the UNIX command **ps -a**.

10. Read in the results of the analysis.

♦ Analysis

Action:

Object:

Method:

Select Results File...

Available Files:

Read Results
Result Entities
Translate

slide block.fil

OK Apply

11. Display the results of the analysis.

First, post only the FEM of the model.

Group/Post ...

Select Groups to Post:

fem_all	
---------	--

Apply	
Cancel	

Next, set the deformation scale factor to 1.0.

Display/Results ...

Scale Factor:

1.	0			

Direct Multiplication

Apply

PATRAN 322 Exercise Workbook **A2-15**

Cancel

Display the results at the end of the analysis, when the **Total Time=2**.

♦ Results

Click on the Select Results icon

Action:CreateObject:Quick PlotSelect Result Cases:Step2, Total time = 2Select Fringe Result:Stress, ComponentsSelect Deformation Result:Deformation, Displacements

Now, let's animate the results and watch the process take place. First, clear the graphics by using the following icon:

Reset Graphics

Next, deselect the fringe result Stress, Components.

Select Fringe Result:

Animate

Select the Animation Options icon

□ Animate Fringe

Animation Method:

Number of Frames:

When done viewing, stop the animation and close the database.

8

Ramped

