LESSON 14

Shock Analysis of a 3-Story Structure

Objectives:

- Create a model of a 3-story building using p3.
- Set up and analyze a response spectrum analysis.
- Compare results to hand solution.

Exercise Description:

The 3-story structure shown in the figure below is idealized by modelling the floors as point masses and the stiffness of the columns combined into a single beam for each level. This simplification is valid for this case because the loading is in the x direction only, and the axial stiffness of the floors is several orders of magnitude greater than the bending stiffness of the columns.

A seismic input, expressed as applied velocities in the X direction, is applied to the model. Each floor is 10 feet high, and all have material properties of steel (see below). Mass and stiffness below are given in the figure below.

This solution is solved in two steps: modal analysis to compute eigenvalues and eigenvectors, followed by a response spectrum analysis using modal superposition method.

 $E = 30 E + 6 lb/in^2$

v = 0.30

Story height = 10 feet = 120 inches

Velocity vs. Frequency:

Frequency	Velocity
0.731	20.88
1.563	16.92
2.320	14.40

Base Excitation direction <1 0 0>

Exercise Procedure:

1. Create a new database named **seismic.db**.

File/New ...

New Database Name:

seismic.db

OK

In the New Model Preference form set the *Analysis Code* to **MSC/ADVANCED_FEA.**

Analysis Code:

MSC/ADVANCED_FEA

OK

2. Create the geometry that will represent the building.

First, turn on the entity labels using the following toolbar icon:

Show Labels

♦ Geometry

Action:

Object:

Method:

Vector Coordinate list:

Origin Coordinate list:

Apply

Create	
Curve	
XYZ	
[0, 360, 0]	
[0, 0, 0]	

PATRAN 322 Exercise Workbook 14-5

3. Create a 3 bar mesh on this curve. Divide the total length by 3 and enter it in the Global Edge Length.

♦ Finite Elements

Action:

Object:

Type:

Global Edge Length:

Curve List:

CreateMeshCurve120Curve 1

Apply

4. Now create a point element at the three top nodes.

♦ Finite Elements

Action:

Object:

Create
Element

Method:	Edit
Shape:	Point
Topology:	Point
Node 1:	Node 2:4
Apply	

5. Next, fix all degrees of freedom on the bottom node and all but the X translational on the other three nodes.

♦ Loads/BCs

Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name:	bar
Input Data	
Translational <t1 t2="" t3="">:</t1>	< 0, 0, 0 >
Rotational <r1 r2="" r3="">:</r1>	< 0, 0, 0 >
ОК	
Select Application Region	
Geometry Filter:	◆ FEM
Select Nodes:	Node 1
Select Nodes: Add	Node 1
Select Nodes: Add OK	Node 1
Select Nodes: Add OK Apply	Node 1
Select Nodes: Add OK Apply New Set Name:	Node 1
Select Nodes: Add OK Apply New Set Name: Input Data	Node 1
Select Nodes: Add OK Apply New Set Name: Input Data Translational <t1 t2="" t3="">:</t1>	Node 1 bars < , 0, 0 >
Select Nodes: Add OK Apply New Set Name: Input Data Translational <t1 t2="" t3="">: Rotational <r1 r2="" r3="">:</r1></t1>	Node 1 bars < , 0, 0 > < 0, 0, 0 >
Select Nodes: Add OK Apply New Set Name: Input Data Translational <t1 t2="" t3="">: Rotational <r1 r2="" r3="">: OK</r1></t1>	Node 1 bars < , 0, 0 > < 0, 0, 0 >

PATRAN 322 Exercise Workbook 14-7

Geometry Filter:

♦ FEM

Node 2:4

Select Nodes:

Add	
OK	
Apply	

Your screen should look like this:

6. Create a linear elastic isotropic material with an elastic modulus of 30E6 and a poisson's ratio of .30.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

LESSON 14

Elastic Modulus:

Poisson's Ratio:

Apply

Cancel

30.0E6	
0.30	

7. Next define 3 0-D point masses and apply these to the point elements. The mass values are 1000, 1500, 2000lbs from top to bottom. To make sure you are applying the element properties to the FEM click on the corresponding box in the select menu.

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties...

Mass Magnitude:

OK

Select Members:

Create 0D Mass mass1

1000

Elm 6

Repeat the above steps for the table below:

Prop Name	Mass	Element
mass1	1000	Elem 6
mass2	1500	Elem 5
mass3	2000	Elem 4

8. Create 3 1-D beam in space using cubic interpolation with a general section. Use the above element properties to define the cross section for each of the elements.

