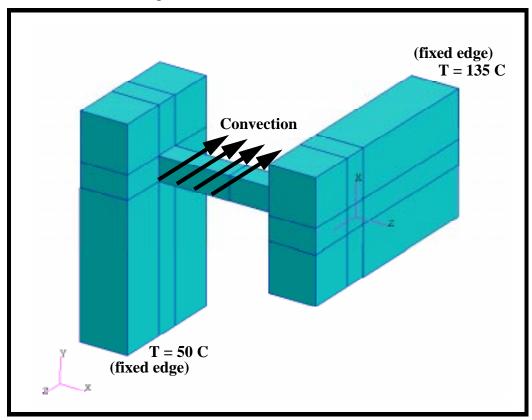

APPENDIX 4

Thermal - Structural Exercise II



Objectives:

- Demonstrate the use of thermal analysis with temperature loading.
- Demonstrate the use of structural analysis with temperature loading and a temperature field.

Model Description:

In this exercise, the following structure will be subjected to the designated thermal loading and analyzed to determine the steady-state temperature distribution. This temperature distribution will then be applied to the structure, which shall be rigidly fixed at the designated edges and analyzed to determine deformation and stresses due to thermal expansion.

In order to obtain the temperature distribution, a field containing the results of the thermal analysis shall be created and applied to the structural model.

Exercise Procedure:

1. Open a new database. Na	ame it thermal_structural2.db.
File/New	
New Database Name:	thermal_structural2.db
OK	
New Model Preference form the code specific forms and op	phics window) will appear along with a. The <i>New Model Preference</i> sets a ptions inside MSC/PATRAN.
options	refreshed form piek the following
Max Model Dimension:	2
Analysis Code:	MSC/ADVANCED_FEA
Analysis Type:	Thermal
OK	
model.ses. File/Session/Play	
Session File List:	model.ses
Apply	
4. Define the temperature dependent material property table for conductivity.	
♦ Fields	
Action:	Create
Object:	Material Property
Method:	Tabular Input
Field Name:	conductivity
Active Independent Variable:	■ Temperature (T)
Input Data	

A table will appear and should be filled in with the data shown below:

Temperature	Conductivity
100	14.6538
600	22.6087
1400	31.8197

OK Apply

5. Now create the relevant material properties for 17-4 PH stainless steel.

♦ Materials

Action: Create

Object: Isotropic

Method: Manual Input

Material Name: stainless 17-4 PH

Input Properties ...

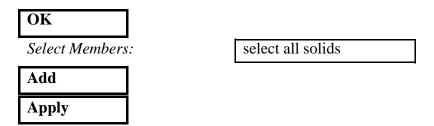
Conductivity= conductivity

Apply Cancel

6. Apply the steel properties to the model.

♦ Properties

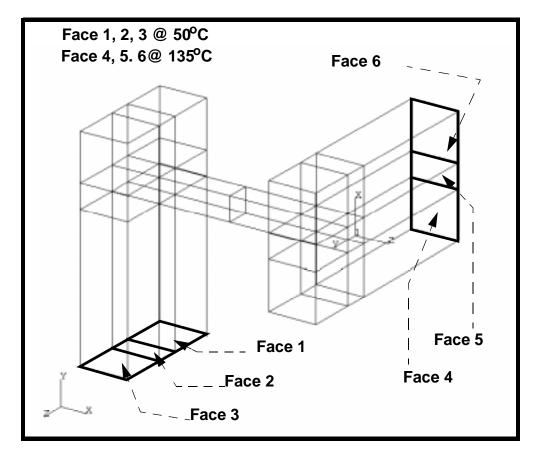
Action: Create


Dimension: 3D

Type: Solid

Property Set Name: prop_thermal

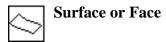
Input Properties ...


