LESSON 8

Necking of Test Specimen

Objectives:

- Large Deflections/Strains analysis
- Elastic-Plastic material model using isotropic hardening

8-2 PATRAN 322 Exercise Workbook

Model Description:

In this lesson, you will stretch an 8 inch long planar steel bar by 2 inches (i.e. 25% of its length). Thus, this elasto-plastic problem will demonstrate the importance of the concept of true stress (or Cauchy stress) in non-linear analysis. This test specimen will be modeled using a quarter symmetry model.

Suggested Exercise Steps:

- $\blacksquare Create a 4x1 inch surface in the XY plane.$
- $\blacksquare Mesh the model with 16x4 mesh of QUAD/4 elements.$
- Fix the vertical and horizontal lines of symmetry of the bar and pull the other end by 2 inches.

Exercise Procedure:

1. Create a new database named **necking.db**.

File/New ...

Database Name:

necking.db

OK

Analysis Code:

MSC/ADVANCED_FEA

OK

2. Use the XYZ method to create a 4 x 1 surface.

♦ Geometry

Action:

Object:

Method:

Vector Coordinates List:

Origin Coordinates List:

Apply

3. Create mesh seeds on the surface, 4 on the vertical and 16 on the horizontal.

To create the mesh seeds, first click on the **Finite Elements** toggle in the *Main Window* You will be defining a mesh seed of 4 on the left edge of the surface and a mesh seed of 16 on the lower edge of the surface as shown in Figure 4.1:

Figure 4.1 - Mesh seed locations

♦ Finite Elements

◆ Number of Elements

Action:

Object:

Method:

Create	
Mesh Seed	
Uniform	

Number:

Curve List:

4	
left edge, see Figure 4.1	

The next edge to be seeded is the bottom, **Surface 1.4**. It will have 16 elements.

4. Create a group **fem** and make it current. This group will contain all of the finite elements.

Group/Create ...

New Group Name:

■ Make Current

fem

Apply	
Cancel	

5. Mesh the surface.

♦ Finite Elements

Action:

Object:

Type:

Apply

Element Topology:

Surface List:

Surface	
Quad4	
Surface 1	

Create

Mesh

Your model should now appear as shown in Figure 4.2:

Figure 4.2 - Meshed bar

6. Create a field for the elasto-plastic material data.

♦ Fields

Action:

Object:

Method:

Field Name:

Active Independent Variable:

Input Data...

The *1D Material Scalar Table Data* form needs to be filled out as shown in Table 1. To fill in the table, click on the cell you wish to

Strain	Stress
0	2842
0.002	4897
0.005	6096
0.015	8045
0.045	10682
0.125	13934
0.350	18225
1.000	23969

edit, enter the value in the *Input Scalar Data* databox and then press <Return>. The table will automatically tab down.

1D Material Scalar Table Data		
Input	Scalar Data	
Data		
	e	Value
1	0.00000E+00	2.84200E+03
2	2.00000E-03	4.89700E+03
3	5.00000E-03	6.09600E+03
4	1.50000E-02	8.04500E+03
5	4.50000E-02	1.06820E+04
6	1.25000E-01	1.39340E+04
7	3.50000E-01	1.82250E+04
ОК		

OK

Apply

7. Create the material **aluminum_1100**, with elastic and plastic properties.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

Constitutive Model:

Elastic Modulus:

Poisson's Ratio:

Create Isotropic Manual Input

aluminum_1100

Elastic	
1E7	
0.33	

Apply

Now to create the plastic material properties.

Constitutive Model:

Stress vs. Plastic Strain:

Hardening Rule:

Plastic	
Isotropic	
plastic_s_e	

Apply

Cancel

8. Create the element properties, apply the material **aluminum** to all the elements.

Properties

Action:

Dimension:

Type:

Property Set Name: Options:

Create	
2D	
2D Solid	
test specimen	

Plane Stress

	5
Input Properties	
Material Name:	aluminum_1100
Thickness:	1.0
ОК	
Select Members:	Surface 1
Add	
Apply	
 9. Create the load to fi surface in the x direc ◆ Load/BCs 	x the nodes on the left edge of the tion.
Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name:	symmetry_vertical
Input Data	

Translations <T1 T2 T3>:

Select Application Region...

Geometry Filter:

Select Nodes:

OK

see Figure 4.3

Click in the Select Nodes databox and select the five nodes on the left edge of the surface as shown Figure 4.3:

<0,, >

♦ FEM

Standard Formulation

Figure 4.3 - Nodes to select for symmetry BC

Add	
OK	
Apply	

10. Create a displacement set to move the nodes on the right edge of the surface 2 inches in the +X direction.

Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name:	pull_at_end
Input Data	
Translations <t1 t2="" t3="">:</t1>	<2.0, 0, >
Rotational <r1 r2="" r3="">:</r1>	< >
ОК	
Select Application Region]

Geometry Filter:**◆ FEM**Select Nodes:see Figure 4.4

Click in the *Select Nodes* databox and select the nodes on the right edge of the model:

Figure 4.4 - Nodes at pulled end of bar

Add	
OK	
Apply	

Your model should now appear as shown in Figure 4.5:

Figure 4.5 - Bar with pull_at_end BC applied

Figure 4.6 - Nodes to select for symmetry BC

Add	
OK	
Apply	

11. Create the analysis step.

♦ Analysis

Action:

Object:

Method:

Job Name:

Step Creation...

Job Step Name:

Solution Type:

Solution Parameters...

Analyze

Entire Model

Full Run

necking

necking

Nonlinear Static

12. Select the analysis step and submit it.

Be sure to deselect the Default static step.

Step Selection...

Selected Job Steps:

necking

Apply	
Apply	

Apply

Cancel

The analysis job will take (on average) about 2 to 5 minutes to run. When the job is done there will be a results file titled **necking.fil** in the same directory you started MSC/PATRAN in.

Again, you can monitor the progression of the job by looking at **necking.msg** and **necking.sta** as well as using the UNIX command *ps -a* and *tail necking.msg*.

13. When the job is finished, import the results.

♦ Analysis

Action:

Select Results File...

Read Results

Available Files:

necking.fil

The database will close to allow data transfer to the PATRAN database. When it opens again the results will be in.

14. Post the group **fem** only.

Group/Post ...

Select Groups to Post:

fem

Apply Cancel

15. Change the display for postprocessing.

Results

Select the Deformation Atrributes icon

Scale Factor:

1.0

Scale Interpretation

◆ True Scale

Show Undeformed

16. Create a deformed plot of the last analysis step. Start by clicking on the **Select Results** icon.

Action:

Object:

Select Result Case:

Select Fringe Result:

Create	
Quick Plot	
pick the last result case	
(none)	

Select Deformation:

Deformation, Displacement

Apply

Your plot should look like the one shown in Figure 4.7. You may need to zoom out to see the whole model. Use the toolbar **Zoomout** Icon.

Figure 4.7 - Deformation result of pulled bar

17. Plot the plastic strains as a function of increment.

In this step, you will select 8 elements to plot their plastic strains as a function of load increment. The eight elements will start at the necking point and go toward the fixed end as shown in Figure 4.8:

First, clean up the display using the following toolbar icons:

Reset Graphics Fit View

Action:	Create
Object:	Graph
Method:	Y vs X

Click on View Results and then Select Subcase

Click on the Target Entities icon and select

Elements	
Elm 17:24	

Apply

Your plot should look like the one in Figure 4.9:

Note that most of the plastic strain occurs at the middle element. This element acts as a "load fuse" to absorb all of the model deformation and hence its area reduces (i.e. necking).

Close the database and quit PATRAN.

This concludes this exercise.