intel.

with OpenMP* 4.5

Heterogeneous Programming

- O
mm mw S
€ c?
Lm0
Y C
_ W o
8 5 -

o
C 5 g

O © A
= O

4 5 €
gAa
S o 9
w_l..ma

c
Dem
N o
wn

'y

AN ALY
6 HiaLaan ANNSANN
y

AR RN Y
O MNOANOVGOY

\
—v»v

!

vapvo«»

(michael.klemm@intel.com)

*QOther brands and names are the property of their respective owners.

'L
o O fff/;///////f////////
‘g

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products.

Copyright © 2015 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, and Cilk are trademarks of
Intel Corporation in the U.S. and other countries.
*0Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

SOFTWARE AND SERVICES

Outline

* Very brief Introduction to OpenMP
- Task-generating loops

« Locks with Hints
« Extensions to the target Constructs

SOFTWARE AND SERVICES

Brief introduction to OpenMP

SOFTWARE AND SERVICES

OpenMP API

« De-facto standard, OpenMP 4.0 out since July 2013

« API for C/C++ and Fortran for shared-memory
parallel programming

- Based on directives (pragmas in C/C++)
- Portable across vendors and platforms

- Supports various types of parallelism

SOFTWARE AND SERVICES

m Vendors provide similar but different solutions for loop parallelism, causing portability and maintenance problems.
Kuck and Associates, Inc. (KAl) | 5GI | Cray | IBM | High Performance Fortran (HPF) | Parallel Computing Forum (PCF)

OpenMP
History

Fortran

SOFTWARE AND SERVICES

11{]

R T

. Permanent ARB

OpenMP ARB Membershlp Evolution

Tasking

Unified C&/C++ and
Fortran: Bigger than both
individual spedifications
combined. The first
International Workshop
on OpenMP is held. It
becomes a major forum
for users to interact with
vendors.

1330 1370

1880 2320 3100
. Auxiliary ARB Members

2008 2013

Heterogeneity

538
pages

Supports minJ/man
reductions in C/C++

3.0

Incorporates
task parallelism—a hard
problem as OpenMP
struggles to maintain

its thread-based nature,

while accommuodating
the dynamic nature
of tasking.

2008 | 2009 | 2010

4.0

Supports accelerator/
coprocessor devices,
SIMD parallelism, thread
affinity, and more.
Expands OpenMP
beyond its traditional

boundaries.

2011 | 2012 | 2013 | 2014

4100 5370 6010 6470
. OpenMP Google Scholar Hits

OpenMP Platform Features

Cluster

Coprocessors/Accelerators

Node

Socket

Core

Hyper-Threads
Superscalar
Pipeline

Vector

SOFTWARE AND SERVICES

Group of computers
communicating through fast interconnect

Special compute devices
attached to the local node through special interconnect

Group of processors
communicating through shared memory

Group of cores
communicating through shared cache

Group of functional units
communicating through registers

Group of thread contexts sharing functional units
Group of instructions sharing functional units
Sequence of instructions sharing functional units

I Single instruction using multiple functional units

OpenMP 3.0 in Three Slides

>

#pragma omp parallel

{ #pragma omp for distribute work
for (i = @; i<N; i++)
(.3
#pragma omp for distribute work
for (1 = 0; i< N; i++)
(.3

h

SOFTWARE AND SERVICES

OpenMP 3.0 in Three Slides /2

double a[N];
double 1l,s = 0;
#pragma omp parallel for reduction(+:s) private(1l) \
schedule(statlc 4)
&O S\FO S\Y OS\Y =0
for (i = @; i<N; i++) distribute work

{

1 = log(a[i]);
S += 1;

SOFTWARE AND SERVICES

OpenMP 3.0 in Three Slides /3

#pragma omp parallel

#pragma omp single

for(e = 1->first; e ; e = e->next)
#pragma omp task

process(e);

SOFTWARE AND SERVICES

OpenMP 4.0 SIMD

SOFTWARE AND SERVICES

Why Auto-vectorizers Fail

- Data dependencies

« Other potential reasons
« Alignment
* Function calls in loop block
« Complex control flow / conditional branches
* Loop not “countable”
« E.g. upper bound not a runtime constant
* Mixed data types
* Non-unit stride between elements
« Loop body too complex (register pressure)
« Vectorization seems inefficient

- Many more ... but less likely to occur

SOFTWARE AND SERVICES

In a Time before OpenMP 4.0

 Programmers had to rely on auto-vectorization...

