LESSON 2

Modal Analysis of a Thin Annular Plate

Objectives:

- Create an annular plate model using p3.
- Analyze model using MSC/Advanced_FEA.
- Compare results to hand solution.
Exercise Description:

In this exercise you will first create a simple model of a simple supported thin annular plate. You will then set up a modal analysis to calculate the first 5 natural frequencies and mode shapes. You will then compare these results to theoretical values.

Shown below is the geometric and material properties for the annular plate.

\[E = 200E9 \text{ N/m}^2 \]
\[\nu = 0.30 \]
\[\rho = 8000 \text{ kg/m}^3 \]
\[t = 0.06 \text{ m} \]
\[r_1 = 6.0 \text{ m} \]
\[r_2 = 1.8 \text{ m} \]
Exercise Procedure:

1. Create a new database named `annular_plate.db`.

 File/New ...

 New Database Name: `annular_plate.db`

 OK

 In the New Model Preference form set the *Analysis Code* to **MSC/ADVANCED_FEA**.

 Analysis Code: **MSC/ADVANCED_FEA**

 OK

2. Create a line that will be used to create the geometry for the annular disk.

 First, turn on entity labels and display lines using the following toolbar icons:

 ![Show Labels](image)
 ![Display Lines](image)

 Geometry

 Action: Create
 Object: Curve
 Method: Point
 Starting Point: [1.8, 0, 0]
 End Point: [6.0, 0, 0]

 Apply

 A line should appear in your viewport as shown in Figure 11.1:
3. Now you will create a surface by revolving that line through 360 degrees.

Action: Create

Object: Surface

Method: Revolve

Total Angle: 360

Curve List: Curve 1

A disk should appear in your viewport as shown in Figure 11.2:
4. Now you will create a Cylindrical Coordinate Frame located at the center of the annular disk.

<table>
<thead>
<tr>
<th>Action:</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>Coord</td>
</tr>
<tr>
<td>Method:</td>
<td>3PT</td>
</tr>
<tr>
<td>Type:</td>
<td>Cylindrical</td>
</tr>
<tr>
<td>Origin:</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>Point On Axis 3:</td>
<td>[0, 0, 1]</td>
</tr>
<tr>
<td>Point On Plane 1-3:</td>
<td>[1, 0, 0]</td>
</tr>
</tbody>
</table>

An axis should appear on your screen as shown in Figure 11.3:
5. Next you will add the mesh seeds along the outer boundary and along line 1 (from inner to outer radius).

◆ **Finite Elements**

<table>
<thead>
<tr>
<th>Action:</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>Mesh Seed</td>
</tr>
<tr>
<td>Type:</td>
<td>Uniform</td>
</tr>
<tr>
<td>Number:</td>
<td>36</td>
</tr>
<tr>
<td>Curve List:</td>
<td>see Figure 11.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action:</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>Mesh Seed</td>
</tr>
<tr>
<td>Type:</td>
<td>Uniform</td>
</tr>
<tr>
<td>Number:</td>
<td>6</td>
</tr>
<tr>
<td>Curve List:</td>
<td>see Figure 11.4</td>
</tr>
</tbody>
</table>

Your screen should appear as shown in Figure 11.4:
6. Mesh the surface.

First, turn off the labels using the following toolbar icon:

![Hide Labels](image)

Finite Elements

Action: Create

Object: Mesh

Type: Surface

Mesher: Isomesh

Node Coordinate Frames...

Analysis Coordinate Frame: Coord 1

OK

Surface List: select entire surface
7. Equivalence the model’s nodes.

Even though there is only one surface in the model, it is still necessary to equivalence. The reason is that two of the surface’s edges are contiguous, and share nodes that are created across the surface during meshing.

On the **Finite Elements** form change:

<table>
<thead>
<tr>
<th>Action:</th>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>All</td>
</tr>
<tr>
<td>Method:</td>
<td>Tolerance Cube</td>
</tr>
</tbody>
</table>

Apply
8. Create a linear elastic isotropic material from the properties specified above.

Materials

<table>
<thead>
<tr>
<th>Action: Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object: Isotropic</td>
</tr>
<tr>
<td>Method: Manual Input</td>
</tr>
<tr>
<td>Material Name: plate</td>
</tr>
</tbody>
</table>

Input Properties...

<table>
<thead>
<tr>
<th>Elastic Modulus: 200E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson’s Ratio: 0.30</td>
</tr>
<tr>
<td>Density: 8000</td>
</tr>
</tbody>
</table>

Apply

9. Next create a 2-D thin homogeneous shell element property using the material properties of plate. Apply the properties to Surface 1.

Properties

<table>
<thead>
<tr>
<th>Action: Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension: 2D</td>
</tr>
<tr>
<td>Type: Shell</td>
</tr>
<tr>
<td>Property Set Name: thin_plate</td>
</tr>
</tbody>
</table>

Input Properties...

<table>
<thead>
<tr>
<th>Material Name: plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Thickness: 0.06</td>
</tr>
</tbody>
</table>

OK

Select Members: Surface 1

Add

Apply
10. Create a simply supported displacement constraint in coordinate system 1 applied to the outer edge of the model.

◆ Loads/BCs

Action: Create
Object: Displacement
Type: Nodal
New Set Name: load1

Input Data...
Translations: <0 0 0>
Analysis Coordinate Frame: Coord 1

OK
Select Application Region...

Be sure to use the following entity select icon:

Curve or Edge

Select Geometry Entities: Surface 1.3 (outer edge)

Add
OK
Apply

11. Create an analysis step using the default load case. Then, select the newly created step and unselect the default load step.

◆ Analysis

Action: Analyze
Object: Entire Model
Method: Full Run

Step Creation...
Job Step Name: modes
12. To monitor the status files to verify completion use `tail -lf annular_plate.msg` at the unix prompt.

13. Read in the results.

Analysis

Action: Read Results
Object: Result Entities
Method: Translate

Select Results File... annular_plate.fil

Ok
Apply

14. Clear up the display so it is easier to understand the results, using the Hide Labels and Iso 3 View toolbar icons.

15. Change to the Results form:

Results

Action: Create
Repeat this procedure for the first 5 eigenvectors (1.1-1.5). Hold down the middle mouse button to view the results at different angles.
Results Summary:

The frequencies (eigenvalues) can be compared to the analytical results given in Reference (Free Vibration Benchmarks, Abbassian Dawswell and Knowles, NAFEMS, November 1987, page 220).

Table 1:

<table>
<thead>
<tr>
<th>Mode #</th>
<th>Analytic Solution</th>
<th>P3/AFEA</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.673</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Close the database and quit PATRAN.

This concludes this exercise.