WORKSHOP 1

Geometry Model of a 3-D Clevis

Objectives:

- Create a new database for the model.
- Create the geometry of the clevis.
- Alter the graphics display of the model.

Model Description:

In this exercise you will create an analytic solid model of a clevis by defining MSCPATRAN points, curves, surfaces, solids, and a user defined coordinate system. Throughout this exercise you will become more familiar with the use of the MSCPATRAN select menu. You will also be introduced to another viewing method and shown how to change your model's render style. Shown below is a drawing of the model you will build and suggested steps for its construction.

Exercise Procedure:

1. Open up a new database named clevis.db.

Type p3 in your xterm. The Main Window and Command Window will appear.

File/New ...
New Database Name:

clevis.db

OK

The viewport (PATRAN's graphics window) will appear along with a New Model Preference form. The New Model Preference sets all the code specific forms and options inside MSC/PATRAN.

In the New Model Preference form set the Analysis Code to MSC/ADVANCED_FEA.

Tolerance:
Analysis Code:
Analysis Type:

- Default

MSC/ADVANCED_FEA
Structural

OK

2. Change the geometric preference to PATRAN 2 convention.

The PATRAN 2 Convention convention represents a special class of parameterized geometry known as parametric cubic. This option allows the user to create geometry that can be exported and imported into PATRAN 3 through the PATRAN 2 neutral files and IGES files.

Preferences/Geometry...

Geometry Representation:

■ PATRAN 2 Convention

Apply

Cancel
3. Create a point on the inner radius of the hole in the clevis.

First, make the geometry labels visible by using the following toolbar icon:

- Geometry

Action:
Object:
Method:
Point Coordinates List:

Apply

4. Use the point you just created to sweep 4 curves that will define the upper half of the radius of the hole in the clevis.

Action:

$$
\overline{\text { Create }}
$$

Object:
Method:
Total Angle:
Curves per Point:
Point List:

Curve Revolve 180 4 select the point on the screen

The function autoexecutes, and four curves can now be seen in the viewport.
5. Use Curvilinear Transformation to create the outer radius of the lug by radially translating the curves that define a quarter of the hole.

To accomplish this you will first need to create a cylindrical coordinate frame located at the center of the hole.

Action:	Create
Object:	Coord
Method:	3 Point
Type:	Cylindrical
Apply	

Next, radially translate the curves.

Action:	Transform
Object:	Curve
Method:	Translate
Type of Transformation:	Curvilinear in Refer. CF
Refer. Coordinate Frame:	select newly created coord frame
Translation Vector:	$\langle\mathbf{1 , 0 , 0}\rangle$

Figure 1.1 - Curves to Radially Translate

Curve List:
select the two curves on the right

Two new curves appear in the viewport.
6. Begin creating surfaces for the geometry model.

You have now created all the curves that you will need to complete your clevis model. Next, you will create the necessary surfaces for the model. You will start by creating a 4×2 surface that defines part of the upper half of the clevis body.

Action:	Create
Object:	Surface
Method:	$\mathbf{X Y Z}$
Vector Coordinates List:	$<-4, \mathbf{2 , 0 >}$
Origin Coordinates List:	$[\mathbf{- 2 , 0 , 0]}$

Apply

7. Finish creating the surfaces surrounding the hole of the model.

The next series of surfaces will be created using the Curve method.
First, create a surface by connecting two curves.

Action:	Create
Object:	Surface
Method:	Curve
Option:	2 Curve

Figure 1.2-Curves Selected to Create Lug Surface Geometry

Next, create a surface using a curve and a surface edge.

Figure 1.3-Curve and Edge for Next Surface

Starting Curve List:

> select the lower left inner curve (Curve 4)

Click in the Ending Curve List databox and select the following entity select icon:

Ending Curve List:
select the right edge of the rectangular surface

Finally, create a surface using a curve and two defined points.

Figure 1.4-Curve and Points for Final Surface

When you click in the Starting Curve databox, you will have to select the following entity select icon:

Curve

Starting Curve List:
select the remaining inner curve (Curve 3)

Click in the Ending Curve List databox and select the following entity select icon:

Ending Curve List:
select the two points where the remaining curve should be located (Pts 8 and 10)
8. Create the solids of the geometry model.

You will now use the Surfaces you have just created as patterns to define solids (3-dimensional entities).

Action:	Create
Object:	Solid
Method:	Normal
Thickness:	$\mathbf{0 . 2 5}$
Surface List:	select all surfaces

Five solids have now been created. In order to get a better view of the model, use the following toolbar icon:

Figure 1.5 - Isometric View of Half-Lug Geometry

9. Create the lower half of the model by mirroring the solid.

Action:
Object:

Transform
Solid
Mirror

Click in the Define Mirror Plane Normal databox and pick the following entity select icon:

Define Mirror Plane Normal:

select second direction of original coord frame

Solid List:
select all solids
10. Create the remaining solids using the Translate method.

Action:
Object:
Method:
Translation Vector:
Repeat Count:

Transform
Solid
Translate
$\langle 0,0,-0.25\rangle$
2

Figure 1.6-Solids to Select for Lug Base

Solid List:
select only the two left solids (Solids 1 and 6)

The left portion of the clevis should now appear.
The final geometry model construction step is to translate copies of the solids which surround the hole.

Click in the Translation Vector databox and pick the following entity select icon:

To define the translation vector, pick Point 10 then Point 40 as shown below. Use the View Corners toolbar icon to zoom in. After selecting the points use Fit View toolbar icon to zoom out.

Figure 1.7 - Points to Select for Solid Translation Vector

Figure 1.8 - Solids to Translate to Complete Lug Geometry

Solid List:
select all solids which surround the hole
11. Change the display to see the model without labels and without the wireframe view.

First, turn off the entity labels using the following toolbar icon:

Next, display the model in hidden line rendering style by selecting the following toolbar icon:

Figure 1.9-Hidden Line view of Lug Geometry

When done viewing, change the rendering style back to wireframe.

Close the database.

File/Close

This concludes this exercise.

