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Abstract. FDEM is a black-box solver that solves by a finite difference method arbitrary non-
linear systems of elliptic and parabolic PDEs (partial differential equations) on an unstructured FEM
grid in 2-D or 3-D. The FEM grid serves only for the structuring of the space, i.e. the determination
of the neighboring nodes. In 2-D we use triangles, in 3-D tetrahedrons. For each node we generate
difference formulas of consistency order q with a sophisticated algorithm. By the use of formulas of
order q + 2, an estimate of the discretization error is obtained. An unprecedented feature for such
a general black-box is the error estimate that is computed together with the solution. We present
four applications for the FDEM program package. They arise in different fields of applications, but
for all problems the error estimate shows the quality of the solution. For all these examples it would
be very difficult to obtain a quality control of the solution by conventional grid refinement tests.
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1. Introduction. The most natural way to solve PDEs numerically is the FDM
(finite difference method). Here, derivatives are simply replaced by difference formu-
las, i.e. by a polynomial approach. Therefore, this was the preferred and original
method. However, the classical difference formulas are 1-D formulas in x, y, z and
therefore need a rectangular grid that restricts essentially the geometrical flexibil-
ity. For this reason, the FEM (finite element method) has become the most popular
method. Here, by the “triangularization” of the space, full geometrical flexibility is
obtained. However, the PDEs are not solved directly, but in a form where the PDE is
multiplied by a test function and integrated over the domain. In the integral, deriva-
tives are shifted from the solution to the test function by partial integration. This
results in a “weak” solution. The FEM needs a complicated theory for each type of
PDE.

The dream is to have a FDM with the full geometrical flexibility of the FEM.
This dream has become true in the FDEM (finite difference element method) that is
a FDM on an unstructured FEM mesh. From the element list and its inverted list,
we select nodes in rings around the central node of the difference formula. Because
there are linear dependencies on straight lines, we select more nodes than are needed
for the chosen polynomial order q. A sophisticated algorithm has been developed to
select from this set of nodes those nodes that result in the best difference formulas of
consistency order q. Once the nodes are selected, our method could be called “mesh-
free” because then the mesh that has only been necessary for finding neighboring
nodes is no longer used. From the difference of formulas of order q and q + 2, we get
an estimate of the discretization error. The explicit character of the FDM allows the
discretization including the error estimates which results in the error equation that is
solved together with the computation of the solution.

Up to now PDEs have not been solved by black-box solvers that include an error
estimate: Happy are those people that do not see the errors. In the FEM an explicit
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error estimate for a black-box solver is not possible. Therefore, only mesh refinement
can be used to test the accuracy which is not possible if the problem itself goes to the
limit of the available computer. Our error estimate makes directly visible the problems
of the numerical solution. The examples below will demonstrate the invaluable benefit
and insight that results from the error estimate. Therefore, FDEM is a unique method
for the numerical solution of arbitrary nonlinear systems of PDEs.

Other useful properties of the FDEM program are: The knowledge of the error
allows a local mesh refinement to obtain a requested accuracy, it allows to balance
all errors in space and time and it is used for the stopping of the Newton-Raphson
iteration. FDEM is a monolithic code that is efficiently parallelized on distributed
memory parallel computers.

However, the use of such a code is only possible by well-trained experts. Therefore,
our intention is not to sell the code but to offer a service where the partner gives us his
PDEs and we, the experts, solve them for him, much better than his own people could
do it. The ideal numerical simulation is the cooperation of the engineer or physicist
at the one side and the computer scientist at the other side. This is our philosophy.

2. The FDEM Code. We want to solve nonlinear elliptic and parabolic systems
of PDEs in 2-D and 3-D with arbitrary nonlinear boundary conditions (BCs) where we
use an unstructured mesh on an arbitrary domain. The domain may be composed of
several subdomains with different systems of PDEs. The solutions of the subdomains
are coupled by coupling conditions (CCs). We want a robust black-box solver with
a reliable error estimate that we also use for the order control and for a local mesh
refinement.

We discuss the solution method in 2-D; the extension to 3-D is too extensive so
that we refer to [8] for details. The most general operator that we admit for the PDEs
and BCs in 2-D, with the unknown solution u(t, x, y), has the form

Pu ≡ P (t, x, y, u, ut, ux, uy, uxx, uyy, uxy) = 0(2.1)

where u and Pu are vectors with l components (system of l PDEs), if the variables are
e.g. u, v, p, we have l = 3. If we include t and ut, the system is parabolic, otherwise
it is elliptic.

A basic paper on FDEM is [6], a progress report is [7]. A detailed report is
available online, see [8].

2.1. The Generation of Difference and Error Formulas. For the genera-
tion of the difference and error formulas, we make use of a finite difference method of
consistency order q which means local approach of the solution u by a polynomial of
order q. The 2-D polynomial of order q is

Pq(x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + · · · + am−1y

q.(2.2)

This polynomial has m coefficients a0 to am−1 where m = (q + 1)(q + 2)/2. For the
determination of these m coefficients, we need m nodes with coordinates (x0, y0) to
(xm−1, ym−1). For example, for q = 2 we need m = 6 nodes.

We make use of the principle of the influence polynomials to get explicit difference
formulas. For a node i, the influence polynomial Pq,i of order q is defined by

Pq,i(x, y) =
{

1 for (xi, yi)
0 for (xj , yj), j �= i.

(2.3)
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This means that the influence polynomial Pq,i has function value 1 in node i and 0 in
the other m − 1 nodes. Then the discretized solution u which we denote by ud (the
index d means “discretized”) can be represented by

ud(x, y) := Pq(x, y) =
m−1∑
i=0

ui · Pq,i(x, y).(2.4)

By the evaluation of Pq,i for a grid point x = xj , y = yj, we obtain the coefficients
of an interpolation polynomial at a node j. The difference formulas are the partial
derivatives of the interpolation polynomial Pq, i.e. we have to differentiate (2.4). For
example, for the difference formula for ux which we denote by ux,d we get

ux,d :=
∂Pq(x, y)

∂x
=

m−1∑
i=0

ui ·
∂Pq,i(x, y)

∂x
.(2.5)

The other difference formulas are computed analagously, so we use ∂2ud/∂x2 for uxx,d

or ∂2ud/∂x∂y for uxy,d.
In order to use these formulas, we have to determine the coefficients of the influ-

ence polynomials Pq,i. Therefore, we put into (2.2) the coordinates (xj , yj) of the m
surrounding nodes of the central node. So each of these m nodes creates one equation
and one r.h.s., and we get m linear systems of equations for each node of the mesh.
If we denote by M the coefficient matrix and by A the matrix where we have in the
ith column the coefficients of the ith influence polynomial Pq,i, we can write

M · A = I(2.6)

with

M =

⎛
⎜⎜⎜⎝

1 x0 y0 x2
0 x0y0 y2

0 · · · yq
0

1 x1 y1 x2
1 x1y1 y2

1 · · · yq
1

...
...

