LESSON 2

Modal Analysis of a Thin Annular Plate

Objectives:

- Create an annular plate model using p3.
- Analyze model using MSC/Advanced_FEA.
- Compare results to hand solution.

Exercise Description:

In this exercise you will first create a simple model of a simple supported thin annular plate. You will then set up a modal analysis to calculate the first 5 natural frequencies and mode shapes. You will then compare these results to theoretical values.

Shown below is the geometric and material properties for the annular plate.

$\mathrm{E}=200 \mathrm{E} 9 \mathrm{~N} / \mathrm{m}^{2}$
$v=0.30$
$\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{t}=0.06 \mathrm{~m}$
$\mathrm{r}_{1}=6.0 \mathrm{~m}$
$\mathrm{r}_{2}=1.8 \mathrm{~m}$

Exercise Procedure:

1. Create a new database named annular_plate.db.

File/New ...

New Database Name:
annular_plate.db

OK

In the New Model Preference form set the Analysis Code to MSC/ADVANCED_FEA.

Analysis Code:
MSC/ADVANCED_FEA

OK

2. Create a line that will be used to create the geometry for the annular disk.

First, turn on entity labels and display lines using the following toolbar icons:

Show Labels

Display Lines

- Geometry

Action:	Create
Object:	Curve
Method:	Point
Starting Point:	$[\mathbf{1 . 8 , 0 , 0]}$
End Point:	$[\mathbf{6 . 0 , 0 , 0]}$
Apply	

Apply

A line should appear in your viewport as shown in Figure 11.1:

Figure 11.1-Line in viewport

3. Now you will create a surface by revolving that line through 360 degrees.

Action:
Object:
Create

Method:
Total Angle:
Curve List:

Surface
Revolve
360
Curve 1

Apply

A disk should appear in your viewport as shown in Figure 11.2:

Figure 11.2-Disk representing annular plate

4. Now you will create a Cylindrical Coordinate Frame located at the center of the annular disk.

Action:
Object:

Create
Coord
3PT

Method:
Type:
Origin:
Point On Axis 3:
Cylindrical

Point On Plane 1-3:

$[0,0,0]$
$[0,0,1]$
$[1,0,0]$

Apply

An axis should appear on your screen as shown in Figure 11.3:

Figure 11.3-Disk with cylindrical coordinate system

5. Next you will add the mesh seeds along the outer boundary and along line 1 (from inner to outer radius).

- Finite Elements

Action:	Create
Object:	Mesh Seed
Type:	Uniform
Number:	$\mathbf{3 6}$
Curve List:	see Figure 11.4
Number:	$\mathbf{6}$
Curve List:	see Figure 11.4

Your screen should appear as shown in Figure 11.4:

Figure 11.4 - Disk with mesh seeds

6. Mesh the surface.

First, turn off the labels using the following toolbar icon:

- Finite Elements

Action:
Object: Create

Type:

Mesher:

Create
Mesh

Node Coordinate Frames...
Analysis Coordinate Frame:
Coord 1

OK

> Surface List:
select entire surface

Apply

Your model should look like Figure 11.5:
Figure 11.5 - Meshed disk

7. Equivalence the model's nodes.

Even though there is only one surface in the model, it is still necessary to equivalence. The reason is that two of the surface's edges are contiguous, and share nodes that are created across the surface during meshing.

On the Finite Elements form change:

Action:
Equivalence
Object:
All
Method:
Tolerance Cube

Apply

8. Create a linear elastic isotropic material from the properties specified above.

- Materials

Action:
Object:
Method:
Material Name:

Input Properties...

Elastic Modulus:
Poisson's Ratio:
Density:

Create
Isotropic
Manual Input
plate

$200 E 9$
0.30
8000

Apply
Cancel
9. Next create a 2-D thin homogeneous shell element property using the material properties of plate. Apply the properties to Surface 1.

- Properties

Action:
Dimension:
Type:
Property Set Name:

Input Properties...

Material Name:
Shell Thickness:
OK
Select Members:
\square
Apply
\square

plate

0.06
10. Create a simply supported displacement constraint in coordinate system 1 applied to the outer edge of the model.

- Loads/BCs

Action:

Create
Displacement
Nodal
Ioad1

Input Data...

Translations: $<000\rangle$
Analysis Coordinate Frame:
Coord 1

OK

Select Application Region...

Be sure to use the following entity select icon:

Curve or Edge

Select Geometry Entities:
Surface 1.3 (outer edge)
Add
OK
Apply
11. Create an analysis step using the default load case. Then, select the newly created step and unselect the default load step.

Analysis

Action:	Analyze
Object:	Entire Model
Method:	Full Run
Step Creation...	
Job Step Name:	

Solution Type:
Solution Parameters...
Number of Modes:

OK

Apply

Cancel

Step Selection...

Selected Job Steps:

```
modes
```


Apply

Apply

12. To monitor the status files to verify completion use tail -If annular_plate.msg at the unix prompt.
13. Read in the results.

Analysis

Action:
Object:
Method:
Select Results File...
Select Results File...

Read Results
Result Entities
Translate
annular_plate.fil

Ok

Apply
14. Clear up the display so it is easier to understand the results, using the Hide Labels and Iso 3 View toolbar icons.

Hide Labels

Iso 3 View
15. Change to the Results form:

- Results

Action:
Create

Object:
Selected Results Case:
Selected Deformation Results:

Quick Plot
Step1, Mode 1
Deformation, Displacement

Apply

Figure 11.6-Modal deformation result

Repeat this procedure for the first 5 eigenvectors (1.1-1.5). Hold down the middle mouse button to view the results at different angles.

Results Summary：

The frequencies（eigenvalues）can be compared to the analytical results given in Reference（Free Vibration Benchmarks，Abbassian Dawswell and Knowles，NAFEMS，November 1987，page 22o）．

Table 1：

Mode \＃	Analytic Solution	P3／AFEA	\％Diff
1	1.870		
2	5.137		
3	5.137		
4	9.673		
5	9.673		

Close the database and quit PATRAN．
This concludes this exercise．

$6 \cdot \varepsilon$	OSO＇OL	عL9｀6	G
6＇E	OSO＇OL		t
でも	ESE＇G	LEL＇G	ε
でも	ESE＇G	LEL＇G	Z
$\varepsilon \boldsymbol{*}^{\prime} 0$	298．1	028．1	1
サ！С \％	V＇GUV／Ed	uo！̣njos ง！̣Кјеи	\＃эроW

