LESSON 7

Element Selection Study

Objectives:

- Small/Large displacement analyses
- Compare performance of various element types
- Compare CPU time to solve the cantilever beam problem using a 1-D, 2-D and 3-D models

7-2 PATRAN 322 Exercise Workbook

Model Description:

In this problem, you will re-run the cantilever beam you analyzed in Lesson 1 with different Finite Elements. You will study the effectiveness of various1-D, 2-D and 3-D elements in linear as well as non-linear analysis.

Suggested Exercise Steps:

Re-run the cantilever model in Lesson 1 with various elements.

Use the mesh density suggested in Table 1.

Exercise Procedure:

1. Repeat exercise 1 and try different elements for Linear and Nonlinear analysis and use the elements suggested in the tables below.

Note: Use the following linear elastic material properties in all models:

E = 30.0E + 06 psi Poisson's Ratio = 0.3

Define the Tip_Load to sum to 6000 lbs in all cases.

2. Fill out the tables for deflection and total cpu time.

Note: 50x2 mesh means 50 elements long and 2 elements deep.

Note: CPU time for each run can be obtained from the end of the ".msg" file.

3. There are questions at the end of this exercise. Read them over and be prepared to discuss them in class.

	Finite Elements		Element Properties					
ABAQUS ELEMENT	Element Type	Mesh	Dimension	Туре	Option 1	Option 2	Tip Displacement	CPU Time
B23	BAR2	5x1	1D	Beam in XY Plane	Rectangular Section	Cubic Interpolation		
CPS4	QUAD4	50x2	2D	2D Solid	Plane Stress	Standard Formulation		
CPS4	QUAD4	50x4	2D	2D Solid	Plane Stress	Standard Formulation		
CPS4R	QUAD4	50x2	2D	2D Solid	Plane Stress	Reduced Integration		
CPS4R	QUAD4	50x4	2D	2D Solid	Plane Stress	Reduced Integration		
CPS4I	QUAD4	50x1	2D	2D Solid	Plane Stress	Incompatible Modes		
CPS8R	QUAD8	50x1	2D	2D Solid	Plane Stress	Reduced Integration		
C3D8	HEX8	50x2x1	3D	Solid	Standard Formulation			
C3D20	HEX20	50x1x1	3D	Solid	Standard Formulation			
C3D4	TET4	1.0	3D	Solid	Standard Formulation			
C3D10	TET10	1.0	3D	Solid	Standard Formulation.			

Table 1: Linear	Analysis for	Maximum	Y-Displacement
Indie If Emeur	11111119515101		I Displacement

Note: Mesh the models using Tet4 and Tet10 elements with the isomesher and a global edge length of 1.0.

	Finite Elements		Element Properties					
ABAQUS ELEMENT	Element Type	Mesh	Dimension	Туре	Option 1	Option 2	Tip Displacement	CPU Time
B23	BAR2	5x1	1D	Beam in XY Plane	Rectangular Section	Cubic Interpolation		
CPS4	QUAD4	50x2	2D	2D Solid	Plane Stress	Standard Formulation		
CPS4	QUAD4	50x4	2D	2D Solid	Plane Stress	Standard Formulation		
CPS4R	QUAD4	50x2	2D	2D Solid	Plane Stress	Reduced Integration		
CPS4R	QUAD4	50x4	2D	2D Solid	Plane Stress	Reduced Integration		
CPS4I	QUAD4	50x1	2D	2D Solid	Plane Stress	Incompatible Modes		
CPS8R	QUAD8	50x1	2D	2D Solid	Plane Stress	Reduced Integration		
C3D8	HEX8	50x2x1	3D	Solid	Standard Formulation			
C3D20	HEX20	50x1x1	3D	Solid	Standard Formulation			
C3D4	TET4	1.0	3D	Solid	Standard Formulation			
C3D10	TET10	1.0	3D	Solid	Standard Formulation			

 Table 2: Nonlinear Analysis for Maximum Y-Displacement

Note: Mesh the models using Tet4 and Tet10 elements with the isomesher and a global edge length of 1.0.

		Linear An	alysis	Nonlinear Analysis		
ABAQUS ELEMENT	Mesh	Tip Displacement	CPU Time	Tip Displacement	CPU Time	
B23	5x1	-100	0.07	-60.33	1.37	
CPS4	50x2	-70.91	1.19	-51.38	17.07	
CPS4	50x4	-71.84	2.19	-51.59	35.89	
CPS4R	50x2	-121.09	0.66	-67.46	10.93	
CPS4R	50x4	-100.09	1.09	-62.31	20.51	
CPS4I	50x1	-100.02	0.69	-60.72	10.35	
CPS8R	50x1	-98.37	0.73	-59.87	15.46	
C3D8	50x2x1	-76.54	2.67	-53.55	72.26	
C3D20	50x1x1	-99.70	9.00	-60.64	346.73	
C3D4	1.0	-68.72	6.18	-50.47	117.16	
C3D10	1.0	-99.85	23.71	-62.97	1675.5	

Table 3: Linear/Nonlinear Analysis for Maximum Y-Displacements (Answers)

Notes:

- 1. CPU Time is based on a HP 710 running HPUX 9.0.1. CPU time will vary depending platform analysis is performed on.
- Tetrahedron Mesh Information: C3D4 Mesh had 1000 elements, 606 nodes C3D10 Mesh had 1000 elements, 2815 nodes

Figure 3.1 - Deflection Results and Times for Linear Solution

Figure 3.2 - Deflection Results and Times for NonLinear Solution

Question: For Linear Elastic analysis using continuum elements, which one of the elements seem to be appropriate for bending application? Keep in mind that you may have distorted elements.

(class discussion)

Question: For non-linear analysis, which continuum element would you choose?

(class discussion)

Question: When is it appropriate to use 1-D, 2-D or 3-D elements?

(class discussion)

PATRAN 322 Exercise Workbook **7-9**