## LESSON 7a

## Crushed Pipe



Y


## Objectives:

- Large displacement analysis.
- Rigid contact analysis using analytic rigid surfaces.
- Plasticity modeled with perfectly plastic material.


## Crushed Pipe

## Model Description:

In this exercise, a symmetrical model of a cylindrical pipe is modeled as being crushed between two rigid bodies.

The model is created using 2D thin shell elements to model the pipe and Rigid Surface (Cylinder) elements to model the crushing rigid bodies. The pipe model will be covered with 2D Interface elements in order to model the contact between the pipe and the rigid bodies.


Move 2.1 in the Y

## Data for Exercise:

| Pipe Dimensions: | D $=6.2$ <br> Length $=20$ <br> Thickness $=0.4$ |
| :--- | :--- |
| Pipe Material: | Steel, E $=30 \mathrm{E} 6$ <br> nu $=0.3$ <br> Yield Stress $=45,000$ |
| Mesh- | Rigid Body 1 and 2: 3D analytical <br> Pipe: S4R elements with IRS4 elements to <br> contact rigid bodies |

## Exercise Procedure:

1. Open a new database. Name it pipe_crush.

File/New ...
Database Name
pipe_crush.db

## OK

Change the Analysis Preference to MSC/ADVANCED_FEA.
Analysis Code:
MSC/ADVANCED_FEA

## OK

2. Create a new group geo_rigid.

Group/Create ...
New Group Name $\square$
Make Current
Group Contents:
Add Entity Selection
Apply
Cancel
3. Create the model geometry.

To make picking a little easier, use the following toolbar icon:


Show Labels

## - Geometry

Action:
Object:
Method:
Points Coordinates List

| Create |
| :---: |
| Point |
| XYZ |
| $[0,-6.3,0]$ |

## Apply

Create a second point by changing the Point Coordinates List to [3.1, -6.3, 0].

## Apply

4. Sweep point to make a curve for the lower rigid surface.

| Action: | Create |
| :--- | :--- |
| Object: | Curve |
| Method: | Revolve |
| Axis | \{Point 1[X1, Y1, 1.0]\} |
| Total Angle | 180 |
| Point List | Point 2 |
| Apply |  |

The screen should now display the points and curves as shown in Figure 7a.1:

Figure 7a. 1 - Lower rigid surface

5. Create the geometric points for the upper rigid surface

## - Geometry

| Action: | Create |
| :--- | :--- |
| Object: | Point |
| Method: | $\mathbf{X Y Z}$ |
| Points Coordinates List | $[\mathbf{0 , 5 . 2 , \mathbf { 0 } ]}$ |
|  |  |

## Apply

This will create Point 4
In a similar manner, create points 5, 6 and 7 using the Create, Point, $\mathbf{X Y Z}$ option. The data for the transformations is given below.

Table 1: List of Points to Create

| New Point | Point Coordinate List |
| :--- | :--- |
| 5 | $[-2.0,5.2,0]$ |
| 6 | $[1.0,5.2,0]$ |
| 7 | $[2.0,5.2,0]$ |

6. Create the curves for the upper rigid surface

Sweep Point 5 into an arc using

| Action: | Create |
| :--- | :--- |
| Object: | Curve |
| Method: | Revolve |
| Axis | \{Point 5[X5, Y5, 1]\} |
| Total Angle | $-\mathbf{- 1 8 0}$ |
| Point List | Point 4 |
| Apply |  |

In a similar manner create a curve from Point 6 using an Axis definition of \{point 7[X7, Y7, 1]\}, a Total Angle of $\mathbf{1 8 0}$ and the Point List set to Point 6.

Connect the two half circles with a straight line by using

| Action: | Create |
| :--- | :--- |
| Object: | Curve |
| Method: | Point |
| Options: | 2 Point |
| Starting Point List | Point 4 |
| Ending Point List | Point 6 |
|  |  |

## Apply

This ends the definition of the geometry of the upper and lower rigid bodies. The screen should now show the points and curves displayed in Figure 7a.2:

Figure 7a.2 - Upper and lower rigid bodies

$+$

7. Create a new group geo_pipe.

Group/Create ...
New Group Name
geo_pipe

## Make Current

Group Contents:
Add Entity Selection

## Apply

Cancel
8. Create the geometric points for the Pipe model.