1 xm−1 ym−1 · · · yq
m−1

⎞
⎟⎟⎟⎠ .(2.7)

We get this relation by writing out (2.2) for the m influence polynomials. The solution
of (2.6) is

A = M−1(2.8)

which means that the coefficients of the ith influence polynomial are in the ith column
of the matrix M−1.

But in order to be able to form the matrix M we have to choose m nodes out
of all surrounding nodes of the evaluation node. As we want to have good difference
and error formulas to get a good solution and error estimate, this is one of the most
critical sections in the whole solution process. On the one hand, we want the m nodes
to be as close as possible around the evaluation node because we want to have local
information in the interpolation polynomial. Wider difference stars would introduce
false information if the function values change rapidly. Furthermore, they would
increase the bandwidth of the resulting large sparse matrix Qd for the solution of
our PDEs what would lead to a larger storage requirement and higher computing
time. On the other hand, we also need nodes that are farther away in order to get
information about the solution that closer nodes cannot give.
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The FEM mesh is generated by a commercial mesh generator. When the grid file
is read in, the node numbers of the elements, which consist of three nodes in 2-D,
are stored in the element list (gives nodes of an element). The nodes are collected
in rings around the central node. The inverted element list (gives elements in which
a node occurs) gives us the elements the central node belongs to. From the element
list we get all nodes that belong to these elements. With the help of a logical mask
(to exclude already collected nodes) we get the first ring. For the following rings, this
procedure is repeated for the nodes of the current ring until we have collected enough
nodes.

As we have seen above, we only need m nodes for the determination of the matrix
M (2.7) because we have m coefficients in each of the m influence polynomials. But
then there is the risk that the matrix could become singular if some of the m nodes
are linearly dependent, e.g. on a straight line. This occurs easily for a rectangular
grid. So we do not search only for nodes up to order q. Instead we search for nodes
up to order q +Δq where Δq is the so-called surplus order. Δq must be at least equal
to 2 because the error formulas we generate are formulas of order q + 2. So usually
we set Δq = 4 because we also need additional nodes for the error formulas in order
to avoid linear dependencies.

Another criterion that the collected nodes must fulfil is that we have to collect
enough rings. Therefore, we collect q + 2 rings around each node because on a rect-
angular grid we must have q + 2 rings for the order of the error formula. The number
of surplus nodes we have collected is denoted by r.

To get “normalized” equations, the m + r nodes are transformed to the square
between −1 and +1 in x- and y-direction. We want to have nodes in the difference
stars that are close to the central node. Therefore, we arrange the equations according
to the ring structure and afterwards we normalize to absolute row sum equal to 1.
We execute the Gauss-Jordan algorithm with row pivoting for the computation of
the inverse M−1 (2.8) and allow the crossing of a ring limit only if the current pivot
element |pivot| ≤ εpivot. The parameters Δq and εpivot determine the quality of the
difference and error formulas and therefore are the key for the whole solution process.

2.2. The Estimate of the Discretization Error. In Subsect. 2.1 we ex-
plained how we generate difference formulas of arbitrary consistency order q in space.
By these formulas, we get an easy access to the estimate of the discretization error. If
we denote e.g. the difference formula of order q for the derivative ux by ux,d,q (index
d means “discretized”), it holds

ux = ux,d,q + d̄x,q = ux,d,q+2 + d̄x,q+2,(2.9)

where d̄x,q and d̄x,q+2 denote the exact discretization errors for the formulas of order
q and q +2, respectively. If we resolve the second and third part of (2.9) for the error
of the order q and neglect the error of the higher order formula ux,d,q+2, the error
estimate dx is defined by

dx = ux,d,q+2 − ux,d,q,(2.10)

i.e. by the difference to the order q + 2. If we resolve the first and the second part of
(2.9) for the exact error d̄x,q = d̄x, we get

d̄x = ux − ux,d,q,(2.11)

If we compare (2.11) to (2.10), we see that for the estimate the derivative is replaced
by a “better” formula which holds only for sufficiently fine grid. Equation (2.10) is the
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key for our explicit error access. If the higher order formula is not a better formula,
we get large errors. So we have a built-in self-control of the error estimate.

2.3. The Error Equation. Pu (2.1) is an arbitrary non-linear function of its
arguments. Therefore, we linearize system (2.1) with the Newton Raphson method
by the approach

u ⇐ u(ν+1) = u(ν) + Δu(ν)(2.12)

where we immediately drop the iteration index ν, and we linearize (2.1) in the Newton
correction function Δu, i.e. we also get the corresponding derivatives of Δu, e.g.
Δuxx. So we get a linear PDE for the Newton correction function Δu:

QΔu ≡ −∂Pu

∂u
Δu − ∂Pu

∂ut
Δut −

∂Pu

∂ux
Δux − · · · − ∂Pu

∂uyy
Δuyy

= P (t, x, y, u, ut, ux, uy, uxx, uyy, uxy)
(2.13)

where the r.h.s. P (. . .) ≡ Pu ≡ Pu(ν) is the Newton residual for u(ν). The ∂Pu/∂u...

are the l× l Jacobian matrices. For a scalar PDE with only one unknown variable, it
is a scalar value. If we have a system of l PDEs where u and Pu have l components,
the Jacobian matrices look like this, e.g.:

∂Pu

∂u
=

⎛
⎜⎝

∂P1u
∂u1

· · · ∂P1u
∂ul

...
...

∂Plu
∂u1

· · · ∂Plu
∂ul

⎞
⎟⎠ ,

∂Pu

∂ux
=

⎛
⎜⎜⎝

∂P1u
∂u1,x

· · · ∂P1u
∂ul,x

...
...

∂Plu
∂u1,x

· · · ∂Plu
∂ul,x

⎞
⎟⎟⎠ .(2.14)

Now we discretize (index d) the linear Newton-PDE (2.13) by replacing function values
by their value on the grid and derivatives by difference formulas:

Δu ⇐ Δud, Δut ⇐ Δut,d, Δux ⇐ Δux,d, . . .(2.15)

where e.g. Δux,d is the difference formula for Δux. However, the derivatives of
the function u = u(ν) in P (. . .) are replaced by difference formulas plus their error
estimates:

u ⇐ ud, ut ⇐ ut,d + dt, ux ⇐ ux,d + dx, . . .(2.16)

where e.g. dx is the discretization error estimate for the difference formula ux,d (see
Subsect. 2.2).

Then we linearize also in the discretization errors which again introduces Jacobian
matrices (2.14). These additional error terms on the “level of equation”, i.e. on
the consistency level where we approximate a differential equation by a difference
equation, create corresponding error terms on the “level of solution”. If we arrange
all these error terms on the l.h.s., we finally get the error equation for the overall
error Δud:

Δud = ΔuPu + ΔuDt + ΔuDx + ΔuDy + ΔuDxy (level of solution)

= Q−1
d [(Pu)d + Dt + {Dx + Dy + Dxy}] . (level of equation)

(2.17)

Qd denotes the large sparse matrix resulting from the discretization. It is the Q of
(2.13) where all derivatives have been replaced by difference formulas. The inverse
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Q−1
d is never explicitly computed as it is a full matrix. (Pu)d is the “discretized”

Newton residual where all derivatives have been replaced by difference formulas that
are evaluated for ud = u

(ν)
d . The Dμ are discretization error terms that result from

the linearization in the dμ, e.g.

