Steinbuch Centre for Computing (SCC)

Research

Combustion is still the most important energy source. Today, over 80 % of the world's primary energy consumption is supplied by fossil fuels [1]. In order to meet the climate goals despite the world's growing energy demands, it is important to increase the efficiency and reduce the pollutant emissions of future combustion systems. But this is only possible with a better understanding of the fundamental physical and chemical processes that underlie combustion.

An important technique for studying combustion processes is Computational Fluid Dynamics (CFD), where computers are used to perform numerical simulations. A special CFD method is the Direct Numerical Simulation (DNS). In DNS, no simplifications are used to model the complex combustion phenomena and the gas flow. Instead, the governing mathematical equations are solved directly. In order to do this, the simulation has to resolve all details that are relevant in the combustion: the (turbulent) flow field has to be resolved down to the smallest structures, which might be of the order of a few micrometers, while the computational domain my span meters. Additionally, the thin reactive layer of the flames, where most of the chemical reactions take place, has to be captured in detail as well. Detailed chemical reaction mechanisms have to be used, which can include tens of thousands of different chemical reactions for describing the combustion. This also constrains the temporal resolution of the simulations, because even the fastest reactions have to be considered.

Because of this, DNS of combustion is very computationally expensive and only possible to perform on supercomputers. We developed a DNS solver for turbulent flames in OpenFOAM [2], which uses an optimized chemistry implementation and is coupled to Cantera [3] in order to compute detailed molecular fluxes. Figure 1 shows scaling tests performed on the ForHLR II Cluster at the SCC and the Hazel Hen Cluster at the HLRS. The results were obtained with OpenFOAM v1612+ on a computational grid with 176 million cells on up to 28800 CPU cores.

Figure 1: Scaling tests with OpenFOAM v1612+.
Source: Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H. 2017. Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM. In High Performance Computing in Science and Engineering '17. Springer International Publishing

The results of DNS are very valuable because they allow to gain deeper insights in the mutual interaction between the flame and the fluid flow field, which is still not fully unterstood [4]. DNS can also be used to investigate phenomena which are not accessible through experiments. Figure 2 shows a 2D cut of the temperature field from a simulation of a model burner, which generates a flame where the fuel and oxidizer are only partially premixed. Figure 3 shows the heat release rate as well as a vorticity iso-surface to illustrate the highly turbulent flow in the central jet region.

Figure 2: Temperature field of a partially premixed flame.
Figure 3: Vorticity iso-surface colored by fluid velocity and heat release rate.

 

Publications

Researchgatehttps://www.researchgate.net/profile/Thorsten_Zirwes

Google Scholarhttps://scholar.google.com/citations?user=j7WCYRkAAAAJ&hl=en&oi=ao

ORCIDhttp://orcid.org/0000-0002-3563-1422

EBI Homepagehttp://vbt.ebi.kit.edu/index.pl/

 

I) Peer-Reviewed Journal Papers (19)