## - Geometry

## Action:

Create

Object:
Method:
Points Coordinates List

## Apply

In a similar manner, using the Create, Point, XYZ method to create Point 11 by changing the Point Coordinates List to [-10, 3.1, 0].
9. Create the surfaces for the Pipe model

First, change to the isometric view by clicking on the Iso 1 View icon in the toolbar.


Sweep Point 11 into two arcs

| Action: | Create |
| :--- | :--- |
| Object: | Curve |
| Method: | Revolve |

■ Patran 2 Convention
Axis
Total Angle
Curves per Point
Point List

| \{Point 10[1, Y10, Z10] $\}$ |
| :--- |
| 180 |
| 2 |
| Point 11 |

## Apply

Change the viewport to Front View, using the following toolbar icon:


Sweep Curves 5 and 6 into two surfaces

| Action: | Create |
| :--- | :--- |
| Object: | Surface |
| Method: | Extrude |

Translation Vector
Curve List

## Apply

Figure 7a. 3 - Curves to sweep into pipe surface


In a similar manner, create two more surfaces from the right edges of Surfaces 1 and 2 using a Translation Vector of $\langle\mathbf{1 2 , 0 , 0}$.

Select the surface edges as shown in Figure 7a.4:
Figure 7a. 4 - Surface edges to sweep into pipe surface


The Curve List should be Surface 1.2 2.2
Finally create the last two surfaces using a Translation Vector of $<4,0,0\rangle$.

Figure 7a. 5 - Surface edges to sweep into pipe surface


The Curve List should be Surface 3.2 4.2.
Change the display of the model.Click on the following icon to change to isometric view:


Your model should look like the one shown in Figure 7a.6:

Figure 7a.6 - Isometric view of pipe surface and rigid bodies

10. Create the mesh seeds for the finite element mesh.

First, we will define the mesh seed for the body of the pipe. You will define the mesh seeds as shown in Figure 7a.7:

Figure 7a. 7 - Mesh seed locations

Mesh Seeds $=3 \quad$ Mesh Seeds $=2$


- Finite Elements

Action:
Object:
Method:

| Create |
| :--- |
| Mesh Seed |
| Uniform |

- Number of Elements

Number
Curve List

## 2

Surface 1.15 .1

NOTE: To select multiple entries, click in the Curve List databox and screen select the top edge of Surface 1 (Surface 1.1) and the top edge (while holding down the shift key) of Surface 5 (Surface 5.1).

## Apply

In a similar manner set Number = $\mathbf{3}$ and a Curve List of Curve 56 (the left edge of Surface 1 and Surface 2) and click on Apply.

Again, set Number $=\mathbf{8}$ and a Curve List of Surface 3.1 (the top of Surface3) and click on Apply.
11. Create a new group fem_pipe.

## Group/Create ...

New Group Name

## fem_pipe

## Make Current

Group Contents:

## Add Entity Selection

## Apply

## Cancel

12. Create the mesh for the pipe body.

Change the view to a front view by using the following toolbar icon:


Click the Hide Labels icon in the toolbar menu to turn off all the entity labels.


Your model should look like the one shown in Figure 7a.8:

Figure 7a. 8 - Meshed pipe surface

13. Create a new group fem_irs_top.

## Group/Create ...

New Group Name
fem_irs_top

## Make Current

Group Contents:

## Add Entity Selection

## Apply

Cancel
14. Create IRS elements for the top surface.

Next, we need to create a series of duplicate Quad4 elements lying on top of the elements that make up the upper, central portion of the pipe model. These elements will be used to define our contact surfaces.