Dx =
∂Pu

∂ux
dx +

∂Pu

∂uxx
dxx.(2.18)

In the brackets of the second row of (2.17) we have error terms that can be com-
puted “on the level of equation” and that are transformed by Q−1

d to the “level of
solution”. These corresponding errors on the solution level are arranged above their
source terms. So the overall error Δud has been split up into the parts that result
from the corresponding terms on the level of equation.

The only correction that is applied is the Newton correction ΔuPu that results
from the Newton residual (Pu)d. It is computed from

QdΔuPu = (Pu)d(2.19)

by the linear solver program package LINSOL [10]. The Newton-Raphson iteration is
stopped, if ΔuPu is small enough, see Subsect. 2.4. The other error terms in the first
row of (2.17) are only used for the error control. If we applied these terms, we had
no error estimate any more. This approach also implies that we can explicitly follow
the effect of a discretization error to the level of solution.

2.4. The Selfadaptation Process. For the determination of the optimal space
order, we compute the space key error ‖Dx + Dy + Dxy‖i for each node i for the
orders q = 2, 4, 6 and select the order with the smallest value. Thus each node gets
an individual order.

Before we discuss the selfadaptation in space direction, we need a scale for the
accuracy on the level of equation in the sense of the error equation (2.17). Therefore,
the user prescribes a global relative tolerance tol for the solution, and the refinement
process is stopped if

‖Δud‖rel :=
‖Δud‖
‖ud‖

≤ tol(2.20)

holds where ‖ · ‖ denotes the maximum norm. For the control of the solution process,
we need a corresponding value on the level of equation. So we use the argument that
the tolerances on the level of equation and on the level of solution behave like the
norms of the errors on the level of equation (‖(Pu)d‖, Newton residual) and on the
level of solution (‖ΔuPu‖rel, relative Newton correction). So we get the following
relation for tolg on the level of equation:

tolg

tol
=

‖(Pu)d‖
‖ΔuPu‖rel

.(2.21)

With the relative Newton correction

‖ΔuPu‖rel =
‖ΔuPu‖
‖ud‖

(2.22)

it holds for tolg

tolg = tol · ‖ud‖ ·
‖(Pu)d‖
‖ΔuPu‖

.(2.23)
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A node i for which ‖Dx +Dy +Dxy‖i > sgrid · tolg holds (sgrid is a tuning factor) is a
refinement node, and the triangles (or tetrahedrons) the node belongs to are refined
by halving the edges. For resaons of data organization we admit three nodes on an
edge at most which may induce a refinement cascade. Space order control and mesh
refinement are optional features of FDEM. For details, we refer to [1].

The tolerance on the level of equation tolg is also used for the stopping of the
Newton-Raphson iteration:

‖(Pu)d‖ < f · max
(

1
2

tolg, ‖Dx + Dy + Dxy‖
)

(2.24)

where f is a safety factor. The smaller we set f the smaller ‖(Pu)d‖ must be to stop
the Newton iteration, i.e. there will be executed more Newton steps. The iteration is
also stopped if the relative Newton correction is small enough:

‖ΔuPu‖rel <
1
10

tol.(2.25)

2.5. Parallelization. For the numerical solution of large PDE problems, we
need much computation time and memory. Therefore, we need an efficiently par-
allelized program that is executed on distributed memory parallel computers with
message passing (MPI). For the generation of the difference and error formulas, we
need rings of neighbored nodes. Therefore, we re-sort the nodes for their x-coordinate,
at first locally on each of the np processors, then globally by a special algorithm by
which up to np/2 processors are active in parallel. By the sorting the nodes are dis-
tributed with increasing x-coordinate in np nearly equal parts on the np processors
which results in a 1-D domain decomposition [8, §2.8], see Fig. 2.1. Note that FDEM
is also a black-box solver concerning the domain: We do not know which 2-D or 3-D
domain the user will deliver.

The elements are distributed correspondingly: An element is owned by the pro-
cessor that owns its leftmost node. Here we make use of the “basket principle”: Each
processor puts its old, static data in a basket that is sent around in a nearest neighbor
ring in np tacts. The np processors are conceptually treated as a linear arrangement
with wrap-around, or more precisely as a ring. In each tact the processors take the
information they need out of the current basket.

If we want to execute the generation and evaluation of the difference and error
formulas and the computation of the matrix Qd and the r.h.s. (Pu)d purely local
without communication, we also have to store on processor ip node and element
information of its left and right neighbor processor(s) which is indicated as overlap,
see Fig. 2.1.

a) b)proc.

1 2 3 4

proc. ip-1 ip ip+1

overlap overlapown

necessary nodes on proc. ip

ip-1, ip+1: overlap processors of proc. ip

Fig. 2.1. Illustration of the distribution of the data to the processors.
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The re-sorting of the nodes and elements onto the processors must be repeated
after each mesh refinement to guarantee an efficient load-balancing.

The solution process of the PDEs starts with the data distributed onto the pro-
cessors where on each processor a local numbering over all own and overlap data is
used. So each processor can compute its part of the matrix Qd and the r.h.s. (Pu)d

completely independent of the other processors without communication as if it was
a single processor and not only one processor in a parallel computer. Each proces-
sor calls the linear solver LINSOL with its part of the linear system of equations as
parameter. The key for this seemingly quite simple procedure is the overlap and the
local numbering. To solve the linear system of equations, we need communication
between the processors in LINSOL, and finally each processor gets its part of the
Newton correction ΔuPu. Quite naturally, after each Newton step the values of ud

for the overlap nodes must be exchanged between the processors in FDEM.

2.6. Academic Examples. The purpose of these academic examples is to check
the quality of the error estimate (which is one level higher than the usual check for
the quality of the solution), see [8, §2.10]. We define the global relative error for a
component j of the solution and the global relative error by

‖Δud,j‖
‖ud,j‖

,
‖Δud‖
‖ud‖

= max
j

‖Δud,j‖
‖ud,j‖

,(2.26)

where Δud,j is computed from the error equation (component j of (2.4.8) in [8]). The
norm ‖ ·‖ is the maximum norm. For the test of our program, we use a PDE of which
we know the exact solution. So we prescribe the test solution ū(x, y) and generate
from the original PDE Pu = 0 a “test PDE”

Pu − P ū = 0(2.27)

that has ū as solution. P ū is our problem with the known function ū(x, y) instead
of the unknown function u. Note that P ū is a given function of x and y which is an
absolute term in the test PDE that contains no variables. This prescription holds also
for the BCs. The exact global relative error then is

‖ū − ud‖
‖ud‖

.(2.28)

We compute by FDEM the estimated relative error ‖Δud‖rel (2.20) and compare this
error to the exact relative error and thus get information about the quality of our
error estimate.

