LESSON 3

Transient Response of a Rocket

Objectives:

- Develope a finite element model that represents an axial force (thrust) applied to a rocket over time.
- Perform a linear transient analysis of the model.
- Compare results to analytic calculations.

3-2 PATRAN 322 Exercise Workbook

Exercise Description:

LESSON 3

An axial force (thrust) is applied to a rocket over time. Using three elements to model the rocket as an unconstrained structure, determine the displacements of the base of the rocket with respect to time.

The rocket and applied thrust has the following properties:

Length = 140 inches

Area = 1.0 in^2

v = 0.30

 $\rho = 0.1 \text{ lb/in}^3$

 $E = 1.0 E+4 lb/in^2$

Force = 100 lbs

Time vs. Force History:

time (t)	Force(f)
0.0	100.0
1.0	100.0
1.001	0.0
3.0	0.0

Exercise Procedure:

1. Create a new database named **rocket.db**.

File/New ...

New Database Name:

rocket.db

OK

In the New Model Preference form set the *Analysis Code* to MSC/ ADVANCED_FEA.

Analysis Code:

MSC/ADVANCED_FEA

OK

2. Create the geometry for the rocket.

First, turn on entity labels using the following toolbar icon:

♦ Geometry

Action:

Object:

Method:

Vector Coord List:

Origin Coord List:

Apply

Create	
Curve	
XYZ	
< 0, 140, 0 >	
[0,0,0]	

A line should appear in your viewport as shown in Figure 12.1:

Figure 12.1 - Line representing rocket

3. Create a mesh seed of 3 for the line.

♦ Finite Elements

Action:

LESSON 3

Object:

Type:

Number:

Curve List:

Create	
Mesh Seed	
Uniform	
3	
Curve 1	

4. Now mesh the curve.

Action:

Object:

Type:

Curve List:

Create	
Mesh	
Curve	
Curve 1	

Apply

Your model should look like the one shown in Figure 12.2:

Figure 12.2 - Three element mesh of rocket

5. Next create a linear elastic isotropic material named **panel** using the specified values for E, v, ρ .

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

Elastic Modulus:

Poisson's Ratio:

Density:

Apply

Create
Isotropic
Manual Input
panel

1.0E4	
0.30	
0.1	

Cancel

6. Create a 1D bar in space element property named **bar**.

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Options:

Create 1D Beam in Space bar Circular Section

Standard Formulation

Input Properties...

Material Name:

Section Radius:

Definition of XY Plane

OK

Select Members:

< 0, 0, 1 >

Curve 1

panel

.5641897

7. Create a Non Spatial Field named **time_history** with time as the active independent variable. Use the time history table given below to create the time vs. force field.

♦ Fields

Action:

Object:

Method:

Field Name:

Active Independent Variable:

Input Data...

Create	
Non Spatial	
Tabular Input	
time_history	
Time	

Click on the corresponding box in the table and enter the values given in Table 1 into the Input Scalar Data box. Hit return and the number should appear in the table. Repeat this until all data values have been entered, then click

OK	
Apply	

Table 1: Force vs. Time History

time (t)	Force(f)
0.0	100.0
1.0	100.0
1.001	0.0
3.0	0.0

8. Create a time dependent loadcase named **time_vs_force**.

♦ Load Cases

Action:

Load Case Name:

Load Case Type:

Apply

Create	
time_vs_force	
Time Dependent	

9. Create an applied force named **thrust** with a force defined as <0, 1, 0> and a time dependence defined by the **time_history** field.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Input Data...

Force <*F1 F2 F3*>:

Time Dependence:

Force	
Nodal	
thrust	

< 0, 1, 0 >

Create

time_history

OK

LESSON 3

Select Application Region	
Geometry Filter:	◆ FEM
Select Nodes:	Node 1
Add	
ОК	
Apply	

An arrow will appear on your screen as shown at the bottom of Figure 12.3:

10. Constrain all degrees of freedom except the Y direction on the line.

♦ Load/BCs

Action:

Create

Object:	Displacement
Method:	Nodal
New Set Name:	constraint
Input Data	
Translation <t1 t2="" t3="">:</t1>	<0, , 0>
Rotational <r1 r2="" r3="">:</r1>	<0, 0, 0>
OK	
Select Application Region]
Geometry Filter:	◆ FEM
Select Nodes:	Node 1:4
Add	
ОК	
Apply	

Your screen will look like Figure 12.4:

11. Create an analysis step named **take_off** using Step Creation. Then, select this new step and unselect the default static step under *Step Selection*.

♦ Analysis

Action:

Object:

Method:

Step Creation...

Job Step Name:

Solution Type:

Solution Parameters...

Delta-T:

Time Duration of Step:

Analyze
Entire Model
Full Run

take_off

Direct Linear Transient

0.05	
3.0	

OK	
Select Load (Cases

Click on **time_vs_force** then click:

ОК	
Apply	
Cancel	
Step Selection	
Selected Job Steps:	

take_off

12. Once the job has finished, read in the results.

♦ Analysis

Action:

Apply

Apply

Object:

Method:

Read Results
Result Entities
Translate
rocket.fil

Select Results File...

OK Apply

13. To use XY-Plot change to the **Results** form.

♦ Results

Action:	Create
Object:	Graph
Method:	Y vs X

Click on the **View Subcases** icon then the **Select Subcases** to bring up the *Select Result Case* form

Target Entity:	Nodes
Select Nodes	Node 1

Apply

LESSON 3

14. To obtain a **Text Report** change the *Object* to **Report** in the Results form

Action:

Object:

Method:

Create	
Report	
Preview	

Click on the **View Subcases** icon then the **Select Subcases** to bring up the *Select Result Case* form

Click on **OK** if a warning appears for results only appearing in the analysis system. The Text Report appears in the unix window and looks like this:

-	Terminal	· · 🗆
Window Edit	Options	Help
-Entity IDX	MSC/PATRAN Version 7.5 - Analysis Code: MSC/ADVANCED_FEA Load Case: time.vs.force, Step1,TotalTime-2.85 Result Deformation, Displacements - Layer (NON-LAYERED) Evility: Node Vector ComponentZ Component 0.000000 16.990282 0.000000 0.000000 17.172340 0.000000 0.000000 17.178518 0.000000 0.000000 17.1355416 0.000000	4 K

Compare these results with the theoretical values.

Results Summary:

LESSON 3

The displacements at node 1 can be compared to the analytical predictions given by Theory of Matrix Structural Analysis, J.S. Przemieniecki, McGraw-Hill, 1968, pg 367.

Time	Analytic Solution	P3/AFEA	% Diff
2.00	10.8997		
2.15	11.7323		

Close the database and quit PATRAN.

This concludes this exercise.

36.5	12.20	5257.11	2.15
89.1	20.11	7668.01	2.00
% Diff	P3/AFEA	Analytic Solution	əmiT