  1. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and D. Trimis, “Identification of Flame Regimes in Partially Premixed Combustion from a Quasi-DNS Dataset,” Flow, Turbulence and Combustion, 2020 (under review)
  2. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Lagrangian Tracking of Material Surfaces in Reacting Flows,” Fluids, 2020 (submitted)
  3. S. Tavakkol, T. Zirwes, J.A. Denev, F. Jamshidi, H. Bockhorn, and D. Trimis, “An Eulerian-Lagrangian method for wet biomass carbonization in rotary kiln reactors,” Renewable and Sustainable Energy Reviews, 2020 (under review)
  4. F. Zhang, T. Zirwes, S. Wachter, T. Jacobs, P. Habisreuther, N. Zarzalis, D. Trimis, and T. Kolb, “Effect of elevated pressure on air-assisted primary atomization of coaxial liquid jets: basic research for entrained flow gasification,” Renewable and Sustainable Energy Reviews, 2020 (https://doi.org/10.1016/j.rser.2020.110411) (in press)
  5. F. Zhang, H. Heidarifatasmi, S. Harth, T. Zirwes, R. Wang, M. Fedoryk, N. Sebbar, P. Habisreuther, D. Trimis, and H. Bockhorn, “Numerical Evaluation of a Novel Double-Concentric Swirl Burner for Sulfur Combustion,” Renewable and Sustainable Energy Reviews, 2020 (https://doi.org/10.1016/j.rser.2020.110257) (in press)
  6. T. Zirwes, T. Häber, F. Zhang, H. Kosaka, A. Dreizler, M. Steinhausen, C. Hasse, A. Stagni, D. Trimis, R. Suntz, and H. Bockhorn, “Numerical Study of Quenching Distances for Side-wall Quenching Using Detailed Diffusion and Chemistry,” Flow, Turbulence and Combustion, 2020 (https://doi.org/10.1007/s10494-020-00215-0) (in press)
  7. M. Steinhausen, Y. Luo, S. Popp, C. Strassacker, T. Zirwes, H. Kosaka, F. Zentgraf, U. Maas, A. Sadiki, A. Dreizler, and C. Hasse, “Numerical investigation of local heat-release rates and thermo-chemical states in sidewall quenching of laminar methane and dimethyl ether flames,” Flow, Turbulence and Combustion, 2020 https://doi.org/10.1007/s10494-020-00146-w (in press)
  8. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, H. Bockhorn, and D. Trimis, “Numerical Simulations of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb and Bunsen-Burner at Elevated Pressure,” Flow, Turbulence and Combustion, 2020 (https://doi.org/10.1007/s10494-020-00209-y) (in press)
  9. M. Hansinger, T. Zirwes, J. Zips, M. Pfitzner, F. Zhang, P. Habisreuther, and H. Bockhorn, “The Eulerian stochastic fields method applied to large eddy simulations of a piloted flame with inhomogeneous inlet,” Flow, Turbulence and Combustion, vol. 105, pp. 837–867, 2020 (https://doi.org/10.1007/s10494-020-00159-5)
  10. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and D. Trimis, “Quasi-DNS dataset of a piloted flame with inhomogeneous inlet conditions,” Flow, Turbulence and Combustion, vol. 104, pp. 997–1027, 2020 (https://doi.org/1007/s10494-019-00081-5)
  11. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, H. Bockhorn, and D. Trimis, “Numerical computation of turbulent flow fields in a fan-stirred combustion bomb,” Combustion Science and Technology, pp. 1–17, 2019 (https://doi.org/10.1080/00102202.2019.1665520)
  12. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, D. Trimis, H. Nawroth, and C. O. Paschereit, “Impact of combustion modeling on the spectral response of heat release in LES,” Combustion Science and Technology, vol. 191, no. 9, pp. 1520–1540, 2019 (https://doi.org/10.1080/00102202.2018.1558218)
  13. T. Zirwes, F. Zhang, T. Häber, and H. Bockhorn, “Ignition of combustible mixtures by hot particles at varying relative speeds,” Combustion Science and Technology, vol. 191, no. 1, pp. 178–195, 2019 (https://doi.org/10.1080/00102202.2018.1435530)
  14. N. Sebbar, T. Zirwes, P. Habisreuther, J. Bozzelli, H. Bockhorn, and D. Trimis, “S2 + Air Combustion: Reaction Kinetics, Flame Structure, and Laminar Flame Behavior,” Energy & Fuels, vol. 32, no. 10, pp. 10184–10193, 2018 (https://doi.org/10.1021/acs.energyfuels.8b01019)
  15. F. Zhang, T. Zirwes, P. Habisreuther, and H. Bockhorn, “Towards reduction of computational cost for large-scale combustion modelling with a multi-regional concept,” Progress in Computational Fluid Dynamics, vol. 18, no. 6, pp. 333–346, 2018 (https://doi.org/10.1504/PCFD.2018.096616)
  16. F. Zhang, T. Zirwes, P. Habisreuther, and H. Bockhorn, “Effect of unsteady stretching on the flame local dynamics,” Combustion and Flame, vol. 175, pp. 170–179, 2017 (https://doi.org/10.1016/j.combustflame.2005.028)
  17. T. Häber, T. Zirwes, D. Roth, F. Zhang, H. Bockhorn, and U. Maas, “Numerical simulation of the ignition of fuel/air gas mixtures around small hot particles,” Zeitschrift für Physikalische Chemie, vol. 231, no. 10, pp. 1625–1654, 2017 (https://doi.org/10.1515/zpch-2016-0933)
  18. F. Zhang, T. Baust, T. Zirwes, J.A. Denev, P. Habisreuther, N. Zarzalis, and H. Bockhorn, “Impact of infinite thin flame approach on the evaluation of flame speed using spherically expanding flames,” Energy Technology, vol. 5, no. 7, pp. 1055–1063, 2017 (https://doi.org/10.1002/ente.201600573)
  19. F. Zhang, T. Zirwes, H. Nawroth, P. Habisreuther, H. Bockhorn, and C. O. Paschereit, “Combustion-generated noise: An environment-related issue for future combustion systems,” Energy Technology, vol. 5, no. 7, pp. 1045–1054, 2017 (https://doi.org/10.1002/ente.201600526)

II) Peer-Reviewed Conference Papers (3)

  1. T. Zirwes, F. Zhang, Y. Wang, P. Habisreuther, J.A. Denev, Z. Chen, H. Bockhorn, and D. Trimis, “In-situ Flame Particle Tracking Based on Barycentric Coordinates for Studying Local Flame Dynamics in Pulsating Bunsen Flames,” in Proceedings of the Combustion Institute, vol. 38, Elsevier, 2020 (https://doi.org/10.1016/j.proci.2007.033)
  2. F. Zhang, T. Zirwes, T. Häber, H. Bockhorn, D. Trimis, and R. Suntz, “Near Wall Dynamics of Premixed Flames,” in Proceedings of the Combustion Institute, vol. 38, Elsevier, 2020 (in press) (https://doi.org/10.1016/j.proci.2020.06.058)
  3. Y. Wang, H. Zhang, T. Zirwes, F. Zhang, H. Bockhorn, and Z. Chen, “Ignition of dimethyl ether/air mixtures by hot particles: Impact of low temperature chemical reactions,” in Proceedings of the Combustion Institute, vol. 38, Elsevier, 2020 (accepted) (https://doi.org/10.1016/j.proci.2020.06.254)

III) Peer-Reviewed Book Chapters (9)