Another important question is if the Newton-Raphson method converges. New-
ton’s method converges quadratically if we are close enough to the solution. If not,
anything may happen. Therefore, we introduce the damped Newton method with a
relaxation factor that controls if the Newton residual (Pu)d decreases in the Newton
step, see [8, §2.5].

We compute on the HP XC6000 with 1.5 GHz Intel Itanium2 processors and
Quadrics interconnect (University of Karlsruhe, Germany). As exact solution ū we
select either a polynomial of a given order or a sugar loaf type function (2.10.16)
in [8]. We solve the Navier-Stokes equations in velocity/vorticity form (2.10.13) in [8]
with the unknown functions velocity components u, v and vorticity ω, and Reynolds
number Re = 1. We solve on a circle with radius= 1 on a grid with 751 nodes,
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Table 2.1

Results for the solution of the Navier-Stokes type equations on a circle with 751 nodes for
different consistency orders q and test function ū.

order q = 2 order q = 4 order q = 6

error exact CPU error exact CPU error exact CPU
type ū error estim. sec. error estim. sec. error estim. sec.

pol. 0.154 0.158 0.914 · 10−2 0.175 0.108 · 10−10 2.131
order 6 0.155 0.367 · 10−1 0.109 · 10−8

sugar 0.694 · 10−1 0.168 0.238 · 10−1 0.184 0.457 · 10−2 1.853
loaf 0.642 · 10−1 0.220 · 10−1 0.736∗

∗ here the order 8 for the error estimate is overdrawn (too coarse grid)

1410 elements that has been generated by the commercial mesh generator I-DEAS.
We compute with 8 processors. The given CPU time is that of the master processor 1.

Table 2.1 shows the results. Here are two remarks: For ū polynomial of order 6
and consistency order q = 6 we should reproduce ū exactly which is expressed by the
small errors. For the sugar loaf function and consistency order q = 6, we get a large
error estimate. This shows the built-in self-control: Near the top of the sugar loaf
the grid is too coarse for the consistency order q + 2 = 8 that is used for the error
estimate, the order 8 is “overdrawn” (higher order may not be better).

For the demonstration of the self-adaptation, we solve the same problem with
the sugar loaf function again with 8 processors, but now we switch on the mesh
refinement and order control for a global relative error of 0.25%. The results are
shown in Table 2.2. The requested accuracy needs three refinement cycles. “no. of
nodes ref.” is the number of refinement nodes that determine the refinement elements
from which then follows the new number of nodes. Observe the excellent error estimate
that results from the optimal local order. Figure 2.2 shows the initial mesh and the
refined mesh in the 3rd cycle, the refinement is clearly visible.

Table 2.2

Results for the self-adaptation of mesh and order for sugar loaf test function for prescribed
global relative error 0.25 · 10−2 (0.25%).

no. no. no. of no. of nodes global relat. sec.
of of nodes with order error for

cycle nodes elem. ref. 2 4 6 exact estimated cycle

1 751 1410 132 427 320 4 0.305 · 10−1 0.280 · 10−1 1.021

2 1332 2493 345 180 1144 8 0.109 · 10−1 0.950 · 10−2 3.604

3 2941 5469 − 360 2556 25 0.179 · 10−2 0.174 · 10−2 10.086

As mentioned above we wanted to demonstrate the quality of the error estimate.
The estimate is the better the smaller the error is, this is a natural consequence
of (2.10). What we have seen in Table 2.1 is also part of our test technique for each
new problem: At first we create from the new problem a test PDE Pu− P ū = 0 and
check with polynomial test solutions ū the error estimate like in Table 2.1.



10 T. ADOLPH AND W. SCHÖNAUER
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Fig. 2.2. Initial mesh (left) and refined mesh for 3rd cycle of Table 2.2 (right).

3. Applications. We present the results of four problems that we solved in
industrial and academic cooperations and that come from four completely different
fields of application. We carry out the calculations on two distributed memory parallel
computers that are installed at the Steinbuch Centre for Computing of the Karlsruhe
Institute of Technology in Germany: The first one is the HP XC6000 with 1.5 GHz
Intel Itanium2 processors and Quadrics interconnect, the second one is the HP XC4000
with 2.6 GHz AMD Opteron processors and InfiniBand interconnect. As we cannot
present all the details for the discussed examples for the reason of space limitation, the
reader can directly see the cited equations at the computer because all the references
are accessible by the Internet.

3.1. Fluid-structure Interaction Problem for an Injection Pump and
Heat Conduction in a Thin Annulus. In a high pressure Diesel injection pump
the housing extends under the injection pressure of 2000bar and the piston is com-
pressed. The lubrication gap between housing and piston, which has a width of only
a few micrometers, changes its form and consequently the leakage flow changes. This
is a fluid-structure interaction problem. The problem is simplified by replacing the
complicated shape of the housing by a tube or bush, see Fig. 3.1. The piston does
not move, so we have a static configuration. A detailed presentation of this problem
(industrial cooperation) is given in [8, §3.3].

The domain of solution has three subdomains with different PDEs: In the housing
and piston we must solve the elasticity equations of steel, in-between we have the gap
with the Navier-Stokes equations for Diesel. The coupling between these domains is
the following: The fluid pressure p is the normal stress for housing and piston, so
we have a direct interaction of the flow on the structure. By this normal stress, the
housing expands and the piston is compressed, thus the form of the gap changes,
and this changes the flow which changes p and thus the normal stress etc. So the
interaction of housing and piston on the flow is indirect and more complicated and
requires an iterative procedure.

We solve the problem in axisymmetrical coordinates, then x in Fig. 3.1 becomes
the radius r. For the elasticity equations in housing and piston, the dependent vari-
ables are the displacements w and u in z- and r-direction, the stresses σz , σr, σϕ and
the shear stress τrz (= τzr). Although we have rotational symmetry with ∂/∂ϕ = 0,
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Fig. 3.1. Symbolic configuration and dimensions in mm. In reality the gap is extremely thin.

there is circumferential stress σϕ. So we have six variables and need six PDEs. They
are given in (3.3.4.1)–(3.3.4.6) in [8, p. 129].

In the lubrication gap we must solve the Navier-Stokes equations. The variables
are the velocity components w and u in z- and r-direction and the pressure p. So we
need a system of three equations that are given in (3.3.4.17)–(3.3.4.19) in [8, p. 123].

As the fluid is incompressible, we can prescribe the pressure only at one position,
e.g. 2000bar at the entry. We prescribe a parabolic velocity profile for w with wmax

in the middle of the entry. We determine wmax iteratively to get an exit pressure
equal to zero. Then the pressure on the dividing lines determines the displacements
in the structure, and thereby also the fluid changes its form, and we have to compute
a new value wmax again. If the grid does no longer move, we have the solution of
our problem. So we have a fourfold nested iteration: The innermost iteration is the
Newton iteration for the solution of the PDEs, then we must determine wmax for the
exit pressure zero, then we must apply the displacements until the grid does no longer
move. The outermost iteration gives the possibility to increase gradually the entry
pressure.