Material Name: stainless 17-4 PH

7. Create the temperature loading at the fixed edges.

For guidance on how to apply the temperature boundary conditions, see the Figure A3.1

Figure A3.1 - Solid Faces to Apply Temperatures to:

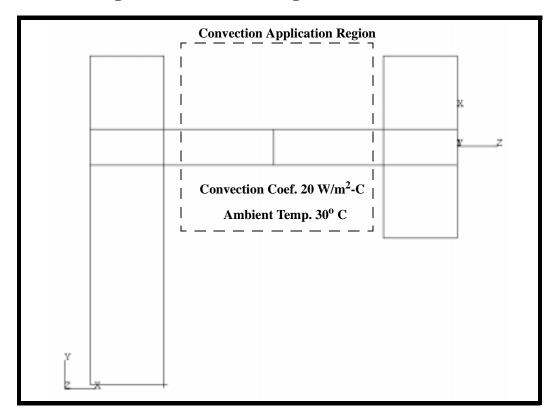


First, create the temperature loading on the left side of the model.

♦Loads/BCs	
Action:	Create
Object:	Temp(thermal)
Type:	Nodal

New Set Name:	left_edge	
Input Data		
Temperature:	50	
OK		
Select Application Region	l	
In order to select the appropriate solid faces, use the following entity select icon:		
Su Su	rface or Face	
Select Geometric Entities:	select Faces 1,2,3	
Add		
ОК		
Apply		
Next, create the loading for the right side of the model.		
Action:	Create	
Object:	Temp(thermal)	
Туре:	Nodal	
New Set Name:	right_edge	
Input Data		
Temperature:	135	
ОК		
Select Application Region	1	

In order to select the appropriate solid faces, use the following entity select icon:


Select Geometric Entities: select Faces 4,5,6

Add

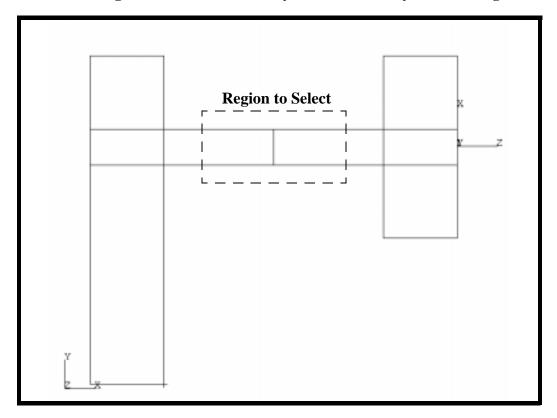
Add
OK
Apply

8. Create the convective loading condition across the middle bar, as shown in Figure A3.2.

Figure A3.2 - Convective Region of Model

♦Loads/BC	
Action:	Create
Object:	Convection
Type:	Element Uniform

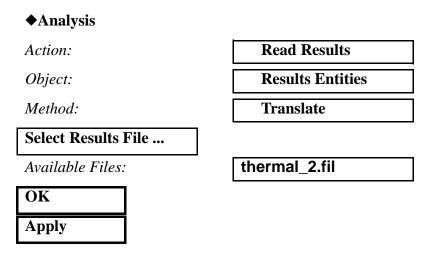
New Set Name:	convection
Input Data	
Convection:	20
Ambient Temperature:	30
OK	
Select Application Region	


In order to select all 8 faces of the middle bar, temporarily change the picking preferences so that you can select any portion of the entity. Then simply drag the mouse to select a middle portion of the bar.

Preferences/Picking...