  1. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Implementation of Lagrangian Surface Tracking for High Performance Computing,” in High Performance Computing in Science and Engineering ’20 (W. Nagel, D. Kröner, and M. Resch, eds.), Springer, 2020 (submitted)
  2. F. Galeazzo, F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, N. Zarzalis, and D. Trimis, “Implementation of an Efficient Synthetic Inflow Turbulence-Generator in the Open-Source Code OpenFOAM for 3D LES/DNS Applications,” in High Performance Computing in Science and Engineering ’20 (W. Nagel, D. Kröner, and M. Resch, eds.), Springer, 2020 (submitted)
  3. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, and D. Trimis, “Numerical Computation of Primary Atomization of High-viscous Liquid Jet by Co-axial Air at Elevated Pressures,” in High Performance Computing in Science and Engineering ’20 (W. Nagel, D. Kröner, and M. Resch, eds.), Springer, 2020 (submitted)
  4. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Enhancing OpenFOAM’s Performance on HPC Systems,” in High Performance Computing in Science and Engineering ’19 (W. Nagel, D. Kröner, and M. Resch, eds.), Springer, 2019 (accepted)
  5. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Improved Vectorization for Efficient Chemistry Computations in OpenFOAM for Large Scale Combustion Simulations,” in High Performance Computing in Science and Engineering ’18 (W. Nagel, D. Kröner, and M. Resch, eds.), pp. 209–224, Springer, 2018 (https://doi.org/10.1007/978-3-030-13325-2_13)
  6. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, and H. Bockhorn, “Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM,” in High Performance Computing in Science and Engineering ’17 (W. Nagel, D. Kröner, and M. Resch, eds.), pp. 189–204, Springer, 2017 (https://doi.org/10.1007/978-3-319-68394-2_11)
  7. F. Zhang, T. Zirwes, P. Habisreuther, and H. Bockhorn, “A DNS Analysis of the Evaluation of Heat Release Rates from Chemiluminescence Measurements in Turbulent Combustion,” in High Performance Computing in Science and Engineering ’16 (W. Nagel, D. Kröner, and M. Resch, eds.), pp. 229–243, Springer, 2016 (https://doi.org/10.1007/978-3-319-47066-5_16)
  8. F. Zhang, T. Zirwes, P. Habisreuther, and H. Bockhorn, “Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach,” in High Performance Computing in Science and Engineering ’15 (W. Nagel, D. Kröner, and M. Resch, eds.), pp. 267–280, Springer, 2015 (https://doi.org/10.1007/978-3-319-24633-8_18)
  9. F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Direct numerical simulation of chemically reacting flows with the public domain code OpenFOAM,” in High Performance Computing in Science and Engineering ’14 (W. Nagel, D. Kröner, and M. Resch, eds.), pp. 221–236, Springer, 2015 (https://doi.org/10.1007/978-3-319-10810-0_16)

IV) Invited Presentations (5)

  1. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “Adaptive Load Balancing for Efficient Simulation of Reacting Flows.” 32nd International Conference on Parallel Computational Fluid Mechanics, Niece. France. Invited by Dr. Daniel Mira from Barcelona Supercomputing Center, 26–28 October 2020. (Presentation) (accepted)
  2. T. Zirwes, F. Zhang, P. Habisreuter, H. Bockhorn, and D. Trimis, “Effect of Transient Flame Stretch.” Technical University Darmstadt. Simulation of reactive Thermo-Fluid Systems (STFS). Darmstadt. Germany, 22 September 2019. Invited by Prof. Christian Hasse
  3. T. Zirwes, F. Zhang, P. Habisreuter, H. Bockhorn, and D. Trimis, “Quasi-DNS of the Partially Premixed Sydney Flame.” Technical University Darmstadt. Simulation of reactive Thermo-Fluid Systems (STFS). Darmstadt. Germany, 22 September 2019. Invited by Prof. Christian Hasse
  4. T. Zirwes, F. Zhang, T. Häber, D. Roth, P. Habisreuter, R. Suntz, H. Bockhorn, and D. Trimis, “Ignition by Mechanical Sparks.” Peking University (PKU). Department of Mechanics and Engineering Science. Beijing. China, 7 August 2019. Invited by Prof. Zheng Chen
  5. T. Zirwes, J.A. Denev, R. Barthel, and O. Schneider, “Bridging the Gap between Domain Experts and Computer Scientists with Tiger Teams in the bwHPC-C5 Project.” 13th World Congress on Computational Mechanics / 2nd Pan American Congress on Computational Mechanics. New York City. USA, 22–27 July 2018. Invited by Dr.-Ing. Dörte Sternel (TU Darmstadt)

V) Conference Proceedings (23)