## - Finite Elements

## Action:

Object:

| Transform |
| :---: |
| Element |

7a-14 PATRAN 328 Exercise Workbook

Method:
Translation Vector
Element List

| Translate |
| :--- |
| $\langle\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle$ |
| see Figure 7a. 9 |

## Apply

Figure 7a. 9 - Elements used for upper contact

15. Define the reference nodes for the upper rigid surface.

Add a "reference" node to the upper and lower rigid bodies. This node will be used to control the motion of the rigid bodies.

| Action: | Create |
| :--- | :--- |
| Object: | Node |
| Method: | Edit |
| Node ID List | 999 |
| Node Location List | see Figure 7a.9 |

## Apply

16. Create a new group fem_irs_bottom.

## Group/Create...

New Group Name
fem_irs_bottom

## Make Current

Group Contents:
Add Entity Selection

## Apply

## Cancel

17. Define the reference nodes for the lower rigid surface.

Action:
Object:
Method:
Node ID List
Node Location List

| Create |
| :--- |
| Node |
| Edit |
| 1000 |
| see Figure 7a.10 |

## Apply

Figure 7a. 10 - Location of lower rigid surface reference node

18. Create the lower irs elements.

In a similar manner, define a series of duplicate elements for the lower, central portion of the pipe model.

Action:
Object:
Method:
Translation Vector
Element List

| Transform |
| :--- |
| Element |
| Translate |
| $\mathbf{~} \mathbf{0 , 0} \mathbf{0} \mathbf{~}$ |
| select the elements as <br> shown in Figure 7a.11 |

## Apply

Figure 7a. 11 - Elements used for lower contact

19. Create a new group fem_rigid_top.

## Group/Create

New Group Name
fem_rigid_top

## Make Current

Group Contents:
Add Entity Selection
Apply
Cancel
20. Create the upper rigid surface elements.

Next, create a beam mesh on the upper rigid bodies.

| Action: | Create |
| :--- | :--- |
| Object: | Mesh |
| Type: | Curve |
| Global Edge Length | 1 |
| Element Topology | Bar2 |
| Curve List | see Figure 7a.12 |
| Apply |  |

Figure 7a. 12 - Curves to select for upper rigid surface

21. Create a new group fem_rigid_bottom.

Group/Create ...
New Group Name
fem_rigid_bottom

Make Current

Group Contents:
Add Entity Selection

## Apply

Cancel
22. Create the elements for the lower rigid surface.

In a similar manner, create a beam mesh on the lower rigid body. The Global Edge Length is $=\mathbf{1}$ and pick the curve shown in Figure 7a.13:

Figure 7a. 13 - Curve to select for lower rigid surface

23. Equivalence the finite element nodes (eliminate any extra, overlapping nodes created by the mesher).

Action:
Object:
Type:

| Equivalence |
| :--- |
| All |

Tolerance Cube
Apply
24. Create a new group called fem_all, which will be used for post processing later.

## Group/Create ...

New Group Name
fem_all

## Make Current

Group Contents:

## Add All FEM

## Apply

25. Create a new group all, which will be used to apply LBCs onto.

New Group Name $\square$
Make Current
Group Contents:

## Add All Entities

## Apply

## Cancel

26. Create the material properties for the pipe.

## - Materials

| Action: | Create |
| :--- | :--- |
| Object: | Isotropic |
| Method: | Manual Input |
| Material Name | steel |
| Input Properties... |  |
| Constitutive Model: |  |
| Elastic Modulus | Elastic |
| Poisson's Ratio | $\mathbf{3 0 E}$ |
|  |  |

## Apply

The model will also experience yielding during the analysis, so a Plastic Constitutive Model needs to be defined.

## Constitutive Model:

$\square$
Plastic

Hardening Rule
Yield Stress

| Perfect Plasticity |
| :--- |
| 45000 |

## Apply

## Cancel

27. Post the group fem_pipe only.

Group/Post ...
Select Groups to Post
fem_pipe

## Apply

## Cancel

You may have to hit the Refresh button in the Main window in order to see your model.

28. Now create the Element Properties for your model.

## - Properties



Click in the Select Members databox. Select the surface element icon in the Select menu and then select all elements displayed.


## Add

## Apply

29. Post the group fem_irs_top only.

## Group/Post ...

Select Groups to Post
fem_irs_top

## Apply

## Cancel

30. Create the element property for the top IRS elements.

Use the following toolbar icon to increase the node size to make picking easier:

## - Properties

## Action:

Dimension:
Type
Property Set Name
Options:

| Create |
| :--- |
| 2D |
| IRS (shell/solid) |
| Irs_top |
| Elastic Slip Soft Contact |

Input Properties...
ELSET Name
Reference Node

## top

see Figure 7a. 14

Figure 7a. 14 - Pipe elements/reference node for upper contact


## OK

Click in the Select Members databox and screen select all members on the screen.