Table 3.1

Max. value, max. and mean relat. error and volume flow through the gap for entry pressure of
2000 bar for housing and lubrication gap.

Housing
Var. Unit max. solution max. relat. error mean relat. error

w cm 0.4140 · 10−2 0.57 · 10−4 0.20 · 10−5

u cm 0.7583 · 10−3 0.46 · 10−3 0.23 · 10−4

σz N/cm2 0.2238 · 10+5 0.22 · 10−2 0.29 · 10−5

σr N/cm2 0.2000 · 10+5 0.41 · 10−2 0.55 · 10−5

σϕ N/cm2 0.2771 · 10+5 0.93 · 10−3 0.20 · 10−4

τrz N/cm2 0.9259 · 10+3 0.36 · 10−1 0.20 · 10−4

Fluid
Var. Unit max. solution max. relat. error mean relat. error Volume

w cm/s 0.3765 · 10+4 0.10 · 10−1 0.29 · 10−2 2.65 cm3/s
u cm/s 0.4034 · 100 0.26 · 10+2 0.16 · 10+1

p N/cm2 0.2000 · 10+5 0.83 · 10−1 0.72 · 10−2

We used a grid of 401× 80 in z,r-direction for the housing, 401× 641 for the fluid
and 401 × 40 for the piston. We computed with 32 processors of the HP XC6000.
The CPU time on the master processor 1 was 7.54h, of which 7.41 h were needed
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for the linear solver LINSOL [10] with full LU preconditioning. Table 3.1 gives some
results for 2000bar entry pressure for housing and fluid. In Table 3.3.5.1 in [8, p. 138],
further values for entry pressures of 1500bar to 3000bar are given. In Fig. 3.2 one
can see the form of the lubrication gap for 2000bar entry pressure; the bold lines
show the original channel. It is amazing how the high injection pressure changes the
lubrication gap from the manufacturing dimension of 2.5μm to up to 11.5μm. The
error estimates in Table 3.1 show the quality of the solution. For the fluid there is a
maximal error of w of 1%, and the (arithmetic) mean error is only 0.29%.
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Fig. 3.2. Contour plot for the velocity w in z-direction for 2000 bar and its error, and original
channel (bold lines).

Figure 3.2 shows the contour plot of the velocity w in z-direction which is respon-
sible for the leakage flow that is in this case 2.65 cm3/s. Figure 3.2 also shows its error
plot. Here we can see that the large errors occur only locally. There a much finer grid
should be used. As the mean error of w is 0.29%, we can conclude that the volume
flow is also accurate to this error level. Note that this is a global error estimate that
includes all the errors of all the equations in the coupled domains. Here the error
estimate gives us the certainty that we can trust our solution. The reader may think
how he could get this certainty by other methods for this complicated fluid-structure
interaction problem.

Additionally, we are interested in the calculation of the stationary temperature
field of the fluid in the lubrication gap between housing and piston. Therefore, we
solve the heat equation for an incompressible Newtonian fluid using axisymmetric
cylindrical coordinates in the gap. We use the same equation also in the piston and
the housing, but due to vanishing flow velocities the equation becomes very simple.

For this computation, the changed form of the lubrication gap and the velocities
are given, and by the solution of the PDE systems we obtain the temperature T in
piston, housing and, as a matter of particular interest, in the gap. Both piston and
housing consist of steel, while the lubricant in the gap is a model fluid. The material
properties for the fluid, i.e. the thermal diffusivity, the kinematic viscosity and the
specific heat capacity, as well as the BCs on the eight external boundaries and the
CCs on the two dividing lines are given in [4]. For the three subdomains we used the
same grids as for the fluid-structure interaction problem before.

We carried out the computation on 16 processors of the distributed memory
supercomputer HP XC6000. The computation time for the master processor 1 is
155 sec. The results of the computation are shown in Table 3.2 where we present the
maximum temperature, the maximum relative estimated error and the mean relative
estimated error for the three subdomains.
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Table 3.2

Maximum temperature, maximum and mean relative estimated error for piston, lubrication gap
and housing for entry pressure of 2000 bar.

global relat. error
subdomain Tmax [℃] max. mean

piston 98.2 0.29 · 10−1 0.46 · 10−4

lubrication gap 98.9 0.29 · 10−1 0.84 · 10−3

housing 87.8 0.40 · 10−2 0.24 · 10−4

We see that the maximum relative errors are about 3% for the piston and the
lubrication gap, but errors in the range of the maximum error appear only in a few
nodes as the mean relative errors are 0.46 · 10−4 in the piston and 0.84 · 10−3 in the
lubrication gap. In the housing the errors are even smaller.
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Fig. 3.3. Contour plot for the temperature T and its error in the lubrication gap.

Figure 3.3 shows the temperature T in the fluid and its error. The temperature
increases from 20℃ at z = 0 to 98.9℃ at z = 4 cm. From the error picture at the
right side of the figure, we can also see that the maximum errors occur only locally.
For the contour plots of the temperature in the piston and the housing, we refer to [4].

3.2. Simulation of a Power Semiconductor Module. In the following a
thermal problem will be presented which is encountered in the thermal predictive
simulation of power semiconductor modules (e.g. dc/ac-converters). Heat sources are
MOSFET-devices (or other semiconductor devices) on the top side of the module.
The cooling is applied at the bottom side of the module, either by a convective liquid
or gas (air) stream. For a detailed description of the problem and the results, we refer
to [3].

In power semiconductor modules, the temperature evolution T (x, t) in the module
and in the power dissipating devices is described by the time-dependent linear heat
conduction equation. An essential nonlinearity arises due to the convective cooling at
the bottom side, which is included by a corresponding boundary condition.

In order to have simple geometry and BCs, the whole module is assumed to
be of rectangular structure with uniform material. The dimensions (side lengths)
of the module are: 11.8 cm length; 5.8 cm width; 0.5 cm height. There are six chip
heat sources in the module which do not disturb the geometry of the rectangular
parallelepiped and are assumed as embedded regions with heat generation density
H(x, t) different from zero. Those six “chips” are quadratic and of equal dimension
(0.9 × 0.9 cm2) oriented in one row at the top side of the module, see Fig. 3.4. The
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thickness of the chips is 0.02 cm (200μm), and the top side of the chips is on the same
plane as the top side of the rectangular module.
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Fig. 3.4. Illustration of the subdomains with external boundaries and SDL and of the module
top surface with the position of the six chips.

This is a 3-D problem, and as we want to compute the temperature distribution
on the top surface of the module at a given time, it is also time-dependent. Fur-
thermore, as the MOSFET-devices are very thin in comparison with the remainder
of the module, we separate the module into two subdomains: The upper subdomain
is as thick as the MOSFET-devices, the lower subdomain contains the remainder of
the module. As we expect greater temperature gradients in the upper subdomain,
and as it would be too costly to have the same fine grid in the lower subdomain, we
choose different mesh sizes in x- and y-direction in the two subdomains. Thus, we
introduce a sliding dividing line (SDL) between the two subdomains that allows for
non-matching grid; they are coupled by CCs, see [8, §2.6].