  1. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Lagrangian Tracking of Material Surfaces in Reacting Flows,” in OpenFOAM Workshop, vol. 15, 2020
  2. H. Heidarifatasmi, T. Zirwes, F. Zhang, P. Habisreuther and D. Trimis, “Hybrid Eulerian-Lagrangian Approach for Dense Spray Simulations,” Proceedings of the ECCOMAS Congress, 2020 (submitted)
  3. T. Zirwes, T. Häber, F. Zhang, M. Steinhausen, H. Kosaka, H. Bockhorn, R. Suntz, C. Hasse, and A. Dreizler, “Numerical and Experimental Investigation of Chemiluminescent Radical Concentrations During Side-Wall Quenching,” in International Workshop on Clean Combustion: Principles and Applications, 2019
  4. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and D. Trimis, “Identification of Flame Regimes in Partially Premixed Combustion from a Quasi-DNS Dataset,” in International Workshop on Clean Combustion: Principles and Applications, 2019
  5. M. Soysal, M. Berghoff, T. Zirwes, M. Vef, S. Oeste, A. Brinkman, W. Nagel, and A. Streit, “Using On-demand File Systems in HPC Environments,” in International Conference on High Performance Computing & Simulation, 6th Special Session on High Performance Computing Benchmarking and Optimization, 2019 (https://doi.org/10.1109/HPCS48598.2019.9188216)
  6. F. Zhang, T. Müller, T. Zirwes, S. Wachter, T. Jakobs, P. Habisreuther, N. Zarzalis, D. Trimis, and T. Kolb, “Numerical and Experimental Investigations of Primary Breakup of High-Viscous Fluid at Elevated Pressure,” in Proceedings of the Conference on Liquid Atomization and Spray Systems, vol. 29, 2019 (https://ilass19.sciencesconf.org/245486/document)
  7. T. Zirwes, N. Sebbar, P. Habisreuther, S. Harth, F. Zhang, H. Bockhorn, and D. Trimis, “Ignition behaviour of sulfur in air based on modified reaction kinetics,” in Mediterranean Combustion Symposium, vol. 11, 2019
  8. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, H. Bockhorn, and D. Trimis, “Numerical Simulation of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb at Elevated Pressures,” in International Colloquium on Detonation. Explosion and Reactive Systems, vol. 27, 2019
  9. F. Zhang, H. Heidarifatasmi, S. Harth, T. Zirwes, M. Fedoryk, N. Sebbar, and D. Trimis, “Numerical Investigation of a Sulfur Combustor,” in Deutscher Flammentag. Deutsche Sektion des Combustion Institutes und DVV/VDI-Gesellschaft Energie und Umwelt, vol. 29, 2019
  10. S. Tavakkol, T. Zirwes, J.A. Denev, N. Weber, and H. Bockhorn, “Development and validation of an Euler-Lagrange method for the numerical simulation of wet-biomass carbonization in a rotary kiln reactor,” in Deutscher Flammentag. Deutsche Sektion des Combustion Institutes und DVV/VDI-Gesellschaft Energie und Umwelt, vol. 29, 2019
  11. F. Zhang, T. Müller, T. Zirwes, S. Wachter, T. Jakobs, P. Habisreuther, N. Zarzalis, D. Trimis, and T. Kolb, “Effect of elevated pressure on primary jet-breakup: Basic research for entrained flow gasification,” in Deutscher Flammentag. Deutsche Sektion des Combustion Institutes und DVV/VDI-Gesellschaft Energie und Umwelt, vol. 29, 2019
  12. T. Zirwes, F. Zhang, P. Habisreuther, H. Bockhorn, and D. Trimis, “Large-Scale Quasi-DNS of Mixed-Mode Turbulent Combustion,” PAMM, vol. 19, no. 1, 2019. ISSN: 1617-7061 (https://doi.org/10.1002/pamm.201900420)
  13. T. Zirwes, T. Häber, F. Zhang, H. Kosaka, H. Bockhorn, R. Suntz, A. Dreizler, and J. Janicka, “2D and 3D numerical simulation of chemiluminescent radical concentrations during side-wall quenching of premixed methane and propane flames,” in Proceedings of the European Combustion Meeting, vol. 9, 2019. S3_AIII_47 (https://www.researchgate.net/publication/332573389)
  14. F. Zhang, H. Heidarifatasmi, T. Zirwes, M. Fedoryk, S. Harth, N. Sebbar, P. Habisreuther, D. Trimis, and H. Bockhorn, “Numerical simulation of sulfur combustors with high-power-density,” in Proceedings of the European Combustion Meeting, vol. 9, 2019. S2_AIII_57
  15. J.A. Denev, I. Naydenova, F. Zhang, T. Zirwes, and H. Bockhorn, “Unsteady pure straining effects on lean premixed flames of different Lewis numbers,” in Proceedings of the European Combustion Meeting, vol. 9, 2019. S4_AIII_37
  16. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “Optimizing Load Balancing of Reacting Flow Solvers in OpenFOAM for High Performance Computing,” in Proceedings of the 6th OpenFOAM User Conference, 2018 (https://cn.esi-group.com/sites/default/files/resource/other/7400/student-abstract_zirwes_karlsruhe-institute-of-technology_optimizing-load-balancing-of-reacting-flow-solvers-in-openfoam-for-high-performance-computing1.pdf)
  17. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Detailed Transport and Performance Optimization for Massively Parallel Simulations of Turbulent Combustion with OpenFOAM,” in The 13th OpenFOAM Workshop, 2018. 20-041 (https://sourceforge.net/projects/openfoam-extend/files/OpenFOAM_Workshops/OFW13_2018_Shanghai/Proceedings)
  18. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, D. Trimis, and H. Bockhorn, “Large Eddy Simulation of Turbulent Flow in a Fan-stirred Combustion Vessel,” in 41st Meeting of the German and Italian Sections of The Combustion Institute, 2018. I10, ISBN: 978-88-88104-22-5 (http://www.combustion-institute.it/proceedings/XXXXI-ASICI/papers/41proci2018.I10.pdf)
  19. F. Zhang, T. Zirwes, H. Nawroth, N. Li, P. Habisreuther, H. Bockhorn, D. Trimis, and C. Paschereit, “Spectral Response of Different Combustion Models in LES of Direct Combustion Noise,” in 41st Meeting of the German and Italian Sections of The Combustion Institute, 2018. I8; ISBN: 978-88-88104-22-5 (http://www.combustion-institute.it/proceedings/XXXXI-ASICI/papers/41proci2018.I8.pdf)
  20. N. Sebbar, T. Zirwes, P. Habisreuther, H. Bockhorn, and D. Trimis, “Investigation of S2 + Air Combustion,” in 41st Meeting of the German and Italian Sections of The Combustion Institute, 2018. I10; ISBN: 978-88-88104-22-5 (http://www.combustion-institute.it/proceedings/XXXXI-ASICI/papers/41proci2018.VI10.pdf)
  21. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Effect of Elevated Pressure on the Flame Response To Stretch of Premixed Flames,” in Deutscher Flammentag. Deutsche Sektion des Combustion Institutes und DVV/VDI-Gesellschaft Energie und Umwelt, vol. 28, pp. 549–561, 2017. VDI-Berichte 2302, ISBN 978-3-18-092302-4
  22. T. Zirwes, F. Zhang, T. Häber, D. Roth, and H. Bockhorn, “Direct numerical simulation of ignition by hot moving particles,” in 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2017. 1121 (http://www.icders.org/ICDERS2017/abstracts/ICDERS2017-1121.pdf)
  23. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Response of Local and Global Consumption Speed to Stretch in Laminar Steady-State Flames,” in Proceedings of the 8th European Combustion Meeting, 2017. ECM2017.0379

