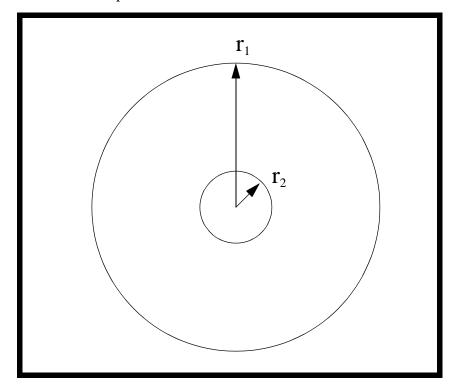

LESSON 2

Modal Analysis of a Thin Annular Plate


Objectives:

- Create an annular plate model using p3.
- Analyze model using MSC/Advanced_FEA.
- Compare results to hand solution.

Exercise Description:

In this exercise you will first create a simple model of a simple supported thin annular plate. You will then set up a modal analysis to calculate the first 5 natural frequencies and mode shapes. You will then compare these results to theoretical values.

Shown below is the geometric and material properties for the annular plate.

 $E=200E9\ \text{N/m}^2$

v = 0.30

 $\rho = 8000 \text{ kg/m}^3$

t = 0.06 m

 $r_1 = 6.0 \text{ m}$

 $r_2 = 1.8 \text{ m}$

Exercise Procedure:

File/New ...

1. Create a new database named **annular_plate.db.**

New Database Name:

OK

In the New Model Preference form set the Analysis Code to MSC/ADVANCED_FEA.

Analysis Code:

MSC/ADVANCED_FEA

2. Create a line that will be used to create the geometry for the annular disk.

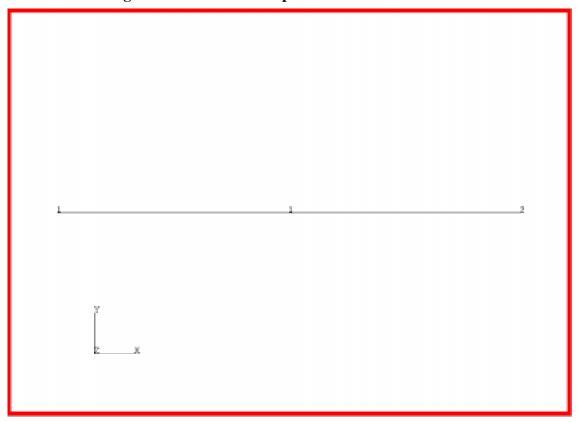
First, turn on entity labels and display lines using the following toolbar icons:

♦ Geometry

 Action:
 Create

 Object:
 Curve

 Method:
 Point

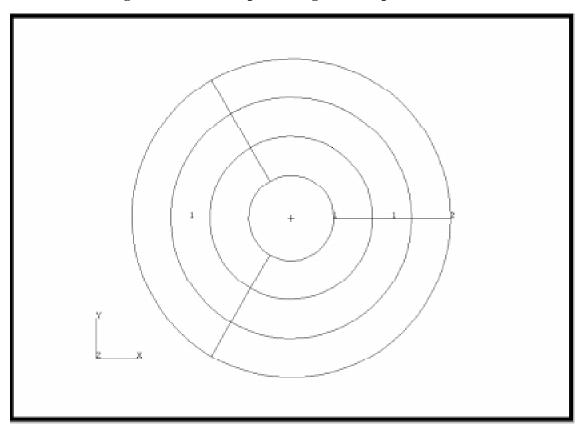

 Starting Point:
 [1.8, 0, 0]

 End Point:
 [6.0, 0, 0]

Apply

A line should appear in your viewport as shown in Figure 11.1:

Figure 11.1 - Line in viewport



3. Now you will create a surface by revolving that line through 360 degrees.

Action:	Create
Object:	Surface
Method:	Revolve
Total Angle:	360
Curve List:	Curve 1
Apply	

