LESSON 4

Multi-Step Analysis of a Cantilever Beam

Objectives:

- Demonstrate multi-step analysis set up in MSC/Advanced_FEA.
- Combine large deformation and creep analysis.
Model Description:

In this exercise, the loading history consists of two steps. In the first step, the cantilever beam is extended non-linearly under an enforced displacement. In the second step, the analysis is changed to a creep analysis. In this step, the cantilever beam is allowed to creep for 20 seconds. The second step will cause the stress in the beam to “relax”.

Material:

- Young’s modulus = 30.0×10^6 lb/in²
- Poisson’s ratio = 0.3

Creep Model

\[\dot{\varepsilon}_{cr} = A q^n t^m \]

Where ε is the creep strain rate
- q is the equivalent Von Mises Stress
- A, m, and n are material constants

Load:

- $P = 6,000$ lb
- $D = 10$ in
Exercise Procedure:

1. Open a new database called multi_step.

File/New ...

New Database Name: multi_step

OK

The viewport (PATRAN’s graphics window) will appear along with a New Model Preference form. The New Model Preference sets all the code specific forms and options inside MSC/PATRAN.

In the New Model Preference form set the Analysis Code to MSC/Advanced_FEA.

Tolerance: ◆ Based on Model
Analysis Code: MSC/ADVANCED_FEA
Analysis Type: Structural

OK

2. Create the model geometry.

◆ Geometry

Action: Create
Object: Surface
Method: XYZ
Vector Coordinate List: <100, 2, 0>

Apply

The surface in Figure 2.1 will appear in your viewport.
3. Create the finite element mesh.

◆ Finite Elements

<table>
<thead>
<tr>
<th>Action:</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object:</td>
<td>Mesh Seed</td>
</tr>
<tr>
<td>Type:</td>
<td>Uniform</td>
</tr>
<tr>
<td>Number:</td>
<td>8</td>
</tr>
</tbody>
</table>

Click in the Curve List databox and screen select the **bottom edge** of the surface.

| Curve List: | pick bottom edge (see Figure 2.2) |
Now create a mesh seed for the left edge of the beam

Number: 1
Curve List: pick left edge (see Figure 2.2)

4. Create the model’s finite element mesh. On the *Finite Element* form change:

Action: Create
Object: Mesh
Type: Surface
Element Topology: Quad 4
Surface List: Surface 1
Apply
5. Now create the material and element properties for the beam. The beam is made of a Linear Elastic material with Young’s modulus of 30.0E6 lb/in², with a Poisson’s ratio of 0.3 and a mass density of 0.00074.

Materials

- **Action:** Create
- **Object:** Isotropic
- **Method:** Manual Input
- **Material Name:** steel

Input Properties...

- **Constitutive Model:** Elastic
- **Elastic Modulus:** 30.0E6
- **Poisson’s Ratio:** 0.3
- **Density:** 0.00074

Apply

6. For this exercise, you need to create a creep property set.

To add the creep property to the material named steel:

- **Constitutive Model:** Creep
- **Law:** Time
- **Anisotropic Yield:** None
- **Value of a:** 1.0E-26
- **Value of n:** 5.5
- **Value of m:** 0.0

Apply

Cancel
7. Input the properties of the Cantilever Beam under **Properties**. The beam will be assigned an incompatible modes element formulation. These elements are designed for conditions where bending is the predominate loading.

Properties

- **Action:** Create
- **Dimension:** 2D
- **Type:** 2D Solid
- **Property Set Name:** beam
- **Options:**
 - Plane Stress
 - Incompatible Modes

Input Properties...

- **Material Name:** steel
- **Thickness:** 1.0

OK

- **Select Members:** Surface 1

Loads/BCs

- **Action:** Create
- **Object:** Displacement
- **Type:** Nodal
- **New Set Name:** fixed

Input Data...

- **Translations:** <0, 0>

OK

- **Select Application Region...**

8. Create the LBC which fixes the left end of the beam.
9. You need to create the second displacement, the extension and transverse direction, applied to the right end of the beam.

Load/BCs

Action: Create

Object: Displacement

Type: Nodal

New Set Name: bend

Input Data...

Translations <T1, T2, T3>: <,-10, >

OK

Select Application Region...

Geometry filter: Geometry

Select Geometric Entities: see Figure 2.4
Your figure should look like the one shown below.

