APPENDIX 3

Crushed Pipe II

Objectives:

- Large displacement analysis.
- Rigid contact analysis using analytic rigid surfaces.
- Plasticity modeled with perfectly plastic material.

Crushed Pipe II

Model Description:

In this exercise, a symmetrical model of a cylindrical pipe is modeled as being crushed between two rigid bodies.

The model is created using 2D thin shell elements to model the pipe and Rigid Surface (Cylinder) elements to model the crushing rigid bodies. The pipe model will be covered with 2D Interface elements in order to model the contact between the pipe and the rigid bodies.

Move 2.1 in the Y

Data for Exercise:

Pipe Dimensions:	D $=6.2$ Length $=20$ Thickness $=0.4$
Pipe Material:	Steel, E $=30 E 6$ nu $=0.3$ Yield Stress $=45,000$
Mesh-	Rigid Body 1 and 2: 3D analytical Pipe: S4R elements with IRS4 elements to contact rigid bodies

Exercise Procedure:

1. Open a new database. Name it crush2.db.

File/New ...
Database Name:
crush2.db
OK
Change the Analysis Preference to MSC/ADVANCED_FEA.

Analysis Code:
MSC/ADVANCED_FEA

OK

2. Create a new group geo_rigid.

Group/Create ...
New Group Name:
geo_rigid
■ Make Current
Group Contents:
Add Entity Selection
Apply
Cancel
3. Create the model geometry.

- Geometry

Action:

Create
Point
XYZ
$[0,-6.3,0]$

Apply

Create a second point by changing the Point Coordinates List to [3.1, -6.3, 0].

Apply

Crushed Pipe II

4. Sweep point to make a curve for the lower rigid surface.

First, turn on the entity labels using the following toolbar icon:

Show Labels

Action:	Create
Object:	Curve
Method:	Revolve
Axis:	\{Point 1[X1, Y1, 1.0]\}
Total Angle:	180
Point List:	Point 2
Apply	

The screen should now display the points and curves as shown in Figure A2.1:

Figure A2.1-Lower rigid surface

5. Create the geometric points for the upper rigid surface

Geometry

Action:	Create
Object:	Point
Method:	$\mathbf{X Y Z}$
Points Coordinates List:	$[\mathbf{0 , 5 . 2 , 0]}$

Apply

This will create Point 4
In a similar manner, create points 5, 6 and 7 using the Create, Point, $\mathbf{X Y Z}$ option. The data for the transformations is given below.

Table 1: List of Points to Create

New Point	Point Coordinate List
5	$[-2.0,5.2,0]$
6	$[1.0,5.2,0]$
7	$[2.0,5.2,0]$

6. Create the curves for the upper rigid surface

Sweep Point 4 into an arc using:

Action:	Create
Object:	Curve
Method:	Revolve
Axis:	\{Point 5[X5, Y5, 1]\}
Total Angle:	$-\mathbf{- 1 8 0}$
Point List:	Point 4

Apply

In a similar manner create a curve from Point 6 using an Axis definition of \{Point 7[X7, Y7, 1]\}, a Total Angle of $\mathbf{1 8 0}$ and the Point List set to Point 6.

Connect the two half circles with a straight line by using

Action:	Create
Object:	Curve
Method:	Point
Options:	2 Point
Starting Point List:	Point 4
Ending Point List:	Point 6

Apply

This ends the definition of the geometry of the upper and lower rigid bodies. The screen should now show the points and curves displayed in Figure A2.2:

Figure A2.2 - Upper and lower rigid bodies

7. Create a new group geo_pipe.

Group/Create ...

New Group Name:
geo_pipe

Make Current

Group Contents:
Add Entity Selection
Apply
Cancel
8. Create the geometric points for the Pipe model.