- ... or to use vendor-specific extensions
* Programming models (e.g., Intel® Cilk™ Plus)
« Compiler pragmas (e.qg., #pragma vector)
- Low-level constructs (e.g., mm add pd())

#fpragma omp parallel for You neﬁdtot;ust;he
fpragma vector always meﬁjipte
#pragma ivdep : 0 @ right” thing.

for (int i = 0; < N; 1++) |
i

;r 1
ali] = b[1] + ...;

SOFTWARE AND SERVICES

OpenMP SIMD Loop Construct

* Vectorize a loop nest

« Cut loop into chunks that fit a SIMD vector register
« No parallelization of the loop body

- Syntax (C/C++)
fpragma omp [for] simd [clause[[,] clause],..]
for-loops

« Syntax (Fortran)
'Somp [do] simd [clause[[,] clause],..]
do—-loops

SOFTWARE AND SERVICES

Example

voilid sprod(float *a, float *b, int n) {
float sum = 0.0f;
fpragma omp |for]|simd| reduction (+:sum)
for (int k=0; k<n; k++)
sum += al[k] * bl[k];
return sum;

parallelize
Thread O Thread 1 Thread 2

[T 1111
SOFTWARE AND SERVICES

Data Sharing Clauses

* private(var-1ist):
Uninitialized vectors for variables in var-list

X: | 42 > ?2,?2,? .7

e firstprivate(var-1ist):
Initialized vectors for variables in var-list

X: | 42 > 42 42 42 42

* reduction(op:var-1ist):
Create private variables for var-list and apply reduction
operator op at the end of the construct

12,5, 8 17 > X: | 42

SOFTWARE AND SERVICES

SIMD Loop Clauses

* safelen (length)

« Maximum number of iterations that can run concurrently
without breaking a dependence

* in practice, maximum vector length
* linear (list|:linear-step])

* The variable’s value is in relationship with the iteration number
X; = Xorig + 1 * linear-step

aligned (list[:alignment])

- Specifies that the list items have a given alignment
- Default is alignment for the architecture

* collapse (n)

SOFTWARE AND SERVICES

SIMD Function Vectorization

float min(float a, float b) {
return a < b ? a : b;

float distsg(float x, float y) {
return (x - y) * (X - Vy);

}

vold example () {
#pragma omp parallel for simd
for (1i=0; 1i<N; 1i++) {
d[i] = min(distsqg(ali], bli]), cl[i]);

SOFTWARE AND SERVICES

SIMD Function Vectorization

- Declare one or more functions to be compiled for calls
from a SIMD-parallel loop

« Syntax (C/C++):
fpragma omp declare simd [clause[[,] clause],..]

[#pragma omp declare simd [clause[[,] clause],..]]

[...]

function-definition—-or—-declaration

- Syntax (Fortran):

!Somp declare simd (proc-name-1ist)

SOFTWARE AND SERVICES

SIMD Function Vectorization

fpragma omp declare simd

float min(float a, float b) { vec8 min v(vec8 a, vec8 b) {
return a < b ? a : b; D return a < b ? a : b;

} }

#fpragma omp declare simd

float distsqg(float x, float y) { |vec8 distsqg v(vec8 x, vec8 vy)
return (x - y) * (x - y); =@ return (x - y) * (X - Vy);

} }

volid example () {
#pragma omp parallel for simd
for (1i=0; 1i<N; 1i++) {
d[i] = min(distsqg(ali], bli]), cl[i]);

SOFTWARE AND SERVICES

SIMD Function Vectorization

* simdlen (length)
- generate function to support a given vector length
* uniform (argument-11ist)

- argument has a constant value between the iterations of a
given loop

* Inbranch
- function always called from inside an if statement
* notinbranch
- function never called from inside an if statement
* linear (argument-1list/[:1linear-step])
* aligned (argument-1list/[:alignment])
* reduction (operator:list)

SOFTWARE AND SERVICES

SIMD Constructs & Performance

5,00x

| |CC auto-vec
4,50x 4,34x

 ICC SIMD directive
4,00x

3,50x

3,00x

2,50x

relative speed-up
(higher is better)

2,00x

1,50x

1,00x -

0,50x -

0,00x -

Mandelbrot Volume Rendering BlackScholes Fast Walsh Perlin Noise SGpp

M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell. Extending OpenMP
with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl.
Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