Figure 2.5 - Displacement of the end of the beam

10. Set up the model for analysis. You will be creating two steps. The first step will be a nonlinear static step, the second will be a creep solution.

Analysis

- **Action:** Analyze
- **Object:** Entire Model
- **Method:** Full Run
- **Job Name:** multi_step

Step Creation...

- **Job Step Name:** step1_static_displacement
- **Solution Type:** Nonlinear Static
To create the second step, start by changing the Job Step Name.

Job Step Name:

- **step2_creep**

Solution Type:

- Creep

Solution Parameters...

- Large Deflections: On
- Max No. of Increments: 100
- Integration Method: Implicit Method
- Delta-T: 1.0E-7
- Minimum Delta-T: 1.0E-10
- Time Duration of Step: 20
- Admissible Error in Strain Increment = 0.01

Now select the steps in the *Analysis* form.

Step Selection...

Select the Jobs in step order. First select *step1_static_displacement* and then *step2_creep*. Unselect Default Static Step from the Selected Job Steps Form.

Again, you will need to monitor the analysis for job completion. Open another Unix Shell. After the job starts to run, Advanced Finite Element Analysis creates several files that can be used to monitor the job and verify that the analysis has run correctly. The first file is *multi_step.msg*. This ASCII file contains Element, Loads & Boundary
Conditions, Material Translation, Step Control parameters, Equilibrium and Error information. When the job completes, this file contains an *Analysis Summary* which summarizes the error and iteration information. Another useful ASCII file is the *multi_step.sta* file. This file contains a summary of job information; including step number, number of increments, number of iterations, total time of step, and time of a given increment. These files can be viewed during or after a job has completed using *more* or *tail* commands.

11. Read in the results when analysis job is finished.

◆ **Analysis**

Action: Read Results
Object: Result Entities
Method: Translate
Available Jobs: multi_step

Select Results File... multi_step.fil

OK

Apply

12. Post Process the results.

◆ **Results**

Action: Create
Object: Quick Plot

Select Result Cases: Select the last increment for step 1, time = 1.0

Select Fringe Result: Stress, Components

Quantity: X Component

Select Deformation Result: Deformation,Displacements

Apply
13. Next, plot the X Component of stress with respect to time for the leftmost element.

◆ Results

Action: Create
Object: Graph
Method: Y vs X

Click on the View Subcases icon then the Select Subcases to bring up the Select Result Case form

Select Result Case: Default, 52 Subcases
Filter Method: All

Filter
Apply
Select the **Target Entity** icon

![Target Entity Icon]

Target Entity: Elements
Select Elements Elm 1 (leftmost element)
Addtl. Display Control: Elements All Data

Apply

This will generate 4 curves, one from each integration point. These are also known as element position (EP1, EP2, EP3, EP4). The initial loading from time T=0 to time T=1.0 represents the nonlinear static ramp of the load times greater than 1.0, the curve represents the creep loading which represents the stress relaxation. The plot shown in figure 2.7 should appear:
14. Print a copy of the results to the X window you started PATRAN in.

Results

Action: Create
Object: Report
Method: Preview
Select Results Cases: Select the last increment of step 1, total time=1.
Select Report Results: Stress, Components

Select the **Target Entity** icon.

Target Entity: Elements
Select Elements Elm 1 (leftmost element)
Now look in the X window that you started MSC/PATRAN in. There you should find the stress components for all the elements for that increment.

Repeat this process for the last increment of the second step.

Action: Create
Object: Report
Method: Preview
Select Results Cases: Select the last increment of step 2, total time=21.
Select Report Results: Stress, Components

Apply

Select the Target Entity icon.

Target Entity: Elements
Select Elements Elm 1 (leftmost element)
Addtl. Display Control: Elements All Data

Take the result from the print out and fill in the table on the next page. You will need the result from the first exercise as well.
Table 1:

<table>
<thead>
<tr>
<th>Element Position</th>
<th>X Component of Stress from the end of step 1</th>
<th>X Component of Stress from the end of step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-67771</td>
<td>- 5642</td>
</tr>
<tr>
<td>2</td>
<td>-67712</td>
<td>- 5604</td>
</tr>
<tr>
<td>3</td>
<td>68042</td>
<td>- 5642</td>
</tr>
<tr>
<td>4</td>
<td>67985</td>
<td>- 5604</td>
</tr>
</tbody>
</table>

15. Close this database and quit MSC/PATRAN.

File/Quit

This concludes this exercise.