Geometry

Action:
Create

Object:
Method:
Points Coordinates List:

Point
XYZ
$[-10,0,0]$

Apply

In a similar manner, using the Create, Point, XYZ method to create Point 11 by changing the Point Coordinates List to $[-10,3.1,0]$.
9. Create the surfaces for the pipe model

First, change to the isometric view by clicking on the following icon in the toolbar.
$2)_{\mathrm{X}}^{\mathrm{Y}}$ Iso 1 View

Sweep Point 11 into two arcs

Action:
Object:
Method:
Patran 2 Convention
Axis:
Total Angle:
Curves per Point:
Point List:

Create
Curve
Revolve

Apply

Change the viewport to Front View, using the following toolbar icon:

Sweep Curves 5 and 6 into two surfaces

Action:	Create
Object:	Surface
Method:	Extrude

Translation Vector:
Curve List:
<4, 0, 0>
see Figure A2.3

Apply

Figure A2.3-Curves to sweep into pipe surface

In a similar manner, create two more surfaces from the right edges of Surfaces 1 and 2 using a Translation Vector of $\langle\mathbf{1 2 , 0 , 0}\rangle$.

Select the surface edges as shown in Figure A2.4:
Figure A2.4-Surface edges to sweep into pipe surface

The Curve List should be Surface 1.2 2.2
Finally create the last two surfaces using a Translation Vector of $<4,0,0\rangle$.

Figure A2.5-Surface edges to sweep into pipe surface

The Curve List should be Surface 3.2 4.2.
Change the display of the model.Click on the following icon to change to isometric view:

Your model should look like the one shown in Figure A2.6:

Figure A2.6 - Isometric view of pipe surface and rigid bodies

10. Create the mesh seeds for the finite element mesh.

First, we will define the mesh seed for the body of the pipe. You will define the mesh seeds as shown in Figure A2.7:

Figure A2.7-Mesh seed locations

Mesh Seeds $=3 \quad$ Mesh Seeds $=2$

- Finite Elements

Action: \square
Create
Object:
Method:

Mesh Seed
Uniform

- Number of Elements

Number:
Curve List:

2

Surface 1.15 .1

NOTE: To select multiple entries, click in the Curve List databox and screen select the top edge of Surface 1 (Surface 1.1) and the top edge (while holding down the shift key) of Surface 5 (Surface 5.1).

In a similar manner set Number = $\mathbf{3}$ and a Curve List of Curve 56 (the left edge of Surface 1 and Surface 2).

Again, set Number $=\mathbf{8}$ and a Curve List of Surface 3.1 (the top of Surface3).
11. Create a new group fem_pipe.

Group/Create ...

New Group Name:

fem_pipe

Make Current

Group Contents:

Add Entity Selection

Apply

Cancel
12. Create the mesh for the pipe body.

Change the view to a front view by using the following toolbar icon:

Click the following icon in the quickpick menu to turn off all the entity labels.

Apply

Your model should look like the one shown in Figure A2.8:

Figure A2.8 - Meshed pipe surface

13. Create a new group fem_irs_top.

Group/Create ...

New Group Name:
fem_irs_top

Make Current

Group Contents:

Add Entity Selection

Apply

Cancel
14. Create IRS elements for the top surface.

Next, we need to create a series of duplicate Quad4 elements lying on top of the elements that make up the upper, central portion of the pipe model. These elements will be used to define our contact surfaces.

- Finite Elements

Action:
Object:

Transform
Element

Method:
Translation Vector:
Element List:

Translate
$\langle\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle$
see Figure A2.9

Apply

Figure A2.9 - Elements used for upper contact

15. Define the reference nodes for the upper rigid surface.

Add a "reference" node to the upper and lower rigid bodies. This node will be used to control the motion of the rigid bodies.

	Create
Object:	Node
Method:	Edit
Node ID List:	999
Node Location List:	see Figure A2.9

Apply

16. Create a new group fem_irs_bottom.

Group/Create...