SOFTWARE AND SERVICES

OpenMP 4.0 for Devices

SOFTWARE AND SERVICES

Device Model

« OpenMP 4.0 supports accelerators/coprocessors

* Device model:
* One host
- Multiple accelerators/coprocessors of the same kind

Coprocessors

SOFTWARE AND SERVICES

OpenMP 4.0 for Devices - Constructs

- Transfer control [and data] from the host to the device

« Syntax (C/C++)
fpragma omp target [data] [clause[[,] clause],..]
structured-block

« Syntax (Fortran)
!'Somp target [datal [clause[[,] clause],..]
structured-block
!Somp end target [data]

« Clauses
device (scalar-integer-expression)
map ([alloc | to | from | tofrom:] 1list)

1f(scalar-expr)

SOFTWARE AND SERVICES

Execution Model

 The target construct transfers the control flow

to the target device
- Transfer of control is sequential and synchronous
- The transfer clauses control direction of data flow
« Array notation is used to describe array length

- The target data construct creates a scoped

device data environment

 Does not include a transfer of control
- The transfer clauses control direction of data flow

- The device data environment is valid through the lifetime of
the target data region

 Use target update to request data transfers
from within a target data region

SOFTWARE AND SERVICES

Execution Model

- Data environment is lexically scoped
- Data environment is destroyed at closing curly brace
- Allocated buffers/data are automatically released

Host Device
PA @1)
| i alloc]..
N .
HT B o
] T —
HEEEEAEa / #pragma omp target \
@ map (alloc:...) \
from(..) map (to:...) \
— map (from:...)

SOFTWARE AND SERVICES

Example

#pragma omp target data device (0) map(alloc:tmp[:N]) map(to:input[:N)) map (from:res)
{
#pragma omp target device (0)
#pragma omp parallel for
for (i=0; i<N; i++)

tmp[i] = some computation (inputf[i], 1i);
update input array on the host (input);
#pragma omp target update device(0) to(input[:N])
#fpragma omp target device (0)
#pragma omp parallel for reduction(+:res)

for (i=0; 1i<N; i++)

res += final computation (inputfi], tmp[i], 1)

SOFTWARE AND SERVICES

teams Construct

- Support multi-level parallel devices

« Syntax (C/C++):
fpragma omp teams [clause[[,] clause],..]
structured-block

« Syntax (Fortran):
!'Somp teams [clause/[[,] clause],..]
structured-block

« Clauses
num teams (integer-expression)
num threads (integer-expression)
default (shared | none)
private(list), firstprivate(list)
shared(list), reduction (operator : 1ist)

SOFTWARE AND SERVICES

Offloading SAXPY to a Coprocessor

int main(int argc, const char* argvl[]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float)):;

// Define scalars n, a, b & initialize x, vy

#pragma omp target data map(to:x[0:n])
{
#pragma omp target map (tofrom:y)
fpragma omp teams num teams (num blocks) num threads (nthreads)

T B L T
l l all do the same l l
% X NN \\'*\\' || &'*\' || \‘*\,‘ II w'*’m' NN NN

for (int 1 = 0; 1 < n; 1 += num blocks) {
for (int j = i; j < i + num blocks; j++) {
y[3] a*x[j] + y[Jl;

bl
}

free(x); free(y); return 0O;

Offloading SAXPY to a Coprocessor

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float)):;

// Define scalars n, a, b & initialize x, vy

#pragma omp target data map(to:x[0:n])

{
#fpragma omp target map (tofrom:y)
#pragma omp teams num teams (num blocks) num threads (bsize)

e inT
1 l all do the same l l

#fpragma omp distribute
for (int 1 = 0; 1 < n; i += num blocks) {

W I s a1
l l workshare (w/o barrier) l l
| | R R

#tpragma omp parallel for

for (int J = 1i; 3 < i + num blocks; J++) {
I"IIIII"IIIIIIIIIIII"IIIII“I
warkshare (w/ barrier)
um MHWHW"W"WHM um
y[3] = a*x[J] + y[3];

bl

} free(x); free(y); return 0; }

Offloading SAXPY to a Coprocessor

int main(int argc, const char* argvl[]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float)):;

// Define scalars n, a, b & initialize x, y

#fpragma omp target map (to:x[0:n]) map (tofrom:y)
{
fpragma omp teams distribute parallel for \
num_ teams (num blocks) num threads (bsize)
for (int 1 = 0; 1 < n; ++1) {
ylil = a*x[1] + y[i];

free(x); free(y); return 0;