♦ Enclose Any Portion of Entity

Figure A3.3 - Use 'Pick Any Portion of Entity' to select region

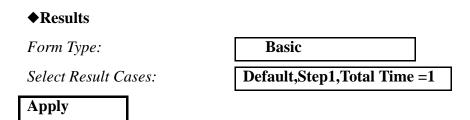


Select Solid Faces: select region shown in Figure A3.3 Add **OK** Apply Change the picking preference back to the default. Preferences/Picking... **◆** Enclose Entire Entity Close 9. Submit the model for thermal analysis. **♦**Analysis Action: **Analyze Entire Model** Object: **Full Run** Method: thermal 2 Job Name: Step Creation... Job Step Name: thermal **Apply** Cancel Step Selection... thermal Selected Job Steps: Apply

You can monitor the progression of the job by looking at **thermal_2.msg** and **thermal_2.sta** files using the UNIX command **tail-lf [filename]**. You can also monitor the analysis in the background using the UNIX command **ps-a**.

Apply

10. Once the analysis is complete read the results back into the database


11. Post process the results of the thermal analysis.

Before viewing the results, remove the boundary conditions from the screen using the following main menu icon:

Reset Graphics

To view the steady-state temperature distribution:

You should now see a the steady state temperature distribution in the viewport window, as shown in Figure A3.4:

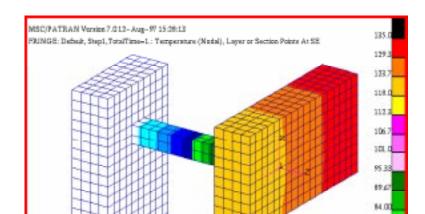


Figure A3.4 - Steady State Temperature Distribution

12. Before constructing the structural model, you must first create a FEM field of the resultant temperature distribution. You will later map this temperature field into loading conditions for the structural analysis.

♦Fields Create Action: Object: **Spatial** Method: **FEM** Field Name: thermal results FEM Field Definition: **♦** Continuous Field Type: ♦ Scalar *Mesh/Results Group Filter:* **◆**Current Viewport Select Group: all_entity Apply

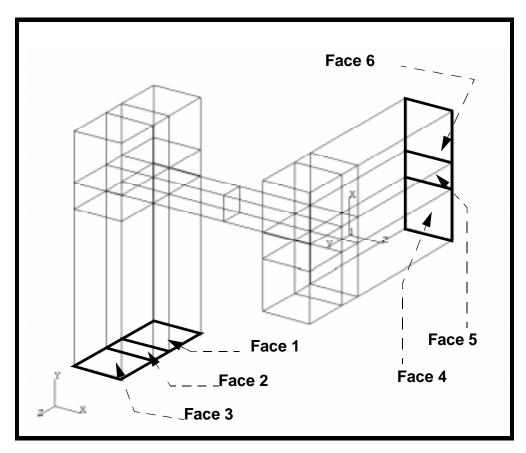
13. In order to perform the structural portion of the analysis, change the preference from thermal to structural.

First, remove the results from the screen using the following main menu icon:

Preference/Analysis...

Reset Graphics

Analysis Type:	Structural
OK	
Answer OK to" A match found for property set "pr	ing element type with some differences was cop_thermal".
OK	
This message is to remin created for this analysis.	d us that an applicable property needs to be
14. Create a new material with the structural properties of 17-4 PH stainless steel.	
◆ Materials	
Action:	Create
Object:	Isotropic
Method:	Manual Input
Material Name:	stainless 17-4 PH structural
Input Properties	
Elastic Modulus:	19.65e10
Poisson Ratio:	.27
Reference Temperature:	30
Thermal Expansion	10.8e-6
Coefficient:	
Apply	
Cancel	


Now create the structural property for the model. 15. **◆Properties** Create Action: 3D Dimension: **Solid** *Type:* prop_structural Property Set Name: **Input Properties...** stainless 17-4 PH Material: structural **Select Application Region...** select all solids Select Members: Add Apply When asked if you wish to overwrite the existing property association, respond with Yes for All. Yes for All Create the boundary constraints which fix the model. **♦ Loads/BCs** Action: Create Object: **Displacement** Nodal Type: New Set Name: support Input Data... <0, 0, 0> *Translations:* **OK Select Application Region...**

♦ Geometry

Geometry Filter:

