LESSON 16

Transient Heat Transfer Analysis

Objectives:

- Transient Heat Transfer Analysis
- Model Convection, Conduction

Model Description:

In this exercise, you will be modelling a 2-Dimensional cross section of a container holding a fluid. Initially, the outside and inside of the container are at 1000° . The temperature of the inner fluid in the model drops from 1000° to 800° in a period of 10 seconds. The variation of temperature will be calculated as a function of time.

Suggested Exercise Steps:

- Create the Geometry shown in the previous shape
- Mesh the model with Quad8 element using a 4x4 mesh
- Specify material properties as conductivity = 4.85E-4 BTU/s-°F-in, Specific Heat = 0.116 BTU/lbm-°F, and Density = 0.283 lb/in³.
- Submit the analysis and post process the results

Exercise Procedure:

1. Create a new database named **thermal_flow.db**.

File/New ...

Database Name:

thermal_flow.db

OK

2. Change the preference type to **MSC/ADVANCED_FEA**.

Analysis Code:

Analysis Type:

MSC/ADVANCED_FEA

Thermal

3. Create the geometry for the model.

♦ Geometry

Action:

Create

Object:	Curve
Method:	Revolve
Total Angle:	45
Point List:	[1, 0, 0]
Apply	

Create a second curve using the options that follow:

Action:	Create
Object:	Curve
Method:	XYZ
Vector Coordinates List:	<0, 1.5, 0>
Origin Coordinates List:	[1.5, 0, 0]
Apply	

Next, create a surface between the two curves.

Action:	Create
Object:	Surface
Method:	Curve
Curve Option:	2 Curve
Starting Curve List:	Curve 2
Ending Curve List:	Curve 1
Apply	

Your model should now look like the one shown in Figure 16.1:

LESSON 16

Figure 16.1 - 1/8 symmetry model of container holding fluid

4. Create two mesh seeds on the newly created surface. Use a Mesh Seed of 4 on the vertical and the horizontal edges.

4

♦ Finite Elements

Action:

Object:

Method:

Create	
Mesh Seed	
Uniform	-

•	Number	of Elements

Number:

Curve List:

see Figure 16.1	

The bottom edge is **Surface 1.1**.

The next edge to be seeded is the right side, **Curve 2**, It will also have 4 elements.

Action:

Object:

Method:

Create
Mesh Seed
Uniform

◆ Number of Elements

Number:

Curve List:

4	
see Figure 16.1	_

Your model should now appear as shown in Figure 16.2:

Figure 16.2 - Model with mesh seeds

5. Create a group **fem** and make it current. This group will contain the finite elements

Group/Create ...

New Group Name:

fem

■ Make Current

Apply Cancel

6. Mesh the surface using **Quad8's**.

♦ Finite Elements

Action:

Object:

Type:

Element Topology:

Surface List:

Apply

Create	
Mesh	
Surface	
Quad8	
Surface 1	

Your model should now appear as shown in Figure 16.3:

7. Create the material **steel**, with thermal properties.

♦ Materials

Action:

Type:

Method:

Material Name :

Input Properties...

Constitutive Model:

Conductivity:

Specific Heat:

Density:

Apply	
Cancel	

Create	
Isotropic	
Manual Input	
steel	

Thermal	
0.000485	
0.116	
0.283	1

8. Create the element properties, applying the steel material data set to all the elements.

♦ Properties

Action:	Create
Dimension:	2D
Type:	2D Solid
Property Set Name:	prop1
Options:	
	Planar
	Standard Formulation
Input Properties	

steel

Material Name :

Thickness:

OK

1.0			

Select Members:

Surface 1

Add	
Apply	

Create a time dependent field, which will be applied to 9. the boundary conditions.

♦ Fields

Action:

Object:

Method:

Field Name:

Active Independent Variable:

Non Spacial
Tabular Input
inner_temp
■ Time (t)

Create

Input Data...

The *Time/Frequency Scalar Table Data* form needs to be filled out as shown in Table 1.

Table 1: Temperature vs. Time data for Inner Temperatures

Time	Temp
0	1000
10	800
100	800

To fill in the table, click on the cell you wish to edit, enter the value in the *Input Scalar Data* databox and press <Return>. The table will automatically tab down.