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Options:

1D	
Beam In Space	
beam1	
General Section	-

Create

Cubic Interpolation

Input Properties...

Material Name: X-Sectional Area; Area Moment 111: Area Moment 122: Torsional Constant: Definition of XY Plane:

steel	
8.0	
288.	
28.8	
28.8	
< 0, 0, 1 >	

OK

Be sure to use the following entity select icon:

Select Members:

|--|

Add	
Apply	

Repeat the same procedure for **beam2** and **beam3**.

Property Set Name :

beam2	

Input Properties...

Material Name:

X-Sectional Area:

steel	
16.0	

Shock Analysis of a 3-Story Structure

Area Moment 11:	576.
Area Moment 22:	57.6
Torsional Constant:	57.6
Definition of XY Plane:	< 0, 0, 1 >
ОК	
Select Members:	Elm 2
Add	
Apply	
Property Set Name:	beam3
Input Properties	
Material Name:	steel
X-Sectional Area:	24.0
Area Moment 11:	864.
Area Moment 22:	86.4
Torsional Constant:	86.4
Definition of XY Plane:	< 0, 0, 1 >
ОК	
OK Select Members:	Elm 1

Add Apply

9. Create a Natural Frequency step requesting 3 modes.

♦ Analysis

Action:

Object:

Method:

Step Creation...

Job Step Name:

Analyze	
Entire Model	
Full Run	

modes

Solution Type:	Natural Frequency	
Solution Parameters		
Number of Modes:	3	
ОК		
Apply		
Cancel		

10. Create a Response Spectrum step with the corresponding parameters.

Analyze

Full Run

response

Algebraic

SRSS

None

1.0

Velocity

Entire Model

Response Spectrum

♦ Analysis

Action:

Object:

Method:

Step Creation...

Job Step Name:

Solution Type:

Solutions Parameters...

Excitation Components: Response Values Sum:

· _

Spectrum Type:

Modal Damping:

Define Response Spectra...

1ST Multiplying Factor:

Define Spectrum...

Frequency:

Magnitude:

OK

2ND Multiplying Factor:

Define Spectrum...

Frequency:

0.731 20.88

0.0

1.563

Magnitude:	16.92
ОК	
3RD Multiplying Factor:	0.0
Define Spectrum	
Frequency:	2.320
Magnitude:	14.40
ОК	

On the Response Spectra form click:

OK

LESSON 14

Once more on the Solution Parameters form:

OK	
Apply	
Cancel	

11. Select the two steps in order (Natural Frequency then Response Spectrum) and submit the job for analysis.

Step Selection...

Select the steps so they appear in this order under Selected Job Steps:

Selected Job Steps			
modes			
response			
		4	
Apply	Defaults	Cancel	

Apply	
Apply	

12. Read in the results.

♦ Analysis

Action:

Object:

Method:

Select Results File		
Ok		
Apply		

Read Results	
Result Entities	
Translate	

13. The frequencies of the first three modes can be read from the **Results** form in the *Select Results Case* databox. To find the displacement at each floor create a marker on the viewport.

♦ Results

Action:

Object:

Method:

Select Results Case:

Select Vector Results:

Apply

Create

Marker

seismic.fil

Vector

Default, Step2, Inc=1

Deformation, Displacement

Results Summary:

The frequencies can be compared to the analytical results given in Reference (Dynamics of Structures, Clough, Ray W., and Penzien, Joseph, McGraw Hill, 1975). Below is the solution for step 1 for the first three modes.

Table 1: Modal Frequencies

Mode	Analytic Solution	P3/AFEA	% Diff
1	0.731		
2	1.563		
3	2.320		

Below are the displacements for the structure due to the response spectrum analysis.

Displacement	Analytic Solution	P3/AFEA	% Diff
Ux at 1rst story	2.040		
Ux at 2nd story	4.212		
Ux at 3rd story	6.552		

After obtaining the answers, close the database and quit PATRAN.

This concludes this exercise.

£0.	6.554	6.552	Ux at 3rd story
20.1	4'522	4.212	Ux at 2nd story
3.43	2.110	5.040	Ux at 1rst story
₩Diff	P3/AFEA	Solution Solution	Displacement
0.0	5.320	5.320	3
0.0	1.563	1.563	5
0.0	187.	167.0	L
% Diff	P3/AFEA	Solution Solution	əboM

PATRAN 322 Exercise Workbook 14-15