SOFTWARE AND SERVICES

Task-generating Loops

SOFTWARE AND SERVICES

Issues with Traditional Worksharing

- Worksharing constructs do not compose well
- Pathological example: parallel dgemm in MKL

void example () {
fpragma omp parallel
{

compute in parallel (A);

compute in parallel too(B);

// dgemm is either parallel or sequential

cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, A, k, B, n, beta, C, n);

} }
« Writing such code either

« oversubscribes the system,

« yields bad performance due to OpenMP overheads, or

* needs a lot of glue code to use sequential dgemm only for sub-
matrixes

SOFTWARE AND SERVICES

Issues with Traditional Worksharing /2

- Worksharing constructs do not compose well
- Pathological example: load imbalance

void load imbalance () {
long running task() // can execute concurrently
for (int 1 = 0; 1 < N; i++) { // can execute concurrently

for (int 7 = 0; jJ < M; J++) {
loop body (i, 3J):;
}
}
}

« Writing such code requires

* nested parallelism,
 manual, non-portable fine-tuning, and
- a lot of care to get the load balance right.

SOFTWARE AND SERVICES

Ragged Fork/Join

- Traditional worksharing can lead to ragged
fork/join patterns

void example () {

compute in parallel (A);

compute in parallel too(B);

cblas dgemm(.., A, B, ..);

SOFTWARE AND SERVICES

Example: Sparse CG

for (iter = 0; iter < sc->maxlter; iter++)
precon (A, r, z);
vectorDot (r, z, n, &rho);

{

beta = rho / rho old;
xpay (z, beta, n, p);
matvec (A, p, 9);
vectorDot (p, g, n, &dot pqg);
alpha = rho / dot pg; //
axpy (alpha, p, n, x);
axpy (-alpha, g, n, r);
sc->residual = sqgrt(rho) * b ,
if (sc->residual <= sc->tole £or {1
break;
rho old = rho;
}
SOFTWARE AND SERVICES i/

void matvec (Matrix *A, double *x,

fpragma omp parallel for \

double *vy)

\

private(i,j,is,1e,3]0,vy0)
schedule (static)

0; 1 < A->n; i++) {
yv0 = 0;
is = A->ptr[i];
ie = A->ptr[i + 11;
for (J = 1is; 3 < ie; J++) |
J0 = index[]];
y0 += value[]] * x[]0];
}
yl[i] = yO0;
. - T A NN AT .

The taskloop Construct

- Parallelize a loop using OpenMP tasks
* Cut loop into chunks
« Create a task for each loop chunk

« Syntax (C/C++)
fpragma omp taskloop [simd] [clause[[,] clause],..]
for-loops

« Syntax (Fortran)
!'Somp taskloop/[simd] [clause[[,] clause],..]
do-loops
[!Somp end taskloop [simd]]

SOFTWARE AND SERVICES

Clauses for taskloop Construct

- Taskloop constructs inherit clause both from worksharing
constructs and the task construct

shared, private
firstprivate, lastprivate
default

collapse

final, untied, mergeable

° gralnsize(grain-size)
Chunks have at least grain-size and max 2*grain-size loop
iterations

* num tasks (num-tasks)
Create num-tasks tasks for iterations of the loop

SOFTWARE AND SERVICES

Example: task and taskloop

void load imbalance () {
#pragma omp taskgroup
{
#pragma omp task
long running task() // can execute concurrently

fpragma omp taskloop collapse(2) grainsize (500) nogroup
for (int 1 = 0; i < N; i++) { // can execute concurrently
for (int j = 0; J < M; j++) {
loop body (i, J):

SOFTWARE AND SERVICES

Example: Sparse CG, taskloop

#pragma omp parallel
#pragma omp single

for (iter = 0; iter < sc->maxIter; iter++) {

precon (A, r, z);
vectorDot (r, z, n, &rho);
beta = rho / rho old;

xpay (z, beta, n, p);
matvec (A, p, 9);
vectorDot (p, g, n, &dot pqg);
alpha = rho / dot pg;

axpy (alpha, p, n, x);

axpy (-alpha, g, n, r);

sc->residual = sqgrt(rho) * b
if (sc->residual <= sc->tole
break;

rho_old = rho;

SOFTWARE AND SERVICES

void matvec (Matrix *A, double *x, double *vy)

//

#pragma omp taskloop private(j,is,ie,j0,y0)

grain size (500)

for (i = 0; 1 < A->n; 1i++) {
yv0 = 0;
is = A->ptr[i];
ie = A->ptr[i + 11;
for (J = 1is; 3 < ie; J++) |
J0 = index[]];

y0 += value[]] * x[]0];

yl[i] = yO0;

T A NN AT .