A disk should appear in your viewport as shown in Figure 11.2:

Figure 11.2 - Disk representing annular plate

4. Now you will create a Cylindrical Coordinate Frame located at the center of the annular disk.

Action:	Create
Object:	Coord
Method:	3РТ
Type:	Cylindrical
Origin:	[0, 0, 0]
Point On Axis 3:	[0, 0, 1]
Point On Plane 1-3:	[1, 0, 0]
Apply	

An axis should appear on your screen as shown in Figure 11.3:

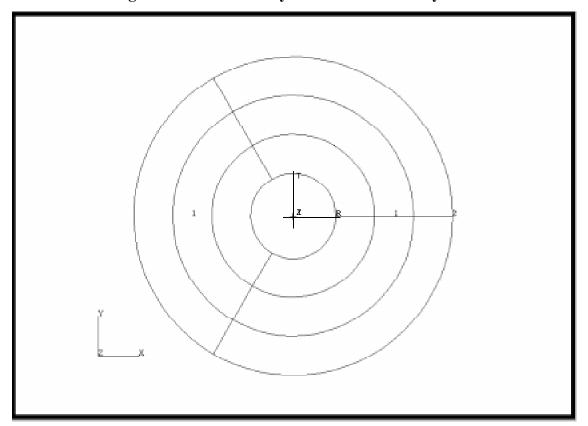
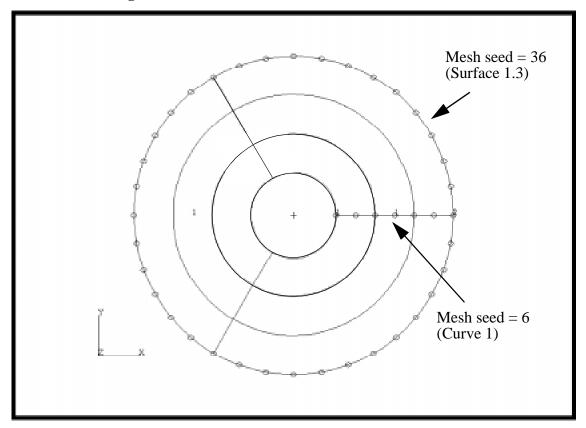


Figure 11.3 - Disk with cylindrical coordinate system


5. Next you will add the mesh seeds along the outer boundary and along line 1(from inner to outer radius).

♦ Finite Elements

Action:	Create
Object:	Mesh Seed
Type:	Uniform
Number:	36
Curve List:	see Figure 11.4
Number:	6
Curve List:	see Figure 11.4

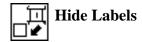
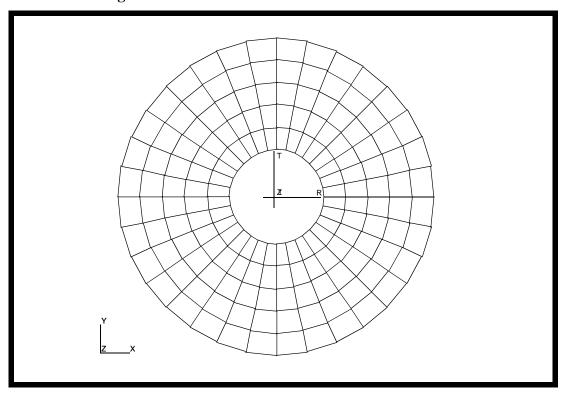

Your screen should appear as shown in Figure 11.4:

Figure 11.4 - Disk with mesh seeds

6. Mesh the surface.

First, turn off the labels using the following toolbar icon:


♦ Finite Elements

Action:	Create		
Object:	Mesh		
Туре:	Surface		
Mesher:	♦ Isomesh		
Node Coordinate Frames			
Analysis Coordinate Frame:	Coord 1		
OK			
Surface List:	select entire surface		

Apply

Your model should look like Figure 11.5:

Figure 11.5 - Meshed disk

7. Equivalence the model's nodes.

Even though there is only one surface in the model, it is still necessary to equivalence. The reason is that two of the surface's edges are contiguous, and share nodes that are created across the surface during meshing.