Figure 3.4 shows the ten external boundaries and the SDL of the domain. The
CCs on the SDL between the two subdomains are equal temperature and equal heat
flow. The material parameters for the solid materials that we use for the computation
are given in [3].

The following calculation is performed: At start time t = 0 the module has
homogeneous temperature Ta = 297K. The chips are turned on with power dissipation
of 250W/Chip. This means a heat generation density H of 250W/chipvolume =
15,432.1W/cm3 for each of the six chips. What are the temperature contours on the
top side of the module after 50 seconds?

We carried out the computation on 32 processors of the distributed memory
supercomputer HP XC4000, and we used the consistency orders q = 2 and q = 4 to
see the influence of the order. We used 237 × 117 × 9 = 249,561 nodes in the upper
subomain, and 119 × 59 × 9 = 63,189 nodes in the lower subdomain. Therefore, the
total number of grid points (and unknowns) is 312,750. The linear solver LINSOL
[10] for the solution of the resulting linear system of equations consumes about 99.5%
of the total CPU time.

In Table 3.3 we present the results of the computation. For the consistency orders
q = 2 and q = 4, you can see the maximum temperature Tmax and the errors of the
solution for the upper and the lower subdomain. The maximum error is the maximum
of the global relative estimated error, i.e. it is the maximum absolute error in the
subdomain divided by the maximum of the temperature. The mean error is the
arithmetic mean of all relative errors in the subdomain. The given CPU time is that
of the master processor 1.

For order q = 2, the maximum temperature, which is actually met in the centre
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Table 3.3

Results of the first calculation with H = 250 W/Chip.

global relat. error CPU
Order Subd. Tmax [K] max. mean time [h]

q = 2 upper 526.4 0.11 · 10−1 0.81 · 10−3 7.0
lower 524.2 0.69 · 10−2 0.17 · 10−3

q = 4 upper 526.2 0.78 · 10−2 0.17 · 10−3 42.0
lower 524.1 0.22 · 10−2 0.35 · 10−4

of the 3rd chip from the left, is 526.4K after 50 sec. In the lower subdomain, the
maximum temperature is only slightly smaller. The maximum error in the upper
domain is about 1%, in the lower subdomain it is only 0.7%, which means that we
have a solution that is accurate to 6K. The mean errors are much smaller which means
that the maximum errors occur only in few nodes. Considering the mean error, the
solution is accurate to 0.5K.
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Fig. 3.5. Contour plot for the temperature T and its error on the top side of the module for
q = 4 after 50 sec. (H = 250 W/Chip).

We see that the maximum temperatures for order q = 2 and q = 4 differ only
slightly, but the maximum errors in the subdomains are reduced to 2/3 in the upper
and to 1/3 in the lower subdomain if we compute with order q = 4 instead of q = 2.
The mean errors are reduced to about 1/4 in both subdomains. For order q = 4 the
solution is accurate to 4 K, and if we look at the mean error, it is accurate to 0.1K.

Figure 3.5 shows the temperature T on the surface of the module and its error for
the computation with consistency order q = 4. From the error picture, we can also
see that the maximum errors occur only in few nodes.

For further details, we refer to [3] due to the limited space. There we also solve
a second problem with a degraded array on the sixth chip with an additional power
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dissipation of 50W. Besides contour plots we present scalability tests for this problem
where we computed on 32, 64, 128, 256 and 512 processors.

3.3. Numerical Solution of the PDEs for PEMFCs. The PEMFCs (Proton
Exchange Membrane Fuel Cell or Polymer–Electrolyte–Membrane FC) are the “cold”
FCs, operating at about 330K. The domain of solution for the used model is the gas
diffusion layer (GDL) that is half open to the oxygen channel at its lower left and half
closed by a rib at its lower right, see Fig. 3.6. How this is cut out of a whole cell can
be seen at Fig. 1 on p. III.4 in [9].
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Fig. 3.6. Domain of solution for the PEMFC.

We use a model with a MTPM (Mean Transport Pore Model) transport mech-
anism. The variables for this problem are the molar flux densities of oxygen in x-
direction ṅx

o and y-direction ṅy
o , similarly for water vapor ṅx

w and ṅy
w, and for nitro-

gen ṅx
n and ṅy

n, the partial pressure for oxygen po, for water pw and for nitrogen pn,
the total pressure p and as a special variable that has physical meaning only at the
reaction layer the current density i. The 11 PDEs for these 11 variables are given in
Part I of [9], and in Table 1 on p. III.6 is shown which equation is used for which
variable position. The effective permeabilities that occur in the PDEs depend in a
complicated nonlinear way from the pressure p and the partial pressures pi. We do
not discuss here the BCs, they are given on pp. III.9–III.11 in [9].

We compute with consistency order q = 4 on 32 processors of the HP XC6000, and
we use a grid with 200× 201 nodes resulting in 442,200 unknowns. The computation
time was 4,123 sec on master processor 1.

Table 3.4

Results of the numerical simulation of a PEMFC.

Var. max. solution max. relat. error mean relat. error

ṅx
o 0.9850 · 10−1 0.61 · 10−1 0.55 · 10−2

ṅy
o 0.1062 · 100 0.64 · 10−1 0.10 · 10−2

ṅx
w 0.1969 · 100 0.61 · 10−1 0.55 · 10−2

ṅy
w 0.2124 · 100 0.64 · 10−1 0.10 · 10−2

ṅx
n 0.3038 · 10−4 0.11 · 101 0.11 · 100

ṅy
n 0.1438 · 10−4 0.69 · 100 0.79 · 10−1

po 0.1795 · 105 0.27 · 10−1 0.69 · 10−2

pw 0.2452 · 105 0.27 · 10−1 0.69 · 10−2

pn 0.6753 · 105 0.25 · 10−2 0.65 · 10−3

p 0.1013 · 106 0.47 · 10−6 0.12 · 10−6

i 0.3221 · 104 0.19 · 10−1 0.50 · 10−2

In Table 3.4, we present the results of the computation. Figure 3.7 shows a typical
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result for ṅy
w and its error. There is a quasi-singularity at the lower boundary where

the BCs change from channel to rib. In [9] on pp. III.15–III.24 are figures of this
type for all variables. So the engineer can see if he can trust the solution. If there was
no error estimate, he had to do grid refinement tests and observe for all variables and
nodes (here 442,200 values) how they change with finer grid. So the error estimate
that consumes only a fraction of the total computation time is an invaluable feature
in the solution process.
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Fig. 3.7. Contour plot of molar flux density of water vapor in y-direction ṅy
w and its error.

3.4. Numerical Solution of the PDEs for SOFCs. The SOFCs (Solid Oxide
FCs) are the “hot” FCs, operating at about 1,200K. The domain of solution for the
used model is the anode with flow in porous media and the gas channel with Navier-
Stokes equations, see Fig. 3.8.
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Fig. 3.8. Domain of solution for the SOFC.

