LESSON 3

Transient Response of a Rocket

Objectives:

- Develope a finite element model that represents an axial force (thrust) applied to a rocket over time.
- Perform a linear transient analysis of the model.
- Compare results to analytic calculations.

Exercise Description:

An axial force (thrust) is applied to a rocket over time. Using three elements to model the rocket as an unconstrained structure, determine the displacements of the base of the rocket with respect to time.

The rocket and applied thrust has the following properties:
Length $=140$ inches
Area $=1.0 \mathrm{in}^{2}$
$v=0.30$
$\rho=0.1 \mathrm{lb} / \mathrm{in}^{3}$
$\mathrm{E}=1.0 \mathrm{E}+4 \mathrm{lb} / \mathrm{in}^{2}$
Force $=100 \mathrm{lbs}$
Time vs. Force History:

time (t)	Force(f)
0.0	100.0
1.0	100.0
1.001	0.0
3.0	0.0

Exercise Procedure:

1. Create a new database named rocket.db.

File/New ...

New Database Name:
rocket.db

OK

In the New Model Preference form set the Analysis Code to MSC/ ADVANCED_FEA.

Analysis Code:

> MSC/ADVANCED_FEA

OK

2. Create the geometry for the rocket.

First, turn on entity labels using the following toolbar icon:

- Geometry

Action:
Object:
Method:
Vector Coord List:

Create
Curve
XYZ
$\langle\mathbf{0 , 1 4 0 , 0}\rangle$
$[\mathbf{0 , 0 , 0]}$

Origin Coord List:
[0,0,0]

Apply

A line should appear in your viewport as shown in Figure 12.1:

Figure 12.1-Line representing rocket

3. Create a mesh seed of 3 for the line.

- Finite Elements

Action:	Create
Object:	Mesh Seed
Type:	Uniform
Number:	3
Curve List:	Curve 1

4. Now mesh the curve.

Action:	Create
Object:	Mesh
Type:	Curve
Curve List:	Curve 1

Apply

Your model should look like the one shown in Figure 12.2:
Figure 12.2-Three element mesh of rocket

5. Next create a linear elastic isotropic material named panel using the specified values for $\mathrm{E}, \mathrm{v}, \rho$.

- Materials

Action:	Create
Object:	Isotropic
Method:	Manual Input
Material Name:	panel

Input Properties...

Elastic Modulus:
Poisson's Ratio:
Density:

1.0E4

Apply

Cancel

6. Create a 1D bar in space element property named bar.

- Properties

Action:	Create
Dimension:	1D Type: Property Set Name: Options:
	bar Inpum in Space Material Name: Section Radius: Definition of $X Y$ Plane
	Standard Formulation

OK

Select Members:

Curve 1

Add

Apply
7. Create a Non Spatial Field named time_history with time as the active independent variable. Use the time history table given below to create the time vs. force field.

- Fields

Action:	Create
Object:	Non Spatial
Method:	Tabular Input
Field Name:	time_history
Active Independent Variable: $:$	Time

Input Data...

Click on the corresponding box in the table and enter the values given in Table 1 into the Input Scalar Data box. Hit return and the number should appear in the table. Repeat this until all data values have been entered, then click

OK

Apply

Table 1: Force vs. Time History

time (t)	Force(f)
0.0	100.0
1.0	100.0
1.001	0.0
3.0	0.0

8. Create a time dependent loadcase named time_vs_force.

- Load Cases

Action:
Load Case Name:
Load Case Type:

Create
time_vs_force
Time Dependent

Apply

9. Create an applied force named thrust with a force defined as $\langle\mathbf{0}, \mathbf{1}, \mathbf{0}\rangle$ and a time dependence defined by the time_history field.

- Loads/BCs

Action:

Object:
Type:
New Set Name:

Create
Force
Nodal
thrust

Input Data...

Force <F1 F2 F3>:
Time Dependence:

OK

Select Application Region...
Geometry Filter:
Select Nodes:

Add

OK
Apply
An arrow will appear on your screen as shown at the bottom of Figure 12.3:

Figure 12.3-Applied 'thrust" of rocket

10. Constrain all degrees of freedom except the Y direction on the line.

Load/BCs

Action:

Create

Object:
Method:
New Set Name:

Input Data...

Translation <T1 T2 T3>:
Rotational <R1 R2 R3>:

$\langle 0,0\rangle$
$\langle 0,0,0\rangle$

OK

Select Application Region...
Geometry Filter:
Select Nodes:

- FEM

Add
OK
Apply

Your screen will look like Figure 12.4:

Figure 12.4-Rocket with applied boundary conditions

11. Create an analysis step named take_off using Step Creation. Then, select this new step and unselect the default static step under Step Selection.

Analysis

Action:
Object:
Method:
Analyze
Entire Model
Full Run
Step Creation...
Job Step Name:
Solution Type:
Solution Parameters...
Delta-T:
Time Duration of Step:
take_off

Direct Linear Transient

0.05
3.0

OK

Select Load Cases...

Click on time_vs_force then click:

OK
Apply
Cancel
Step Selection...

Selected Job Steps:

take_off

Apply
Apply

12. Once the job has finished, read in the results.

Analysis

Action:	
Object:	Read Results
Method:	Result Entities
Select Results File...	rocket.fil
OK	
Apply	

13. To use XY-Plot change to the Results form.

- Results

Action:
Object:
Method:

Create
Graph
Y vs X

Click on the View Subcases icon then the Select Subcases to bring up the Select Result Case form

	或㫥
Select Result Case: Filter Method	Time_vs_Force, 60 Subcases
	All
Filter	
Apply	
Close	
Y :	Result
Select Y Result:	Deformation,Displacement
Quantity:	Y Component
X :	Global Variable
Variable:	Time
Select the Target Entity icon	
Target Entity:	Nodes
Select Nodes	Node 1
Apply	

14. To obtain a Text Report change the Object to Report in the Results form

Action:
Object:
Method:

Create
Report
Preview

Click on the View Subcases icon then the Select Subcases to bring up the Select Result Case form

Select Result Case:
Time_vs_Force, 60 Subcases
Filter Method
All

Filter

Apply

Close
Select Report Result:

Deformation, Displacement

Apply

Click on OK if a warning appears for results only appearing in the analysis system. The Text Report appears in the unix window and looks like this:

Compare these results with the theoretical values.

Results Summary：

The displacements at node 1 can be compared to the analytical predictions given by Theory of Matrix Structural Analysis，J．S． Przemieniecki，McGraw－Hill，1968，pg 367.

Time	Analytic Solution	P3／AFEA	\％Diff
2.00	10.8997		
2.15	11.7323		

Close the database and quit PATRAN．
This concludes this exercise．

$86^{\circ} \varepsilon$	OZ＇Z1	\＆ZEL゙レL	SL＇Z
89\％	20＇LI	L668＇01	00＇Z
サ！Ч \％	VGHV／Ed	uounnos эџূКएиУ	วU！L