New Group Name:
fem_irs_bottom

Make Current
Group Contents:

Add Entity Selection

Apply

Cancel

17. Define the reference nodes for the lower rigid surface.

Action:	Create
Object:	Node
Method:	Edit
Node ID List:	$\mathbf{1 0 0 0}$
Node Location List:	see Figure A2.10

Apply

Figure A2.10 - Location of lower rigid surface reference node

18. Create the lower irs elements.

Crushed Pipe II

In a similar manner, define a series of duplicate elements for the lower, central portion of the pipe model.

Action:
Object:
Method:
Translation Vector:
Element List:

Transform
Element
Translate
$\mathbf{0}, \mathbf{0}, \mathbf{0}>$
select the elements as shown in Figure A2.11

Apply

Figure A2.11-Elements used for lower contact

19. Create a new group fem_rigid_top.

Group/Create

New Group Name:
fem_rigid_top

Make Current
Group Contents:
Add Entity Selection
Apply
Cancel
20. Create the upper rigid surface elements.

Next, create a beam mesh on the upper rigid bodies.

Action:	Create
Object:	Mesh
Type:	Curve
Global Edge Length:	$\boxed{\mathbf{1}}$
Element Topology:	Bar2
Curve List:	see Figure A2.12

Apply

Figure A2.12-Curves to select for upper rigid surface

21. Create a new group fem_rigid_bottom.

Group/Create ...
New Group Name:
fem_rigid_bottom
Make Current

Group Contents:
Add Entity Selection

Apply

Cancel
22. Create the elements for the lower rigid surface.

In a similar manner, create a beam mesh on the lower rigid body. The Global Edge Length is = $\mathbf{1}$ and pick the curve shown in Figure A2.13:

Figure A2.13-Curve to select for lower rigid surface

23. Equivalence the finite element nodes (eliminate any extra, overlapping nodes created by the mesher).

Action:
Object:
Type:

Equivalence
All
Tolerance Cube

Apply
24. Create a new group called fem_all, which will be used for post processing later.

Group/Create ...

New Group Name:
fem_all

- Make Current

Group Contents:

> Add All FEM

Apply

25. Create a new group all, which will be used to apply LBCs onto.

New Group Name: \square
■ Make Current
Group Contents:

> Add All Entities

Apply

Cancel

26. Create the material properties for the pipe.

- Materials

Action:	Create
Object:	Isotropic
Method:	Manual Input
Material Name:	steel

Input Properties...

Constitutive Model:
Elastic Modulus:
Poisson's Ratio:

Elastic
30E6
0.30

Apply

The model will also experience yielding during the analysis, so a Plastic Constitutive Model needs to be defined.

Constitutive Model:

Plastic

Crushed Pipe II

Hardening Rule:
Yield Stress:

Perfect Plasticity
45000

Apply

Cancel

27. Post the group fem_pipe only.

Group/Post ...

Select Groups to Post:

fem_pipe

Apply

Cancel

28. Now create the Element Properties for your model.

- Properties

Action:	Create
Dimension:	2D Type: Property Set Name:
Options:	Shell
pipe	
	Thin \square
	Homogeneous \square

Input Properties...

Material Name:
Shell Thickness:

steel
0.4

OK

Click in the Select Members databox. Select the 2D element icon in the Select menu and then select all elements displayed.

2D Element

Select Members:
select all elements

Add

Apply

29. Post the group fem_irs_top only.

Group/Post ...

Select Groups to Post:
fem_irs_top

Apply

Cancel

30. Create the element property for the top IRS elements.

Use the following toolbar icon to increase the node size to make picking easier:

- Properties

Action:
Dimension:

Create
2D
IRS (shell/solid)
irs_top

Options:
Elastic Slip Soft Contact \square
Input Properties...
ELSET Name:
Reference Node:

top

see Figure A2.14

Figure A2.14-Pipe elements/reference node for upper contact

OK

Click in the Select Members databox and screen select all members on the screen.

Add

Apply

31. Post the group fem_irs_bottom only.

Group/Post ...
Select Groups to Post:
fem_irs_bottom

Apply

Cancel
32. In a similar manner, enter the information for the bottom IRS elements on the underside of the pipe.