VI) Theses (2)

  1. T. Zirwes, “Effect of stretch on the burning velocity of laminar and turbulent premixed flames,” Master’s thesis, Karlsruhe Institute of Technology, 2016. doi:10.5445/IR/1000094585, over 400 downloads (https://doi.org/10.5445/IR/1000094585)
  2. T. Zirwes, “Weiterentwicklung und Optimierung eines auf OpenFOAM basierten DNS Lösers zur Verbesserung der Effizienz und Handhabung (Development and optimization of an OpenFOAM-based DNS solver for improving performance and handling).” Bachelor’s thesis, Karlsruhe Institute of Technology, 2013. doi:10.5445/IR/1000037538, over 3 000 downloads (https://doi.org/10.5445/IR/1000037538)

VII) Miscellaneous (11)

  1. T. Zirwes, “Co-Author of Cantera, one of the largest open-source chemical libraries for combustion with more than 25000 downloads,” 2020, https://doi.org/10.5281/zenodo.170284 (https://github.com/Cantera/cantera/blob/main/AUTHORS#L55)
  2. T. Zirwes, “Detailed Simulation of Turbulent Mixed-Mode Combustion Towards Exascale.” Gauss Supercomputing Alliance, 2020 (https://www.gauss-centre.eu/results/computational-and-scientific-engineering/article/detailed-simulation-of-turbulent-mixed-mode-combustion-towards-exascale)
  3. T. Zirwes, F. Zhang, H. Bonart, P. Habisreuther, and H. Bockhorn, “EBI-DNS Solver: An open-source extension for OpenFOAM for performing direct numerical simulation with detailed diffusion models.” available for download on the Engler-Bunte-Institute website of KIT, 2019 (http://vbt.ebi.kit.edu/index.pl/specialtopic/EBI-DNS)
  4. T. Zirwes, “Providing simulation data for different flame configurations.” Engler-Bunte-Institute, Karlsruhe Insitute of Technology, 2019 (http://vbt.ebi.kit.edu/index.pl/specialtopic/DNS-Links)
  5. M. Berghoff and T. Zirwes, “Open-source course for teaching parallel programming.” gitlab, 2018 (https://gitlab.com/mb1248/gridka/-/blob/master/tutorial/intro.md)
  6. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, and H. Bockhorn, “Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM.” InSiDE. Spring 2018. Innovatives Supercomputing in Deutschland, 2018 (https://www.hlrs.de/fileadmin/sys/public/aboutus/media/InSiDE/InSiDE-Spring-2018.pdf)
  7. H. Bockhorn, P. Habisreither, D. Trimis, F. Zhang, and T. Zirwes, “Highly-Resolved Numerical Simulation of Combustion in Energy Conversion Processes.” Gauss Supercomputing Alliance, 2018 (https://www.gauss-centre.de/results/computational-and-scientific-engineering/article/highly-resolved-numerical-simulation-of-combustion-in-energy-conversion-processes)
  8. T. Zirwes, “Efficient load balancing for the simulation of turbulent combustion on supercomputers.” Steinbuch Centre for Computing (SCC) News 2, 28–30, 2018 (https://www.scc.kit.edu/downloads/oko/SCC-news02_2018_web.pdf)
  9. T. Zirwes, “Open lecture about Batch systems of Supercomputers.” Baden-Württemberg High Performance Computing, 2017 (https://indico.scc.kit.edu/event/310/attachments/1118/1568/05_2017-10-10_bwHPC_course_-_intro_batch_system.pdf)
  10. F. Zhang and T. Zirwes, “Numerical simulation of turbulent combustion on high performance computers at SCC.” Steinbuch Centre for Computing (SCC) News 1, 18–20, 2017 (http://www.scc.kit.edu/downloads/oko/SCC-news01_2017_web.pdf)
  11. T. Zirwes, “Optimierung einer Simulationssoftware für Verbrennungsprozesse (Optimization of a simulation software for combustion processes).” DVGW energie | wasser-praxis, wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH. Ausgabe 03/15: 70–72, 2015 (https://www.energie-wasser-praxis.de/heftarchiv/2015/03/)

VIII) Presentations & Posters (52)