## Add

## Apply

31. Post the group fem_irs_bottom only.

Group/Post ...
Select Groups to Post
fem_irs_bottom

## Apply

Cancel
32. In a similar manner, enter the information for the bottom IRS elements on the underside of the pipe.

Property Set Name
Options:
irs_bottom

Elastic Slip Soft Contact $\square$

## Input Properties...

ELSET Name
Reference Node
bottom
see Figure 7a. 15

Figure 7a. 15 - Pipe elements/reference node for lower contact


## OK

Click in the Select Members databox and screen select all members on the screen.

## Add

Apply
33. Post the group fem_rigid_top and fem_rigid_bottom.

## Group/Post ...

Select Groups to Post

| fem_rigid_top |
| :--- |
| fem_rigid_bottom |

Apply
Cancel
A caution form will appear asking you to select a current group. Select fem_rigid_top. Press OK, then Cancel.

Click on the following icon to change to isometric view:

34. Finally, create the element properties for the upper and lower rigid surfaces.

To do this, you will have to define the normal which should point away from the rigid body and to the contact IRS elements. To do this, we will need to define a surface generation vector.

The Surface Generator Direction and the Start Node are used to determine the "inside" and the "outside" of the rigid body. We want the "outside" of the rigid body to contact the pipe model. A more formal definition of these terms is:

The generator direction follows the right hand rule and is specified as:

$$
\hat{n}=\hat{S} \times \hat{z}
$$

where
$\hat{n} \quad$ is the unit normal direction.
$\hat{\boldsymbol{S}} \quad$ is the cord length direction.
$\hat{z} \quad$ is the generator direction.
These vectors are shown for each of the rigid bodies in the sketch shown in Figure 7a.16:

Figure 7a.16-Sketch of normal directions for rigid bodies


Properties
Action:

| Create |
| :--- |
| 1D |

Dimension:
RigidSurf(Cyl)
Type
Property Set Name
rigid_top

Input Properties...
ELSET Name
Surface Gen. Direction
Start Point (Node_id)

| top |
| :--- |
| $\langle\mathbf{0 , 0 , - 1 0 \rangle}$ |
| see Figure 7a.17 |

Figure 7a. 17 - Normal definitions for upper rigid body


## OK

Click on Select Members databox, then select the Beam Element icon in the Select Menu.


Now screen select the members shown in the figure above. In a similar

## Add

## Apply

manner, enter the information for the Rigid Surface elements for the lower rigid surface.

## - Properties

Action:
Dimension:

| Create |
| :--- |
| 1D |

Type
RigidSurf (Cyl)
Property Set Name
rigid_bottom

## Input Properties...

ELSET Name
Surface Gen. Direction
Start Point (Node_id)

| bottom |
| :--- |
| $\langle\mathbf{0 , 0 , - 1 0 >}$ |
| select the start node <br> shown in Figure 7a.18 |

## OK

Select Members

```
shown in Figure 7a. 18
```


## Add

## Apply

Figure 7a. 18 - Normal definitions for lower rigid body

35. Post the group "all" only. We will define the loads and boundary conditions.

## Group/Post ...

Select Groups to Post


## Apply

## Cancel

Select the following toolbar front view icon to change the display.

36. Now apply the loads and boundary conditions to the end of the pipe.

The ends of the pipe are to be fixed in all translations. The upper rigid surface will then be forced down into the pipe and lower rigid surface forced up into the pipe.