On the **Finite Elements** form change:

Action:	Equivalence
Object:	All
Method:	Tolerance Cube
Apply	

properties specified above. **♦** Materials Action: Create Object: **Isotropic** Method: **Manual Input** Material Name: plate **Input Properties...** 200E9 Elastic Modulus: Poisson's Ratio: 0.30 8000 Density: Apply Cancel 9. Next create a 2-D thin homogeneous shell element property using the material properties of plate. Apply the properties to Surface 1. **♦** Properties Action: Create <u>2D</u> Dimension: Type: Shell thin_plate Property Set Name: **Input Properties...** Material Name: plate 0.06 Shell Thickness: **OK** Select Members: Surface 1 Add Apply

Create a linear elastic isotropic material from the

8.

Modal Analysis of an Thin Annular Plate

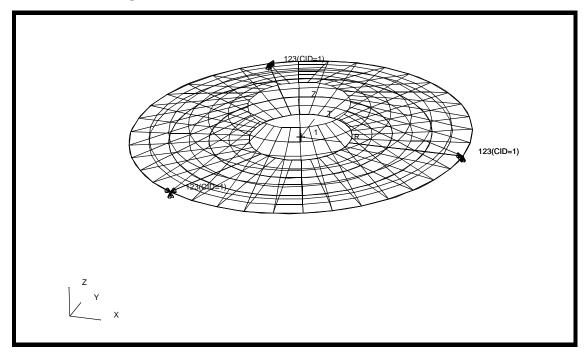
10. Create a simply supported displacement constraint in coordinate system 1 applied to the outer edge of the model.

♦ Loads/BCs	
Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name:	load1
Input Data	
Translations:	< 0 0 0 >
Analysis Coordinate Frame:	Coord 1
OK	
Select Application Region	7
Be sure to use the following e	ntity select icon: or Edge
Select Geometry Entities:	Surface 1.3 (outer edge)
Add	
OK	
Apply	
	using the default load case. Then step and unselect the default load
♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method:	Full Run
Step Creation	
Job Step Name:	modes

Solution Type:	Natural Frequency
Solution Paramete	rs
Number of Modes:	5
OK	
Apply	
Cancel	
Step Selection	
Selected Job Steps:	modes
Apply	
Apply	
	ne status files to verify completion use tail -If te.msg at the unix prompt.
♦ Analysis	
Action:	Read Results
Object:	Result Entities
Method:	Translate
Select Results File.	annular_plate.fil
Ok Apply	
	display so it is easier to understand the results, le Labels and Iso 3 View toolbar icons.
Hide	Labels Iso 3 View
15. Change to the	e Results form:
♦ Results	
Action:	Create

Modal Analysis of an Thin Annular Plate

Object:


Selected Results Case:

Selected Deformation Results:

Deformation, Displacement

Apply

Figure 11.6 - Modal deformation result

Repeat this procedure for the first 5 eigenvectors (1.1-1.5). Hold down the middle mouse button to view the results at different angles.

Results Summary:

The frequencies (eigenvalues) can be compared to the analytical results given in Reference (Free Vibration Benchmarks, Abbassian Dawswell and Knowles, NAFEMS, November 1987, page 220).

Table 1:

Mode #	Analytic Solution	P3/AFEA	% Diff
1	1.870		
2	5.137		
3	5.137		
4	9.673		
5	9.673		

Close the database and quit PATRAN.

This concludes this exercise.

6.5	10.050	£73.6	S
8.8	10.050	£73.6	Þ
4.2	5.353	7£1.3	3
4.2	5.353	751.3	2
64.0	298.1	١.870	ı
W Diff	P3/AFEA	əitylsnA nottulo2	# əboM