The solution domain consists of two subdomains with different PDEs and a di-
viding line DL in-between which is an interior boundary where we must prescribe
CCs. As the model includes methane reforming, the variables are the flow veloc-
ities ux, uy in x- and y-direction, the mole fractions YCH4 for methane, YCO for
carbon monoxide, YH2 for hydrogen, YCO2 for carbon dioxide, YH2O for steam, and
pressure p. The eight PDEs for the eight variables are given in [9, Part II]. In the
channel, we have Navier-Stokes-type equations and species transport equations. In
the anode, the Navier-Stokes equations are replaced by Darcy’s law. Here, the species
transport equations have additional terms by the y-dependence of p and by the chem-
ical reactions. These equations are extremely nonlinear because the viscosity of the
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gas mixture and the diffusion coefficients depend nonlinearly on the Y..., similarly the
reaction rates are depending.

The BCs for the six external boundaries and the CCs for the dividing line DL are
given in Tables 17–19 on pp. III.40 and III.41 in [9].

The numerical solution of these equations is much more critical than that of the
PEMFCs because of the extreme nonlinearity of the coefficients. We compute with
a grid with 80 × 41 nodes in both channel and anode, resulting in 52,480 unknowns,
and we use consistency order q = 4. The computation time on 8 processors of the HP
XC6000 is 510 sec on master processor 1.

Table 3.5

Results of the numerical simulation of a SOFC.

Channel Anode
global relat. error global relat. error

Var. max. sol. max. mean max. sol. max. mean

ux 0.6734 · 100 0.36 · 10−2 0.35 · 10−3 0.2288 · 10−1 0.76 · 10−1 0.12 · 10−2

uy 0.1750 · 10−1 0.39 · 10−1 0.13 · 10−2 0.1750 · 10−1 0.91 · 10−2 0.14 · 10−2

YCH4 0.3300 · 100 0.19 · 10−2 0.40 · 10−4 0.3300 · 100 0.96 · 10−2 0.14 · 10−3

YCO 0.2022 · 100 0.15 · 10−1 0.36 · 10−2 0.2022 · 100 0.42 · 10−1 0.44 · 10−2

YH2 0.5755 · 100 0.64 · 10−2 0.77 · 10−3 0.5752 · 100 0.18 · 10−1 0.99 · 10−3

YCO2 0.8065 · 10−1 0.82 · 10−2 0.10 · 10−2 0.1270 · 100 0.36 · 10−1 0.86 · 10−3

YH2O 0.6700 · 100 0.89 · 10−2 0.16 · 10−2 0.6700 · 100 0.31 · 10−1 0.21 · 10−2

p 0.1014 · 106 0.11 · 10−5 0.76 · 10−6 0.1082 · 106 0.16 · 10−2 0.50 · 10−3

The results of the computation are presented in Table 3.5. The colour plots of
the results and error estimates for all eight variables in the channel and anode are
presented in [9, pp. III.47–III.62]. Here we only present the plots of the mole frac-
tion YCO and its error for the anode with thickness dA = 2mm in Fig. 3.9.
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Fig. 3.9. Contour plot of mole fraction YCO and its error for the anode (dA = 2mm).

The ampleness of the generated information can be estimated only if one looks
at all the nice colour plots of the report [9]. There the engineer can immediately
see the quality of the solution from the error plots, this is an unprecedented gain in
information.

3.5. Numerical Simulation of a Microreactor. We simulate numerically the
mixing and the chemical reactions in a microreactor. Here a laminar jet enters from
a pipe, perpendicular to the main flow in a channel. The inflow conditions for the jet
and the cross flow are given by two different prescribed velocity profiles. Chemical
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component B enters in the main channel, by the side channel component A is entered.
Fig. 3.10 shows the configuration of the investigated microreactor. We assume an
incompressible fluid with Reynolds number 25 where the chemical components A and
B are reacting and produce component Q.
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Fig. 3.10. Configuration of the investigated microreactor.

We use the following notations: velocity components u, w, pressure p, the mass
fractions of A, B, Q are denoted by YA, YB, YQ.

We use nondimensional equations with reference length being the diameter D of
the jet and reference velocity the velocity U∞ of the cross flow. We need a system
of six PDEs for the six variables u, w, p, YA, YB, YQ: For the mixture we use the
continuity equation and two momentum equations, and for the chemical reaction we
use two continuity equations for the components YA, YB and Dalton’s law for the
reaction product YQ. For the PDEs, the BCs and the material parameters, we refer
to [2].

In order to get a global relative estimated error in the 1% region, we have to
compute on a very fine grid. We use a grid with 2561 × 641 nodes in the main
channel and 161× 321 nodes in the pipe which yields 1,693,121 nodes and 10,158,726
unknowns. The computation time for consistency order q = 4 on 128 processors of
the HP XC4000 is 11.24h on master processor 1. The results of the computation are
presented in Table 3.6.

Table 3.6

Results of the simulation of a microreactor.

Var. max. solution max. relat. error mean relat. error

u 0.266 · 101 0.31 · 101 0.12 · 10−1

w 0.301 · 101 0.20 · 101 0.46 · 10−2

p 0.100 · 106 0.42 · 10−2 0.23 · 10−2

YA 0.100 · 101 0.12 · 101 0.12 · 10−1

YB 0.100 · 101 0.78 · 100 0.94 · 10−2

YQ 0.597 · 100 0.74 · 100 0.24 · 10−1

We see that the maximum relative errors are quite large for five components but
the mean relative errors are very good. This means that the maximum errors occur
only locally. In Fig. 3.11 we illustrate the solution and the error of the chemical
component YQ. From the error picture, we learn that the maximum errors are at the
left corner where the jet enters into the main channel (in fact, there is only one node
with such a large error). For the colour plots of the other variables and their errors,
we refer to [2].
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Fig. 3.11. Contour plot of mass fraction YQ and its error.

3.6. Comparison of FDEM and FLUENT. One of the referees of the paper
wanted a comparison of FDEM with a commercial code. We selected an example
with nonlinear PDEs, namely the Navier-Stokes equations with chemical reactions.
We knew from our computations that this is a nontrivial “critical” problem. So
we selected the microreactor of Subsect. 3.5. This example is fully covered by the
well-known finite volume code FLUENT. Especially, we want to show the error of the
solution computed with FLUENT (this error is computed with FDEM). We also want
to compare the computation times, the convergence of the code with the mesh size
and the scalability of the codes.

For the comparison, we use a grid that has got approximately a quarter of the
nodes of the grid used in Subsect. 3.5, i.e. there are 1281 × 321 nodes in the main
channel and 81 × 161 nodes in the pipe which yields 424,161 nodes and 2,544,966
unknowns.

First of all, we have to admit that the benefit of the error estimate can only be
achieved by the sacrifice of memory and computation time. As we have to apply LU
preconditioning to compute the solution of such a large and complex linear system of
equations, we have to compute on 128 processors of the HP XC4000. The computation
time of FDEM is 0.66h.