  1. T. Zirwes, F. Zhang, Y. Wang, P. Habisreuther, J.A. Denev, Z. Chen, H. Bockhorn, and D. Trimis, “In-situ Flame Particle Tracking Based on Barycentric Coordinates for Studying Local Flame Dynamics in Pulsating Bunsen Flames.” 38th International Symposium on Combustion. Adelaide. Australia, 24–29 January 2021. (Presentation) (accepted)
  2. F. Zhang, T. Zirwes, T. Häber, H. Bockhorn, D. Trimis, and R. Suntz, “Near Wall Dynamics of Premixed Flames.” 38th International Symposium on Combustion. Adelaide. Australia, 24–29 January 2021. (Presentation) (accepted)
  3. Y. Wang, H. Zhang, T. Zirwes, F. Zhang, H. Bockhorn, and Z. Chen, “Ignition of dimethyl ether/air mixtures by hot particles: Impact of low temperature chemical reactions.” 38th International Symposium on Combustion. Adelaide. Australia, 24–29 January 2021. (Presentation) (accepted)
  4. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn and D. Trimis, “Implementation and Validation of a computationally efficient DNS Solver for Reacting Flows in OpenFOAM,” 14th World Congress on Computational Mechanics (WCCM) & ECCOMAS Congress 2020, 11-15. January 2021. (Presentation) (accepted)
  5. H. Heidarifatasmi, T. Zirwes, F. Zhang, P. Habisreuther and D. Trimis, “Hybrid Eulerian-Lagrangian Approach for Dense Spray Simulations,” 14th World Congress on Computational Mechanics (WCCM) & ECCOMAS Congress 2020, 11-15. January 2021. (Presentation) (accepted)
  6. F. Zhang, T. Zirwes, T. Häber, H. Bockhorn, D. Trimis and R. Suntz, “DNS of Near Wall Dynamics of Premixed CH4/Air Flames,” 14th World Congress on Computational Mechanics (WCCM) \& ECCOMAS Congress 2020, 11-15. January 2021. (Presentation) (accepted)
  7. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Implementation of Lagrangian Surface Tracking for High Performance Computing.” 23rd Results and Review Workshop at the High Performance Computing Center Stuttgart, Stuttgart. Germany, 8–9 October 2020. (Presentation) (submitted)
  8. F. Galeazzo, F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, N. Zarzalis, and D. Trimis, “Implementation of an Efficient Synthetic Inflow Turbulence-Generator in the Open-Source Code OpenFOAM for 3D LES/DNS Applications.” 23rd Results and Review Workshop at the High Performance Computing Center Stuttgart, Stuttgart. Germany, 8–9 October 2020. (Presentation) (submitted)
  9. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, and D. Trimis, “Numerical Computation of Primary Atomization of High-viscous Liquid Jet by Co-axial Air at Elevated Pressures.” 23rd Results and Review Workshop at the High Performance Computing Center Stuttgart, Stuttgart. Germany, 8–9 October 2020. (Presentation) (submitted)
  10. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Lagrangian Tracking of Material Surfaces in reacting Flows.” The 15th OpenFOAM Workshop, Arlington. USA, 22-25 June 2020. (Presentation)
  11. S. Tavakkol, T. Zirwes, J.A. Denev, F. Jamshidi, and H. Bockhorn, “Development of an Openfoam Solver for Numerical Simulation of Carbonization of Biomasses in Rotary Kilns.” The 15th OpenFOAM Workshop, Arlington. USA, 22-25 June 2020. (Presentation)
  12. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Enhancing OpenFOAM’s Performance on HPC Systems.” 22nd Results and Review Workshop at the High Performance Computing Center Stuttgart, Stuttgart. Germany, 7–8 October 2019. (Poster)
  13. S. Tavakkol, N. Weber, T. Zirwes, J.A. Denev, and H. Bockhorn, “Performance of large scale Eulerian-Lagrangian numerical simulation for particulate flow in rotating reactors.” Baden-Württemberg High Performance Computing Symposium, Karlsruhe. Germany, 30 September 2019. (Presentation) (https://publikationen.bibliothek.kit.edu/1000104187/51142355)
  14. T. Zirwes, T. Häber, F. Zhang, M. Steinhausen, H. Kosaka, H. Bockhorn, R. Suntz, C. Hasse, and A. Dreizler, “Numerical and Experimental Investigation of Chemiluminescent Radical Concentrations During Side-Wall Quenching.” International Workshop on Clean Combustion: Principles and Applications, Darmstadt. Germany, 25–26 September 2019. (Poster)
  15. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and D. Trimis, “Identification of Flame Regimes in Partially Premixed Combustion from a Quasi-DNS Dataset.” International Workshop on Clean Combustion: Principles and Applications, Darmstadt. Germany, 25–26 September 2019. (Poster)
  16. F. Zhang, H. Heidarifatasmi, S. Harth, T. Zirwes, M. Fedoryk, N. Sebbar, and D. Trimis, “Numerical Investigation of a Sulfur Combustor.” 29. Deutscher Flammentag, Bochum. Germany, 17–18 September 2019. (Presentation)
  17. S. Tavakkol, T. Zirwes, J.A. Denev, N. Weber, and H. Bockhorn, “Development and validation of an Euler-Lagrange method for the numerical simulation of wet-biomass carbonization in a rotary kiln reactor.” 29. Deutscher Flammentag, Bochum. Germany, 17–18 September 2019. (Presentation)
  18. F. Zhang, T. Müller, T. Zirwes, S. Wachter, T. Jakobs, P. Habisreuther, N. Zarzalis, D. Trimis, and T. Kolb, “Effect of elevated pressure on primary jet-breakup: Basic research for entrained flow gasification.” 29. Deutscher Flammentag, Bochum. Germany, 17–18 September 2019. (Presentation)