## - Load/BCs

| Action: | Create |
| :--- | :--- |
| Object: | Displacement |
| Method: | Nodal |
| New Set Name | end_disp |

## Input Data...

Translations <T1,T2,T3>

| $\langle 0,0,0\rangle$ |
| :--- |
| $\langle 0,0,0\rangle$ |

## OK

## Select Application Region...

Geometry Filter

- FEM

Click in the Select Nodes databox, and screen select the nodes at both ends of the pipe as shown in Figure 7a.19:

Figure 7a.19-Fixed ends of pipe


## Add

OK

## Apply

37. Next create the symmetrical edge constraints for the top and bottom edges of the pipe model.

Action:
Object:
Type:
New Set Name

## Input Data...

Translations <T1,T2,T3>
Rotations <R1,R2,R3>

| Create |
| :--- |
| Displacement |
| Nodal |
| symmetry | <, , 0> $<0,0,>$

## OK

## Select Application Region..

Geometry Filter

## - Geometry

Click in the Select Geometry Entities databox, change the select menu icon at the bottom to Select a Curve,


Screen select the surface edges at both ends of the pipe as shown in Figure 7a.20:

Figure 7a. 20 - Locations for symmetry BCs


## Add

OK
Apply
38. Next, you will create the enforced displacement on the upper rigid body.

New Set Name
top_rigid_down

## Input Data...

Translations <T1,T2,T3>

| $\langle 0,-2.2,0\rangle$ |
| :--- |
| $\langle 0,0,0\rangle$ |

Rotations <R1,R2,R3>

$$
<0,0,0\rangle
$$

## OK

Select Application Region...
Geometry Filter
Select Nodes
Add
OK
Apply
Figure 7a. 21 - Reference nodes for rigid bodies

39. The last boundary condition is the enforced displacement on the lower rigid body.

New Set Name
bot_rigid_up
Input Data...
Translations <T1,T2,T3>

| $\langle 0,2.2,0\rangle$ |
| :--- |
| $\langle 0,0,0\rangle$ |

## OK

Select Application Region...
Geometry Filter
Select Nodes

## Add

OK

## Apply

Change the display of the model using the isometric view icon.


Your model should now look like the picture shown in Figure 7a.22:

Figure 7a.22-Model with all Loads/BCs applied

40. Your model is now ready for analysis.

Analysis

Action:
Object:
Method:
Job Name

## Step Creation...

Job Step Name
Solution Type:
pipe_crush

Nonlinear Static

## Solution Parameters...

Large Deflections/Strains
Max No. of Increments Allowed

| ON $\square$ |
| :--- |
| 100 |

RIKS Method
Automatic Load Increments

| OFF $\square$ |
| :--- |
| ON $\square$ |

## OK

## Apply

## Cancel

Note: The default load case contains all the loads required to run this step and is selected by default.

## Step Selection...

Selected Job Steps

> pipe_crush

## Apply

## Apply

The non-linear analysis job "pipe_crush" will then be submitted for analysis to the workstation designated in the Submit Script (usually your local workstation).

The analysis job will take (on average) 5 to 10 minutes to run. When the job is done there will be a results file titled pipe_crush.fil in the same directory you started MSC/PATRAN in and the pipe_crush. 023 file will disappear.

Again, you can monitor the progression of the job by looking at pipe_crush.msg and pipe_crush.sta as well as using the UNIX command ps -a and tail-lf pipe_crush.msg.
41. Read in the results.

## - Analysis

## Action:

Read Results
Select Results File...
Selected Results File
pipe_crush.fil

OK
Apply
42. Post the group "fem_all" only for post processing.

## Group/Post ...

Select Groups to Post
fem_all

## Apply

## Cancel

43. Change the Display Properties for results.

## Display/Results ...

Scale Factor

## 1.0

- Direct Multiplication


## $\square$ Show Undeformed Entities

## Apply

## Cancel

Hit the Refresh button in the Main window in order to redisplay your model.

44. Use results to post process your results of the analysis.

## - Results

Form Type:
Basic

Select Results Cases
Select Deformation Result

| select the last increment |
| :--- |
| Deformation, Displacement |

## Apply

Your model should appear as shown in Figure 7a.23:

Figure 7a. 23 - Deformed pipe model

45. Create an animation of the deformation and Von Mises stresses using:

Form Type:
Select Result Type
Select Fringe Result
Result Position
Result Type
Select Deformation
Basic
select the last increment
Stress, Components
Section Point 1
Von Mises
Deformation, Displacement

- Animate Results

Animation Options ...
Animate Fringe
Animate Deformation

| Animation Method | $\bullet$ Ramped |
| :--- | :--- |
| Animation Graphics | $\bullet$ 2D |
| Number of Frames | 15 |

## OK

Apply

7a-38 PATRAN 328 Exercise Workbook