	Time/Frequency Sc	alar Table Data
Input S	Scalar Data	
Data		
	t	Value
1	0.00000E+00	1.00000E+03
2	1.00000E+01	8.00000E+02
3	1.00000E+02	8.00000E+02
4		
5		
6		
7		
8		
9		
ОК		

ОК	
Apply	

Repeat the process above entering the name **outer_temp** in the *Field Name* databox and using the table data shown below.

The *Time/Frequency Scalar Table Data* form needs to be filled out as shown in Table 2.

Table 2: Temperature vs. Time data for outer Temperatures

Time	Temp
0	1000
10	1000
100	1000

10. Create a time dependent load case.

For a transient analysis, structural or thermal, it is required that you define a transient load case prior to creating the LBC's.

♦ Load Cases

Action:

Load Case Name:

Load Case Type:

Create transient_load_case Time Dependent

PATRAN 322 Exercise Workbook 16-11

11. Create the loads and boundary conditions for the model.

♦ Load/BCs

Action:	Create
Object:	Initial Temperature
Type:	Nodal
New Set Name:	initial_t
Input Data	
Temperature:	1000
Time Dependance:	(leave blank)
ОК	
Select Application Region	
Geometry Filter:	◆ FEM
Select Nodes:	select all posted nodes
Add	
ОК	
Apply	

Your model should now look like the one shown in Figure 16.4:

Figure 16.4 - Initial temperature profile of model

12. Create the convection boundary conditions for the inner and outer surfaces.

In the *Load/Boundary Conditions* form change the *Object* option menu to **Convection**.

Action:	Create
Object:	Convection
Type:	Element Uniform
New Set Name:	inner_convection
Target Element Type:	2D
Input Data	

0.0005

Edge Convection:

Click on the Element Edge icon, as shown below, in the select menu.

Select 2D Elements or Edges:

as shown in Figure 16.5

Add

Hint: to make the selection easier, you may want to use a polygon pick (hold down the <ctrl> pick while selecting the corners or the polygon).

outer_convection
0.00001
1
outer_temp
]
◆ FEM
see Figure 16.6

Click in the *Select 2D Elements or Edges* databox. In the Select Menu that appears, click on the Element Edge icon. Select all the element edges on the right edge of the model.

Figure 16.6 - Elements to select for outer_temp

13. Create the analysis step

♦ Analysis

Action:

Object:

Method:

Job Name:

Step Creation...

Job Step Name:

Solution Type:

Solution Parameters...

Max No. of Increments:

Max Allowable Temp Change:

Delta-T:

Analyze

Entire Model

Full Run

thermal_flow

transient case

Transient Heat Transfer

100	
20	
2	

The analysis job will take (on average) about 5 minutes to run. When the job is done there will be a results file titled **thermal_flow.fil** in the same directory you started MSC/PATRAN in.

Again, you can monitor the progression of the job by looking at **thermal_flow.msg** and **thermal_flow.sta** with the *more* command. Also, you may use *ps -ef | grep afea* and *tail -lf thermal_flow.sta* to monitor the status.

14. After the job has completed execution, import the results.

Action:	Read Results
Select Results File	
Available Files:	thermal_flow.fil
ОК	

PATRAN 322 Exercise Workbook 16-17

Apply

15. Create a fringe plot of the last step.

First, you will clean up the graphics window. Use the Clean Up broom icon to remove all Loads/Boundary conditions markers:

Reset Graphics

Post the group fem before displaying the results.

Group/Post...

Select Group to Post:

fem	
-----	--

Apply	
Cancel	

♦ Results

Action:

Object:

Select Result Cases:

Select Fringe Result:

Create	
Quick Plot	

select last step

Temperature (Nodal)

Apply

Your plot should look like the one shown in Figure 16.7:

16. Plot the temperature as a function of time.

In this step, you will select 3 nodes to plot their temperature as a function of time. The three nodes are located at the upper right tip, upper left corner, and in the middle of the top edge.

♦ Results

Action:

Object:

Method:

Create	
Graph	
Y vs X	

Click on the **View Subcases** icon then the **Select Subcases** to bring up the *Select Result Case* form

Target Entity:

Select Nodes:

Apply

Nodes	
see Figure 16.8	

Figure 16.8 - Nodes to select for XY plot of temp vs. time

Your plot should look like the one in Figure 16.9:

Figure 16.9 - Plot of temp vs. time for three nodes

Close the database and quit PATRAN.

This concludes the exercise