  19. F. Zhang, T. Müller, T. Zirwes, S. Wachter, T. Jakobs, P. Habisreuther, N. Zarzalis, D. Trimis, and T. Kolb, “Numerical and Experimental Investigations of Primary Breakup of High-Viscous Fluid at Elevated Pressure.” Conference on Liquid Atomization and Spray Systems, Paris. France, 2–4 September 2019. (Presentation) (https://ilass19.sciencesconf.org/browse/author?authorid=675334)
  20. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, H. Bockhorn, and D. Trimis, “Numerical Simulation of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb at Elevated Pressures.” 27th International Colloquium on Detonation. Explosion and Reactive Systems, Beijing. China, 28 July–2 August 2019. (Presentation)
  21. M. Soysal, M. Berghoff, T. Zirwes, M. Vef, S. Oeste, A. Brinkman, W. Nagel, and A. Streit, “Using On-demand File Systems in HPC Environments.” International Conference on High Performance Computing and Simulation (HPBench@HPCS), Dublin. Ireland, 15–19 July 2019. (Presentation) (https://publikationen.bibliothek.kit.edu/1000097459/37800388)
  22. T. Zirwes, N. Sebbar, P. Habisreuther, S. Harth, F. Zhang, H. Bockhorn, and D. Trimis, “Ignition behaviour of sulfur in air based on modified reaction kinetics.” 11th Mediterranean Combustion Symposium, Tenerife. Spain, 16–20 June 2019. (Presentation)
  23. T. Zirwes, F. Zhang, P. Habisreuther, H. Bockhorn, and D. Trimis, “Spectral response of heat release in LES combustion modeling.” Seventeenth International Conference on Numerical Combustion. MS8-208, Aachen. Germany, 6–8 May 2019. (Presentation)
  24. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, and D. Trimis, “LES of combustion noise from a turbulent premixed jet flame.” Seventeenth International Conference on Numerical Combustion. MS8-210, Aachen. Germany, 6–8 May 2019. (Presentation)
  25. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “HPC Implementation of Flame Particle Tracking for Studying Laminar and Turbulent Flame Dynamics.” Seventeenth International Conference on Numerical Combustion. MS8-208, Aachen. Germany, 6–8 May 2019. (Presentation)
  26. T. Zirwes, T. Häber, F. Zhang, H. Kosaka, H. Bockhorn, R. Suntz, A. Dreizler, and J. Janicka, “2D and 3D numerical simulation of chemiluminescent radical concentrations during side-wall quenching of premixed methane and propane flames.” European Combustion Meeting. S3_AIII_47, Lisboa. Portugal, 14–17 April 2019. (Poster)
  27. F. Zhang, H. Heidarifatasmi, T. Zirwes, M. Fedoryk, S. Harth, N. Sebbar, P. Habisreuther, D. Trimis, and H. Bockhorn, “Numerical simulation of sulfur combustors with high-power-density.” European Combustion Meeting. S2_AIII_57, Lisboa. Portugal, 14–17 April 2019. (Poster)
  28. J.A. Denev, I. Naydenova, F. Zhang, T. Zirwes, and H. Bockhorn, “Unsteady pure straining effects on lean premixed flames of different Lewis numbers.” European Combustion Meeting. S4_AIII_37. 14, Lisboa. Portugal, 14–17 April 2019. (Poster)
  29. M. Fedoryk, F. Zhang, H. Heidarifatasmi, T. Zirwes, N. Sebbar, S. Harth, and D. Trimis, “Entwicklung von Schwefelbrennern mit hohen Leistungsdichten.” Jahrestreffen der ProcessNet Fachgruppe Hochtemperaturtechnik. P5, Karlsruhe. Germany, 2–3 April 2019. (Poster)
  30. T. Zirwes, F. Zhang, P. Habisreuther, H. Bockhorn, and D. Trimis, “Large-Scale Quasi-DNS of Mixed-Mode Turbulent Combustion.” 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM2019), Vienna. Austria, 18–20 February 2019. (Presentation) (https://jahrestagung.gamm-ev.de/images/2019/Photos/GAMM2019_BookofAbstracts.pdf#page=325)
  31. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “Optimizing Load Balancing of Reacting Flow Solvers in OpenFOAM for High Performance Computing.” 6th ESI OpenFOAM User Conference. ESI-OpenCFD, Hamburg. Germany, 17–19 October 2018. (Presentation)
  32. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Improved Vectorization for Efficient Chemistry Computations in OpenFOAM for Large Scale Combustion Simulations.” 21st Results and Review Workshop at the High Performance Computing Center Stuttgart, Stuttgart. Germany, 4–5 October 2019. (Poster)
  33. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “Highly Resolved Numerical Simulation of Regime Transition in Mixed-Mode Flames.” 37th International Symposium on Combustion. 1P116, Dublin. Ireland, 29 July–3 August 2018. (Poster)
  34. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Detailed Transport and Performance Optimization for Massively Parallel Simulations of Turbulent Combustion with OpenFOAM.” The 13th OpenFOAM Workshop, Shanghai. China, 24–29 June 2018. (Presentation)
  35. F. Zhang, T. Zirwes, P. Habisreuther, N. Zarzalis, D. Trimis, and H. Bockhorn, “Spectral Response of Different Combustion Models in LES of Direct Combustion Noise.” 41st Meeting of the Italian Section of The Combustion Institute, Sorrento. Italy, 23–26 May 2018. (Presentation)
  36. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, D. Trimis, H. Nawroth, and C. Paschereit, “Large Eddy Simulation of Turbulent Flow in a Fan-Stirred Combustion Vessel.” 41st Meeting of the Italian Section of The Combustion Institute, Sorrento. Italy, 23–26 May 2018. (Presentation)
