Analysis of a Rubber Seal II

Objectives:

- Large displacement analysis
- Contact analysis using slide line and rigid body contact
- Hyper-elastic material model
Model Description:

In this Exercise, you will be increasing the trunk door displacement from exercise 9. The additional deflection will cause the rubber seal to contact itself. It will be necessary to model this contact constraint into the problem, otherwise the seal will pass through itself which can be observed in the results postprocessing. To properly handle this contact, you will be defining a general slide line contact condition. This requires the addition of bar elements to define the master (slide line) and the slave (ISL). The master and slave are defined using elements and assigning properties to them. Once you have defined the contact constraint and you have modified the trunk door displacement, you will submit the job using the same nonlinear step you have defined in exercise 9.

Suggested Exercise Steps:

- Model the contact surfaces with bar elements
- Create the element properties
- Modify the Loads and BCs
- Submit the job to analysis
- Evaluate the results

Exercise Procedure:

1. Open a the database named rubber_seal.db.

 File/Open ...

 Database Name: rubber_seal.db

2. Define areas where the seal will contact itself.

 A set of elements must be created at points where the seal contacts and/or slides across itself. You will use slide line/ISL elements for this type of contact. These elements are used to define a large sliding elastic-elastic body contact. For this contact pair, the master elements are the slide line elements and are modeled using Bar2 elements. The
master surface is usually chosen as the surface with a coarser mesh or stiffer body. For this problem, the mesh density and the stiffness is the same, thus the choice will be somewhat arbitrary.

The ISL’s represent the slave surface and need to be defined on the seal at any location in which the slide lines will come into contact with the seal. These elements are also modeled using Bar2 elements.

First, post only the seal.

Group/Post...

Select Groups to Post: seal

Apply

Create a group that will contain all the elements for the seal slide line/ISL.

Group/Create...

New Group Name: slide_seal

Make Current

Apply

Cancel

Next, mesh the curves on the seal which will come into contact with itself when the door closes (the door moving down and to the left in the figure below). Similar to rigid body definitions, the definition of the seal contact edges is important. If the seal edges come into contact with other portions of the seal that are incorrectly identified, the seal will pass through itself.

Figure A4.1 identifies surface edges that will contact the rigid surface of the door:
Figure A4.1 - Surfaces where seal contacts itself

- Finite Elements

Action: Create
Object: Mesh
Type: Curve
Element Topology: Bar2
Global Edge Length: .015
Curve List: see Figure A4.1

Equivalence the model.

Action: Equivalence
Object: All
Method: Tolerance Cube
3. Define the element properties where the seal will contact itself.

We need to define the orientation of the slide line. Specifically, we need to identify what is “inside” and what is “outside”. A node must be specified at one end of the slide line so that starting at that node and moving along the bar elements (this defines the S vector), the “outside” is defined as the left side of the rigid surface and “inside” is defined as the right. We can also write

\[Z = S \times n \]

where \(Z \) is the positive out of plane 2D normal, \(n \) is the surface normal and \(S \) is a vector defined by the Surface Normal start node. To make the selection of the node easier, refer to the above diagram for the door ISL/slide line pair.

First, post the ISL/Slide Surface for the seal.

Group/Post...

Groups to Post: slide密封

Apply

Cancel

Retouch the graphics using the following toolbar icon:

![Refresh Graphics](image)

Properties

Action: Create

Dimension: 1D

Type: ISL(in plane)

Property Set Name: seal_isl

Options: Planar

Elastic Slip Soft Contact

Input Properties...

ELSET name: slide
Click on this icon and select the elements for the slave surface (see Figure A4.1) Hold down control to select the elements.

Since the two groups of elements have a similar mesh densities and stiffness, the choice is arbitrary as to master and slave surface definition.

Change the Type to **Slide Line**.

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

ELSET name:

Start Node:

OK

Select the members corresponding to the slave surface (see Figure A4.1)

Select the members corresponding to the master surface (see Figure A4.1)

Add

Apply
4. Modify existing groups

Group/Modify...

<table>
<thead>
<tr>
<th>Change Target Group...</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Entities:</td>
<td>Add</td>
</tr>
<tr>
<td>Change Target Group...</td>
<td>fem</td>
</tr>
<tr>
<td>Make Current</td>
<td></td>
</tr>
<tr>
<td>All FEM:</td>
<td>Add</td>
</tr>
</tbody>
</table>

OK

5. Modify the load and boundary conditions.

Now that the new model is complete, we need to modify the boundary conditions.

Load/BCs

<table>
<thead>
<tr>
<th>Action:</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>Displacement</td>
</tr>
<tr>
<td>Type:</td>
<td>Nodal</td>
</tr>
<tr>
<td>Select Set to Modify:</td>
<td>close_door</td>
</tr>
</tbody>
</table>

Modify Data...

| Translations: | <-.07, -.7, > |

OK

Apply

6. Now you will prepare the model for analysis. In order to accommodate the large deformations, the time step of the analysis must be reduced.

Analysis

<table>
<thead>
<tr>
<th>Action:</th>
<th>Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>Entire Model</td>
</tr>
<tr>
<td>Method:</td>
<td>Full Run</td>
</tr>
</tbody>
</table>
When asked if you wish to overwrite the existing step, respond Yes.

The analysis job will take (on average) about 6 to 12 minutes to run. When the job is done there will be a results file titled seal_slide.fil in the same directory you started MSC/PATRAN in.

Again, you can monitor the progression of the job by looking at seal_slide.msg and seal_slide.sta with the more command. Also, you may use ps -ef | grep afea and tail -lf seal_slide.sta to monitor the status.

7. Read in the results

◆ Analysis

Action: Read Results
Object: Result Entities
Method: Translate

Select Results File...
8. Create a deformed plot of the last analysis step.

◆ Results

Click on the Select Results icon

Action: Create
Object: Quick Plot
Select Result Cases: select the last increment
Select Fringe Results: Stress, Components
Results Quantity: Von Mises
Select Deformation Result: Deformation, Displacements

Change the Display Properties for results

Display/Results ...
Scale Factor: 1.0
◆ True Scale
☐ Show Undeformed Entities
Apply

Your model should appear as shown in Figure A4.2:
Figure A4.2 - Resulting deformation of rubber seal

When done viewing the results, close the database and quit PATRAN.

This concludes the exercise.