Property Set Name:
Options:

irs_bottom
Elastic Slip Soft Contact \square

Input Properties...

ELSET Name:
Reference Node:
bottom
see Figure A2.15

Figure A2.15-Pipe elements/reference node for lower contact

OK

Click in the Select Members databox and screen select all members on the screen.

Add

Apply

Crushed Pipe II

33. Post the group fem_rigid_top and fem_rigid_bottom.

Group/Post ...

Select Groups to Post:

fem_rigid_top
fem_rigid_bottom

Apply

Cancel

A form will appear asking you to select a current group. Select fem_rigid_top.

OK

Cancel
Click on the following icon to change to isometric view:

34. Finally, create the element properties for the upper and lower rigid surfaces.

To do this, you will have to define the normal which should point away from the rigid body and to the contact IRS elements. To do this, we will need to define a surface generation vector.

The Surface Generator Direction and the Start Node are used to determine the "inside" and the "outside" of the rigid body. We want the "outside" of the rigid body to contact the pipe model. A more formal definition of these terms is:

The generator direction follows the right hand rule and is specified as:

$$
\hat{n}=\hat{S} \times \hat{z}
$$

where
$\hat{n} \quad$ is the unit normal direction.
$\hat{S} \quad$ is the cord length direction.
$\hat{z} \quad$ is the generator direction.
These vectors are shown for each of the rigid bodies in the sketch shown in Figure A2.16:

Figure A2.16 - Sketch of normal directions for rigid bodies

- Properties

Action:
Dimension:
Type:
Property Set Name:
Input Properties...
ELSET Name:
Surface Gen. Direction:
Start Point (Node_id):

Create
1D
RigidSurf(Cyl)
rigid_top

top
$\langle\mathbf{0 , 0 , - 1 0 \rangle}$
see Figure A2.17

Figure A2.17 - Normal definitions for upper rigid body

OK

Click on Select Members databox, then select the Beam Element icon in the Select Menu.

Now screen select the members shown in the figure above.

Add

Apply
In a similar manner, enter the information for the Rigid Surface elements for the lower rigid surface.

- Properties

Action:

Create

Dimension:
Type:
Property Set Name:
Input Properties...
ELSET Name:
Surface Gen. Direction:
Start Point (Node_id):

OK
Select Members:
ELSET Name:
Surface Gen. Direction:
Start Point (Node_id):
1D

RigidSurf (Cyl)
rigid_bottom

bottom
$\langle\mathbf{0 , 0 , - 1 0 >}$
select the start node shown in Figure A2.18

shown in Figure A2.18

Add

Apply

Figure A2.18 - Normal definitions for lower rigid body

Crushed Pipe II

35. Post the group "all" only. We will define the loads and boundary conditions.

Group/Post ...

Select Groups to Post:

Apply
Cancel
Select the following toolbar front view icon to change the display.

36. Now apply the loads and boundary conditions to the end of the pipe.

The ends of the pipe are to be fixed in all translations. The upper rigid surface will then be forced down into the pipe and lower rigid surface forced up into the pipe.

- Loads/BCs

Action:	Create
Object:	Displacement
Method:	Nodal
New Set Name:	end_disp
Input Data...	
Translations $\langle T 1, T 2, T 3\rangle:$	$<\mathbf{0 , 0 , 0 \rangle}$
Rotations $\langle R 1, R 2, R 3\rangle:$	$<\mathbf{0 , 0 , 0}\rangle$
OK	
Select Application Region...	
Geometry Filter:	

Click in the Select Nodes databox, and screen select the nodes at both ends of the pipe as shown in Figure A2.19:

Figure A2.19 - Fixed ends of pipe

Add

OK
Apply
37. Next create the symmetrical edge constraints for the top and bottom edges of the pipe model.

Action:
Object:
Type:
New Set Name:

Input Data...