\

{

Performance of Sparse CG w/ Tasks

100 CG (RMO7R) at MareNostrum lll

90
80

& openmp
-+-taskloop

)
=

60
20
40
30
20
10

time (in seconds

threads

X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, and C. Terboven. A Proposal for Task-
Generating Loops in OpenMP. In A.P. Rendell et al., editor, International Workshop on OpenMP,
pages 1-14, Canberra, Australia, September 2013. LNCS 8122

SOFTWARE AND SERVICES

Locks with Hints

SOFTWARE AND SERVICES

Motivation

- Hardware supports new concepts for locks
- Intel® Transactional Synchronization Extensions
* Transactional memory in BlueGene*/Q

- Coarse-grained control does not help applications
that have mixed locking requirements

« Some locks may be highly contended
« Some locks may be used to protect system calls (e.g., I0)

« Some locks may be just there for safety, but are almost never
conflicting (e.g., hash map)

 Programmers need the ability to choose locks on a
per-use basis

SOFTWARE AND SERVICES

Lock Elision

Lock transfer latencies
(lock overhead) and
serialized execution

Time

v

SOFTWARE AND SERVICES

=)

Concurrent (optimistic)
execution, no lock transfer
latencies (less lock
overhead)

Two new API Routines

« omp_init lock(omp lock t *lock)

e omp_init lock with_hint(omp_lock t *lock,
omp_lock _hint _t hint)

« omp_set lock(omp lock t *lock)
 omp_unset lock(omp lock t *1lock)

 omp_destroy lock(omp lock t *lock)

SOFTWARE AND SERVICES

Two new API Routines

omp _init nest lock(omp nest lock t *lock)

omp_init nest lock with hint(
omp_nest lock t *lock,
omp_lock hint t hint)

omp_set nest lock(omp nest lock t *lock)

omp_unset nest lock(omp nest lock t *lock)

omp destroy nest lock(omp nest lock t *lock)

SOFTWARE AND SERVICES

Hints

* Hints are integer expressions
« C/C++: can be combined using the | operator
- Fortran: can be combined using the + operator

« Supported hints:
« omp_lock_hint_none
« omp_lock_hint_uncontended
« omp_lock_hint_contended
« omp_lock_hint_nonspeculative
« omp_lock_hint_speculative

SOFTWARE AND SERVICES

New Clause for critical Construct

« Syntax (C/C++)
fpragma omp critical [(name)] [hint (expression)]
structured-block

« Syntax (Fortran)
'Somp critical [(name)] [hint (expression)]
structured-block
'Somp end critical [(name)]

- Specify a hint how to implement mutual exclusion
- If a hint clause is specified, the critical construct must be a
named construct.

e All critical constructs with the same name must have the same
hint clause.

- The expression of the hint clause must be a compile-time
constant.

SOFTWARE AND SERVICES

Examples

void example locks () {
omp lock t lock;
omp init lock with hint (&lock, omp hint speculative);
#pragma omp parallel
{
omp set lock(&lock);
do something protected();

omp unset lock(&lock);

void example criticial() {
#fpragma omp parallel for
for (int 1 = 0; 1 < upper; ++1i) {
Data d = get some data(i);
#pragma omp critical (HASH) hint (omp hint speculative)

hash.insert (d) ;

SOFTWARE AND SERVICES

Using Hints May Increase Performance

- Blindly using speculative locks does not help (KMP_LOCK_KIND=...)
- Speculative locks can benefit more with growing thread counts

Speedup of UA over sequential version

B Static TAS
7 Oblivious HLE b7
m Static Reduce

® | OHinted HLE Reduce

8 14

o 5
=3
*]
Q4
%3
3 -
2
0
1 2 4
Number of threads

H. Bae,].H. Cownie, M. Klemm, and C. Terboven. A User-guided Locking API for the OpenMP Application Program Interface. In Luiz DeRose, Bronis R. de Supinski, Stephen L. Olivier, Barbara M. Chapman, and
Matthias S. Miiller, editors, Using and Improving OpenMP for Devices, Tasks, and More, pages 173-186, Salvador, Brazil, September 2014. LNCS 8766.

