LESSON 13b

Post-Buckling Analysis of a Thin Plate

Objectives:

- Construct a thin plate (with slight imperfection)
- Place an axial load on the plate.
- Run an Advanced FEA nonlinear static analysis in order to see the behavior of the plate prior to post-buckling

13b-2 PATRAN 322 Exercise Workbook

Model Description:

In this exercise, a thin plate is subjected to a static load. This load exceeds the critical load required to induce buckling. The plate is given a slight imperfection (the top right corner is offset by .001 inches in the z-direction). In this exercise you are to run an Advanced FEA nonlinear static analysis on this thin plate in order to track down the behavior up to post-buckling.

The model is created using a surface meshed 6x6 with 2D shell elements. The elements are uniformly spaced along the edges of the plate. Due to symmetry, the problem will be analyzed using a quarter model, imposing symmetry boundary conditions.

Exercise Procedure:

1. Open a new database. Name it **post_buckle.db**.

Type **p3** in your xterm. The *Main Window* and *Command Window* will appear.

File/New...

New Database Name:

post_buckle.db

OK

The viewport (PATRAN's graphics window) will appear along with a *New Model Preference* form. The *New Model Preference* sets all the code specific forms and options inside MSC/PATRAN.

In the *New Model Preference* form set the *Analysis Code* to **MSC/ADVANCED_FEA.**

Tolerance:

◆ Default

Structural

Analysis Code:

Analysis Type:

MSC/ADVANCED_FEA

OK

2. Create the model geometry.

♦ Geometry

Action:

Object:

Method:

Vector Coordinate List:

Origin Coordinate List:

Apply

Create	
Surface	
XYZ	
<5, 5, 0.001>	
[0, 0, 0]	

Notice that the y-value in the Vector Coordinate is not zero. This is done to simulate a small imperfection in the geometry, and is usually necessary to do post-buckling analysis. 3. Create the finite element mesh.

♦ Finite Elements

Action:	Create
Object:	Mesh Seed
Type:	Uniform
Number:	6

Click in the *Curve List* databox and screen select the bottom and left curve.

Curve L	ist:
---------	------

Sui	face	1.1	1.4

4. Create the model's finite element mesh. On the *Finite Element* form change:

Action:

Object:

Type:

Element Topology:

Surface List:

Create	
Mesh	
Surface	
Quad4	
Surface 1	

- Apply
- 5. Now set the material and element properties of the plate. The plate is made of a material with Young's modulus of 10.0 E 6 lb/in2, with Poisson's ratio of 0.33.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

Constitutive Model:

Create

Isotropic

Manual Input

aluminum

Elastic

PATRAN 322 Exercise Workbook 13b-5

Elastic Modulus:

Poisson's Ratio:

10.0E6	
0.33	

Apply Cancel

6. Input the properties of the thin plate under Properties.

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

Material Name:

Thickness:

OK

Select Members:

Create	
2D	
Shell	
plate	

aluminum 0.1

Surface 1

Add	
Apply	

7. Now apply the boundary conditions to the plate.

First, clamp the outer edges of the plate in the z-direction.

♦ Load/BCs

Action:

Object:

Type:

New Set Name:

Translations:

OK

Displacement	

Nodal

outer_edges

Create

< , , 0 >	<	,	,	0	>				
-----------	---	---	---	---	---	--	--	--	--

Select Application Region...

Geometry Filter:

♦ Geometry

Select Geometric Entities:

select left & bottom edges

Next, set up the x-symmetry boundary condition of the model

New Set Name:	x_symmetry
Input Data	
Translations:	< 0, , >
Rotations:	< , 0, 0 >
ОК	
Select Application Region]
Select Geometric Entities:	select the right edge
Add	

Finally, set up the y-symmetry boundary condition

New Set Name:	y_symmetry
Input Data	
Translations:	< , 0, >
Rotations:	<0, , 0 >
ОК	
Select Application Region]
Select Geometric Entities:	select the top edge
Add	

OK	
Apply	

8. Next, you will create the edge load on the model.

Action:	Create
Object:	Force
Type:	Nodal
New Set Name:	fx_1
Input Data	
Force:	<208.33, 0,0 >
ОК	
Select Application Region]
Geometry Filter:	◆ FEM
Select Nodes:	top left and lower left
	corner nodes
Add	
ОК	
Apply	
New Set Name:	fx_2
Input Data	
Force:	<416.67, 0 ,0 >
ОК	
Select Application Region]
Geometry Filter:	◆ FEM
Select Nodes:	drag and select all nodes along
	left edge except corner nodes
Add	
OK	
Apply	

9.

Your model is now ready for analysis.

♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method:	Full Run
Job Name:	post_buckle
Step Creation	
Job Step Name:	nl_static
Solution Type:	Nonlinear Static
Solution Parameters	
Max No of Increments:	20
Automatic Load Increment:	On
Delta-T:	0.1
ОК	
Apply	
Cancel	
Step Selection	
Selected Job Steps:	nl_static
Apply	
Apply	

The Advanced FEA analysis job **post_buckle** will then be submitted for analysis to the workstation designated in the Submit Script (usually your local workstation).

The analysis job will take (on average) under 5 minutes to run. When the job is done there will be a results file titled **post_buckle.fil** in the same directory you started MSC/PATRAN in and the **post_buckle.023** file will disappear. You can monitor the progression of the job by looking at **post_buckle.msg** and **post_buckle.sta** files using the UNIX command **tail -If [filename]**. You can also monitor the analysis in the background using the UNIX command **ps -a**.

10. When the analysis job is finished, you may read the results back into PATRAN.

♦ Analysis

Action:

Object:

Method:

Apply

Available Jobs:

Select Result	s File
Ok	

Read Results
Result Entities
Translate
post_buckle
post buckle.fil

11. We will now use MSC/PATRAN to post process the results of the nonlinear static analysis.

♦ Results

Action:	Create
Object:	Graph
Method:	Y vs X

Click on the **View Subcases** icon then the **Select Subcases** to bring up the *Select Result Case* form

Es.

Select Result Case:

Filter Method

Filter	
Apply	
Close	
Y:	

Default, 8 Subcases

All

Result

Select Y Result:

Quantity:

X:

Variable:

Deformation, Displacement

Z Component

Global Variable

Time

Select the Target Entity icon

Target Entity:

Select Nodes

Nodes
Node 49 (top right node)

Apply

Notice that as you near the end of the step (when the load has been almost entirely applied), the normal deflection of the plate changes drastically.

Close the database and quit PATRAN.

This concludes the exercise

13b-12 PATRAN 322 Exercise Workbook