Translations $\langle T 1, T 2, T 3\rangle:$	$\langle,, \mathbf{0}\rangle$
Rotations $\langle R 1, R 2, R 3\rangle:$	$\langle\mathbf{0 , 0 , \rangle}$

OK

Select Application Region...
Geometry Filter: \checkmark Geometry

Click in the Select Geometry Entities databox, change the select menu icon at the bottom to Select a Curve,

Screen select the surface edges at both ends of the pipe as shown in Figure A2.20:

Figure A2.20 - Locations for symmetry BCs

Add

OK
Apply
38. Next, you will create the enforced displacement on the upper rigid body.

New Set Name:
top_rigid_down

Input Data...

Translations $\langle T 1, T 2, T 3\rangle:$	$\langle 0,-2.2,0\rangle$
Rotations $\langle R 1, R 2, R 3\rangle:$	$\langle 0,0,0\rangle$

OK

Select Application Region...

Geometry Filter:
Select Nodes:
Add
OK

Apply

Figure A2.21-Reference nodes for rigid bodies

Crushed Pipe II

39. The last boundary condition is the enforced displacement on the lower rigid body.

New Set Name:
bot_rigid_up

Input Data...

Translations $\langle T 1, T 2, T 3\rangle:$	$\langle\mathbf{0 , 2 . 2 , 0 \rangle}$
Rotations $\langle R 1, R 2, R 3\rangle:$	$\langle\mathbf{0 , 0 , 0}\rangle$

OK

Select Application Region...
Geometry Filter:
Select Nodes:

Add

OK

Apply
Change the display of the model using the isometric view icon.
\square Iso 1 View

Your model should now look like the picture shown in Figure A2.22:

Figure A2.22 - Model with all Loads/BCs applied

40. Your model is now ready for analysis.

- Analysis

Action:
Object:
Method:
Job Name:

Step Creation...

Job Step Name:
Solution Type:
pipe_crush

Nonlinear Static

Solution Parameters...

Large Deflections/Strains:
ON \square

Max No. of Increments Allowed: 100

Crushed Pipe II

RIKS Method:
Automatic Load Increments:

OFF \square
 ON \square

OK

Apply
Cancel
Note: The default load case contains all the loads required to run this step and is selected by default.

Step Selection...

Selected Job Steps:

```
pipe_crush
```


Apply

Apply

The non-linear analysis job crush 2 will then be submitted for analysis to the workstation designated in the Submit Script (usually your local workstation).

The analysis job will take (on average) 5 to 10 minutes to run. When the job is done there will be a results file titled crush2.fil in the same directory you started MSC/PATRAN in and the crush2.023 file will disappear.

Again, you can monitor the progression of the job by looking at crush2.msg and crush2.sta as well as using the UNIX command ps a and tail crush2.msg.
41. Read in the results.

- Analysis

Action:

Read Results
Select Results File...
Selected Results File:

crush2.fil

OK

Apply
42. Post the group fem_all only for post processing.

Group/Post ...

Select Groups to Post:
fem_all

Apply

Cancel

43. Use Results to post process your results of the analysis.

- Results

Click on the Select Results icon

Action:
Object:
Select Result Cases:
select the last increment
Select Deformation Result:
Deformation, Displacements
Change the Display Properties for results

Display/Results ...
Scale Factor: \square

- True Scale
\square Show Undeformed Entities
Apply
Your model should appear as shown in Figure A2.23:

Figure A2.23 - Deformed pipe model

44. Create an animation of the deformation and Von Mises stresses using:

Action:
Object:
Select Result Type:
Select Fringe Result:
Result Quantity:
Select Deformation:

Create
Quick Plot
select the last increment
Stress, Components
Von Mises
Deformation, Displacement

Animate
Bring up the Animation Options form

- Animate Fringe
- Animate Deformation

Animation Method:
Animation Graphics:
Number of Frames:

- Ramped

-2D
10

OK

Apply

When done, quit PATRAN.
This concludes the exercise.