SOFTWARE AND SERVICES

Extensions to the target Constructs

SOFTWARE AND SERVICES

Asynchronous Offloading in 4.0

* You can this at your own risk ©

#pragma omp parallel sections num threads(2)
{
#pragma omp task
{
#pragma omp target map (to:input[:N]) map (from:result[:N])
fpragma omp parallel for
for (i=0; i<N; i++) {

result[i] = some computation (input[i], 1);

DB

}
#pragma omp task

{

do something important on host();

}

#pragma omp taskwait

}

SOFTWARE AND SERVICES

Asynchronous Offloading in 4.5

 OpenMP 4.5 requires much less coding and has
much cleaner semantics

#pragma omp target map (to:input[:N]) map (from:result[:N]) nowait
fpragma omp parallel for
for (i=0; 1i<N; i++) {

>bae

result[i] = some computation (input[i], 1);
}
}

do something important on host ()

SOFTWARE AND SERVICES

OpenMP 4.5 for Devices

Transfer control [and data] from the host to the device

¢ Syntax (C/C++)
#pragma omp target [datal] [clause[[,] clause],..]
structured-block

- Syntax (Fortran)
!Somp target [data] [clause[[,] clause],..]
structured-block
!'Somp end target [data]

« General clauses (since OpenMP 4.0)
device (scalar-integer-expression)
map ([alloc | to | from | tofrom:] 1ist)
if(scalar-expr)

« Clauses for asynchronous offloading (also supported by target update)
nowait
depend (dependency-type:1list)

SOFTWARE AND SERVICES

Creating and Destroying Device Data

struct DeviceBuffer {
//
DeviceBuffer (int dev, size t sz)
#pragma omp target enter data device(dev) map(alloc:buffer[:sz])
}
~DeviceBuffer () {
#pragma omp target exit data device (dev) map(delete:buffer[:sz])

}

void example () {
DeviceBuffer *bufl = new DeviceBuffer (0, 1024);
compute a lot using offloading (bufl);
DeviceBuffer *buf2 = new DeviceBuffer (0, 2048);
compute some more using offloading(bufl, buf2);
delete bufl;
compute evenmore using offloading (buf2);

delete buf2;

SOFTWARE AND SERVICES

Creating and Destroying Device Data

 Manage data without being bound to scoping rules

« Syntax (C/C++)
#fpragma omp target enter data [clause[[,] clause],..]
#fpragma omp target exit data [clause([[,] clause],..]

« Syntax (Fortran)
!Somp target enter data [clause/[[,] clause],..]
!Somp target exit data [clause[[,] clause],..]

- Clauses
device (scalar-integer-expression)
map ([alloc | delete | to | from | tofrom:] 1ist)

if(scalar-expr)
depend (dependency-type:1list)
nowait

SOFTWARE AND SERVICES

Example for Dependencies

void dependencies () {
double data[N];

#fpragma omp target enter data map(to:data[N]) depend(inout:data[0]) nowait
do something on the host();

#fpragma omp target depend(inout:data[0]) nowait
perform kernel on device();

#fpragma omp target exit data map (from:data[N]) nowait depend (inout:datal[0])

fpragma omp task depend(in:data[0])
task on the host (data);

do something on the host();

SOFTWARE AND SERVICES

We’'re Almost Through

 There are so many things in OpenMP today
« Can’t cover all of them in an hour!

. OpenMP 4.0 and 4.5 have more to offer!
« Improved Fortran 2003 support
- Improved affinity
« User-defined reductions
- Task dependencies
« Cancellation
« “doacross” Loops

« We can chat about these features in 1:1s, FTFs,
phone calls, or in emails ©

SOFTWARE AND SERVICES

The last Slide...

« OpenMP 4.5 is not only a bugfix release
- Task-generating loops
* Locks with hints
- Improved support for offloading

 Work on OpenMP 5.0 has already been started
« Expected release during Supercomputing 2018
 We are trying hard to have it ready by Supercomputing 2017
« Features being discussed:

Bugfixes © « Extensions to tasking
Futures « Fortran 2008 support
Error handling « C++1x support
Transactional memory « Data locality and affinity

SOFTWARE AND SERVICES