  37. N. Sebbar, T. Zirwes, P. Habisreuther, H. Bockhorn, and D. Trimis, “Investigation of S2 + Air Combustion.” 41st Meeting of the Italian Section of The Combustion Institute, Sorrento. Italy, 23–26 May 2018. (Poster)
  38. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “Database and Prediction of the Regime Transition for the Sandia/Sydney Mixed-Mode Flame.” Combustion-DNS Strategy & Data Analysis Workshop, Sorrento. Italy, 22–23 May 2018. (Poster)
  39. T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, and D. Trimis, “A Reliability Assessment of Highly Resolved Numerical Simulation for Turbulent Combustion.” Combustion-DNS Strategy & Data Analysis Workshop, Sorrento. Italy, 22–23 May 2018. (Poster)
  40. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Generation of a Database with Detailed Numerical Simulation of Mixed-Mode Combustion.” NIC Symposium. ST 6, Jülich. Germany, 22–23 February 2018. (Poster) (http://www.john-von-neumann-institut.de/nic/EN/News/Symposium/NIC-Symposium-2018/PosterSession/ST_6.pdf?__blob=publicationFile)
  41. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, and H. Bockhorn, “Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM.” 20th Results and Review Workshop of the High Performance Computing Center Stuttgart, Stuttgart. Germany, 5–6 October 2017. (Presentation)
  42. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Effect of Elevated Pressure on the Flame Response to Stretch of Premixed Flames,” 6–7 September 2017. (Presentation)
  43. T. Zirwes, F. Zhang, T. Häber, D. Roth, and H. Bockhorn, “Direct numerical simulation of ignition by hot moving particles.” 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston. USA, 30 July–4 August 2017. (Presentation)
  44. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Response of Local and Global Consumption Speed to Stretch in Laminar Steady-State Flames.” European Combustion Meeting, Dubrovnik. Croatia, 18–21 April 2017. (Poster)
  45. T. Zirwes, F. Zhang, P. Habisreuther, and H. Bockhorn, “A DNS Analysis of the Correlation of Heat Release Rate with Chemiluminescence Emissions in Turbulent Combustion.” The 19th Results and Review Workshop of the High Performance Computing Center Stuttgart, Stuttgart. Deutschland, 13–14 October 2016. (Presentation)
  46. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, H. Nawroth, and C. Paschereit, “LES and DNS of Combustion and Combustion Generated Noise.” 2nd Colloquium on Combustion Dynamics and Noise, Menaggio. Italy, 19–22 September 2016. (Presentation)
  47. T. Zirwes, F. Zhang, P. Habisreuther, and H. Bockhorn, “Flame Response to Unsteady Stretching.” 36th International Symposium on Combustion, Seoul. Korea, 31 July–5 August 2016. (Poster)
  48. T. Zirwes, F. Zhang, P. Habisreuther, and H. Bockhorn, “Identification of correlation between OH* chemiluminescence and heat release rate with direct numerical simulation.” John von Neumann Institute for Computing NIC Symposium, Forschungszentrum Jülich. Germany, 11–12 February 2016. (Poster)
  49. T. Zirwes, F. Zhang, P. Habisreuther, and H. Bockhorn, “Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach.” 18th Results and Review Workshop at the High Performance Computing Center Stuttgart, Stuttgart. Germany, 5 October 2015. (Presentation)
  50. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, H. Nawroth, and C. Paschereit, “Direct combustion noise of premixed flames: experiments and simulation using compressible LES and DNS.” Sixteenth International Conference on Numerical Combustion, Avignon. France, 19–22 April 2015. (Poster)
  51. F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM.” 17th Results and Review Workshop at the HLRS, Stuttgart. Germany, 29 September 2014. (Presentation)
  52. F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, and H. Bockhorn, “On Direct Numerical Simulation of Turbulent Combustion with OpenFOAM.” John von Neumann Institute for Computing NIC Symposium, Forschungszentrum Jülich. Germany, 12–13 February 2013. (Presentation)

Awards & Honors

October 2018: Best Paper Award

at the 6th ESI OpenFOAM conference in Hamburg (Germany) (link)

 

May 2018: Best Presentation Award

Joint Meeting of the German and Italian Sections of the Combustion Institute, 41st Meeting on Combustion, Sorrento, May 2018 (link)

 

February 2018: KHYS Internship Grant

Internship program with Peking University, China (link)

 

October 2017: Golden Spike Award

High Performance Computing Center Stuttgart (HLRS). Awarded for Scientific relevance (top in their research field) and optimal usage of HPC equipment in terms of optimization, parallelization and overall performance (link)

 

July 2016: Master (Summa cum Laude)

Master in Chemical Engineering and Process Engineering at the Karlruhe Institute of Technology.

 

June 2015: Scholarship from the Manfred Lautenschläger Foundation

for “Scientific Excellence“ in the MINT field (link)

 

September 2014: Student Award from the DVGW

for the best Bachelor’s thesis on gas fuels awarded by the “Deutscher Verein des Gas- und Wasserfaches” (DVGW)  (link)