Select both right & left edges by choosing the solid faces shown in Figure A3.5 (the surface select icon should still be highlighted):

Figure A3.5 - Solid Faces to Apply 'support' LBC to

Select Geometric Entities: select Faces 1 through 6

Add

OK

Apply

17. Finally, create the appropriate temperature boundary condition.

♦Loads/BCsAction: Create Object: Temperature

Type:	Nodal
New Set Name:	applied_temperature
Input Data	
Temperature:	thermal_results
OK	
Select Application Region	

In order to select all the solids of the model, you will have to select the solid entity select icon, shown below:

Solid

Select Geometric Entities: select all solids

Add
OK
Apply

With all of the loads and boundary conditions applied, the screen is rather cluttered. You might want to clean it up by using the following main menu icon:

Reset Graphics

18. You can verify the applied temperature distribution by plotting the temperature contours.

◆Loads/BCs Action: Plot Contours Object: Temperature Existing Sets: applied_temperature Select Data Variable: Temperature Select Groups: all_entity

What you should now see is the original steady state temperature distribution resulting from the thermal analysis. After viewing this distribution, clean up the display using the following main menu icon:

◆Load Cases

Action:

Reset Graphics

19. Create a load case in order to isolate only the LBCs you wish to apply to this analysis

Create

Load Case Name:	structure
Assign/Prioritize Loads/BCs	
Select LBCs to Add to Spreadsheet:	Displ_support Tempe_applied_temperature
OK Apply	
20. Submit a structural analys Analysis	sis of the model.
Action:	Analyze
Object:	Entire Model
Method:	Full Run
Job Name:	structural_2
Step Creation	
Job Step Name:	structural
Select Load Cases	
Available Load Cases:	structure
OK	
Apply	
Cancel	

Step Selection	
Selected Job Steps:	structural
Apply	
Apply	
structural_2.msg and stru	the progression of the job by looking a ctural_2.sta files using the UNIX You can also monitor the analysis in the command ps -a.
21. When the analysis has finished, read in the results of the structural analysis.	
♦ Analysis	
Action:	Read Results
Object:	Result Entities
Method:	Translate
Select Results File	
Available Files:	structural_2.fil
OK	
Apply	
22. Postprocess the results of	of the structural analysis.
First, unpost the geometry fro	m the viewport by doing the following:
Display/Plot/Erase	
Erase All Geometry	
ОК	
Clean up the graphics using the	ne following main menu icon:
	Graphics
♦ Results	
Action:	Create

Object: Quick Plot

Click on the Select Results icon

Select Result Cases: select the last result case

Select Fringe Result: Stress, Components

Select Deformation Result: **Deformation, Displacements**

Apply

Notice how the thermal expansion of the model, when restrained by the fixity boundary conditions, induces stresses. To get a better view of the stresses, select the following toolbar icon:

Iso 4 View

The picture shown in Figure A3.6 should be seen in your viewport:

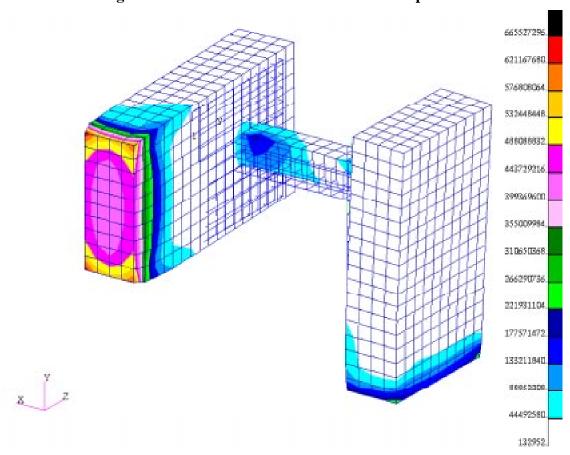


Figure A3.6 - Deformation due to Thermal Expansion

Close the database and quit PATRAN.

This concludes this exercise.