In FLUENT we first compute the solution with the default values for the con-
vergence check which is 10−3 for the flow velocities and the chemical components.
After we computed the solution with the FLUENT program package which requires
20 iteration steps, we compute with the FDEM program package the error of the
FLUENT solution, i.e. we store into FDEM the solution that was computed by FLU-
ENT and then start the error computation. In Table 3.7 we present the maximum of
the solution (computed by FLUENT) as well as the maximum and the mean value
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Table 3.7

Results of the FLUENT computation with default convergence values.

max. solution max. relat. error mean relat. error mean relat. error
Var. (FLUENT) (FLUENT) (FLUENT) (FDEM)

u 0.363 · 101 0.102 · 101 0.109 · 100 0.481 · 10−1

w 0.380 · 101 0.112 · 101 0.170 · 10−1 0.182 · 10−1

p 0.100 · 106 0.135 · 10−2 0.260 · 10−3 0.835 · 10−3

YA 0.100 · 101 0.201 · 101 0.118 · 101 0.266 · 10−1

YB 0.100 · 101 0.192 · 101 0.428 · 100 0.365 · 10−1

YQ 0.640 · 100 0.314 · 101 0.223 · 101 0.421 · 10−1

of the relative estimated error (computed by FDEM) for each solution component.
In column 5 we indicate the mean relative estimated error for the solution that was
computed by FDEM. As we see from Table 3.7, the errors of the FLUENT solution
are very large, e.g. for the most important component YQ the mean error is greater
than 200%! The error for component YQ computed by FDEM is only 4.2%. The
computation time of FLUENT is 0.07 h on 1 processor of the HP XC4000.

Table 3.8

Results of the FLUENT computation with 500 iteration steps.

max. solution max. relat. error mean relat. error mean relat. error
Var. (FLUENT) (FLUENT) (FLUENT) (FDEM)

u 0.231 · 101 0.875 · 100 0.142 · 100 0.481 · 10−1

w 0.300 · 101 0.404 · 100 0.177 · 10−1 0.182 · 10−1

p 0.100 · 106 0.295 · 10−3 0.634 · 10−5 0.835 · 10−3

YA 0.100 · 101 0.201 · 101 0.118 · 101 0.266 · 10−1

YB 0.100 · 101 0.195 · 101 0.453 · 100 0.365 · 10−1

YQ 0.628 · 100 0.318 · 101 0.230 · 101 0.421 · 10−1

So we try to improve these errors by allowing FLUENT to compute a better
solution, i.e. we arbitrarily increase the number of iteration steps to 500, and again
we computed the error of this solution by FDEM. The largest residuum after 500
iteration steps with FLUENT is 0.37 · 10−4 for the flow velocity u. The results are
shown in Table 3.8, and you see that only the errors of the flow velocities and the
pressure decreased, but the errors of the chemical components almost did not change.
By a further increase of the number of iteration steps to 1000 we could not observe
any noticeable effect on the solution and the errors. The computation time for the
FLUENT solution (500 iteration steps) is 2.90h on 1 processor of the HP XC4000.

As FLUENT has no error estimate, the only way to get information about the
accuracy is mesh refinement. Using the very fine grid of Subsect. 3.5 with 1,693,121
nodes, we are surprised that the errors do not become smaller at all. The mean error
for the flow velocity component u is 37%, that one for the chemical component YQ is
211% whereas we have mean errors of 1.2% and 2.4% for u and YQ, respectively, for
the solution computed with FDEM (see Subsect. 3.5)! The computation time for the
FLUENT solution (500 iteration steps) is 15.73h on 1 processor of the HP XC4000.
This result shows the fatal drawback of the lack of an error estimate. FLUENT has
two key parameters for the accuracy of the solution: the number of iterations and
the mesh size. Increasing the number of iterations and reducing the mesh size does
nearly not change the solution, above all the most important result component YQ.
So the user of FLUENT may conclude that he has obtained a “good” solution, but it
is completely wrong. It is not our task to find out the reasons for such a dangerous
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behaviour. The price that we have to pay for the consistent and convergent solution
method FDEM is increased memory and computation time, but the result is reliable.

The scalability of the FDEM code has been proven in [5]. We carried out some
scalability computations for FLUENT for the grid with 424,161 nodes. Therefore,
we computed on 1 to 16 processors on the HP XC4000 and respectively stopped
the computations after 1000 iteration steps. From Table 3.9 we see that the overhead
increases with the number of processors. From 4 to 8 processors we observe a stronger
than expected reduction in computation time. This is not a scaling effect but a cache
effect. Because we have more processors the data per processor are smaller and fit into
the cache, thus reduce the computation time. The performance benchmark test results
published on the FLUENT website [11] are similarly disillusioning: The efficiency of
the parallel algorithm, which is the ratio of speedup to the number of processors,
drops rapidly if one computes on more than 8 processors.

Table 3.9

Scalability tests for FLUENT on HP XC4000.

No. of CPU time speedup efficiency
proc. p [h] sp e = sp/p

1 5.75 1.0 100%
2 3.19 1.8 90%
4 2.15 2.7 68%
8 0.88 6.5 81%
16 0.56 10.3 64%

But one of the severest disadvantages of FLUENT for parallel computing is that
there always is only a limited number of licenses at your disposal. You cannot simply
increase the number of processors to compute the solution in a desired and acceptable
time period, i.e. in contrast to FDEM you cannot use the maximum number of pro-
cessors of a supercomputer because the FLUENT licenses are too expensive. So you
will probably encounter unsurmountable difficulties especially for large 3D problems.

4. Conclusion. The purpose of this paper was to show that an error estimate is
an invaluable advantage for a PDE solver. First, we solved a fluid-structure interaction
problem for a high pressure Diesel injection pump. The high pressure bends up the
housing that the lubrication gap widens from 2.5micrometer up to 11.5micrometer.
The solution algorithm is a complicated nested iteration. Nevertheless, we compute
a global error estimate for the coupled domains of housing, piston and fluid that tells
us that we can trust our solution. Additionally, we solved the heat equation in the
three subdomains. Then we solved the PDEs for the numerical simulation of the
temperature in a power semiconductor module which is very challenging as it is a
time-dependent problem in 3-D with two subdomains. Third, we solved the PDEs for
the numerical simulation of fuel cells of the PEMFC and SOFC type and the error
estimate showed the quality of the solution for all components of the systems. Finally,
we simulated numerically the mixing and the chemical reaction in a microreactor.
This is an extremely challenging problem as we need a very fine grid to get an error
estimate in the 1% region. This is the first time that problems of this type are solved
with the knowledge of the error. This knowledge forces a very fine grid for a 1% error.
So we need supercomputers for seemingly simple problems. The knowledge of the
error reveals the true nature of the numerical complexity of these problems. This is
impressively proven by the comparison of the FDEM code and the FLUENT code.
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Remark: Here are given only own references. The reason is that worldwide there is
no other code that unifies all the properties of FDEM: arbitrary nonlinear systems of
PDEs with arbitrary nonlinear BCs, subdomains with different PDEs, space and time-
global error estimate, mesh refinement, optimization of consistency order, efficient
parallelization with MPI.


