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Happy are those people that do not see the errors.

Summary. At first a brief overview of the Finite Difference Element Method
(FDEM) is given, above all how an explicit estimate of the error is obtained. Then
for some academic examples the estimated and exact error are compared showing
the quality of the estimate. The PDEs for fuel cells of PEMFC and SOFC type with
extremely nonlinear coefficients are solved and the error estimate shows the quality
of the solution. Finally for a complicated fluid/structure interaction problem of a
high pressure Diesel injection pump, where the domain of solution has 3 subdomains
with different PDEs and where a nested iteration procedure is needed, the PDEs
are solved and the global error estimate shows the quality of the solution. For all
these examples it would be very difficult to obtain a quality control of the solution
by conventional grid refinement tests.

1 Introduction

The development of the Finite Difference Element Method (FDEM) at the
computer center of the University of Karlsruhe has been supported by the
German Ministry of Research (BMBF). The application of FDEM to the
numerical simulation of fuel cells (FCs) has been supported by the Research
Alliance Fuel Cells of the state Baden-Württemberg. In this paper we present
a compilation of results of these projects.

Never before such problems have been solved with error estimates. So the
emphasis of this paper will be on the error estimate: together with the solution
we present values or plots for the error estimates. Because of the limited
accorded space of the paper we cannot present all the details of FDEM and
of the examples. However, we will give the precise information where these
details are in the corresponding reports. As these reports are in the Internet,
the reader can immediately have a look at them at his computer.



2 Torsten Adolph and Willi Schönauer

2 The Finite Difference Element Method (FDEM)

FDEM is an unprecedented generalization of the FDM on an unstructured
FEM mesh. It is a black-box solver for arbitrary nonlinear systems of 2-D
and 3-D elliptic or parabolic PDEs. If the unknown solution is u(t, x, y, z) the
operator for PDEs and BCs (boundary conditions) is (2.4.1) and (2.4.2) in [1]:

Pu ≡ P (t, x, y, z, u, ut, ux, uy, uz, uxx, uyy, uzz, uxy, uxz, uyz) = 0 . (1)

For a system of m PDEs u and Pu have m components:

u =

⎛
⎜⎝

u1

...
um

⎞
⎟⎠ , Pu =

⎛
⎜⎝

P1u
...

Pmu

⎞
⎟⎠ . (2)

Because we have a black-box solver, the PDEs and BCs and their Jacobian
matrices of type (2.4.6) in [1] must be entered as Fortran code in prescribed
frames.

The geometry of the domain of solution is entered as a FEM mesh with
triangles in 2-D and tetrahedra in 3-D. The domain may be composed of
subdomains with different PDEs and non-matching grid. From the element
list and its inverted list we determine for each node more than the neces-
sary number of nodes for difference formulas of a given consistency order q.
By a sophisticated algorithm from this set the necessary number of nodes is
selected, see Section 2.2 in [1]. From the difference of formulas of different
consistency order we get an estimate of the discretization error. If we want
e.g. the discretization error for ux and ux,d,q denotes the difference formula of
consistency order q, the error estimate dx is defined by

dx := ux,d,q+2 − ux,d,q , (3)

i.e. by the difference to the order q + 2. This has a built-in self-control: if this
is not a “better” formula the error estimate shows large error.

With such an error estimate we can explicitly compute the error of the so-
lution by the error equation (2.4.8) in [1]. The knowledge of the error estimate
allows a mesh refinement and order control in space and time (for parabolic
PDEs), see Section 2.5 in [1].

A special problem for a black-box solver is the efficient parallelization be-
cause the user enters his domain by the FEM mesh. We use a 1-D domain
decomposition with overlap to distribute the data to the processors, see Sec-
tion 2.8 in [1]. We use MPI. A detailed report on the parallelization is [2].
The resulting large and sparse linear system is solved by the LINSOL pro-
gram package [3] that is also efficiently parallelized for iterative methods of
CG type and (I)LU preconditioning.
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3 Academic Examples

The purpose of these academic examples is to check the quality of the error
estimate (which is one level higher than the usual check for the quality of
the solution), see Section 2.10 in [1]. We define the global relative error for a
component l of the solution and the global relative error by

‖∆ud,l‖
‖ud,l‖ ,

‖∆ud‖
‖ud‖ = max

l

‖∆ud,l‖
‖ud,l‖ , (4)

where ∆ud,l is computed from the error equation (component l of (2.4.8)
in [1]). The norm ‖ · ‖ is the maximum norm. We generate from the original
PDE Pu = 0 a “test PDE” for a given solution ū by Pu−P ū = 0 that has ū
as solution. This prescription holds also for the BCs. The exact global relative
error then is ‖ū − ud‖

‖ud‖ . (5)

We compute on the HPXC6000 with Itanium2 processors of 1.5GHz (Univer-
sity of Karlsruhe). As exact solution ū we select either a polynomial of a given
order or a sugar loaf type function (2.10.16) in [1]. We solve the Navier-Stokes
equations in velocity/vorticity form (2.10.13) in [1] with the unknown func-
tions velocity components u, v and vorticity ω, and Reynolds number Re = 1.
We solve on a circle with radius= 1 on a grid with 751 nodes, 1410 elements
that has been generated by the commercial mesh generator I-DEAS. We com-
pute with 8 processors. The given CPU time is that of the master processor 1.

Table 1. Results for the solution of the Navier-Stokes type equations on a circle
with 751 nodes for different consistency orders q and test function ū

order q = 2 order q = 4 order q = 6

error exact CPU error exact CPU error exact CPU
type ū error estim. sec. error estim. sec. error estim. sec.

pol. 0.154 0.158 0.914E-02 0.175 0.108E-10 2.131
order 6 0.155 0.367E-01 0.109E-08

sugar 0.694E-01 0.168 0.238E-01 0.184 0.457E-02 1.853
loaf 0.642E-01 0.220E-01 0.736∗

∗ here the order 8 for the error estimate is overdrawn (too coarse grid)

Table 1 shows the results. Here are two remarks: for ū polynomial of order 6
and consistency order q = 6 we should reproduce ū exactly which is expressed
by the small errors. For the sugar loaf function and consistency order q = 6
we get a large error estimate. This shows the built-in self-control: near the
top of the sugar loaf the grid is too coarse for the consistency order q + 2 = 8
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that is used for the error estimate, the order 8 is “overdrawn” (higher order
may not be better).

Table 2. Results for the self-adaptation of mesh and order for sugar loaf test func-
tion for prescribed global relative error 0.25 × 10−2 (0.25%)

no. no. no. of no. of nodes global relat. sec.
of of nodes with order error for

cycle nodes elem. ref. 2 4 6 exact estimated cycle

1 751 1410 132 427 320 4 0.305E-01 0.280E-01 1.021

2 1332 2493 345 180 1144 8 0.109E-01 0.950E-02 3.604

3 2941 5469 — 360 2556 25 0.179E-02 0.174E-02 10.086

For the demonstration of the self-adaptation we solve the same problem
with the sugar loaf function again with 8 processors, but now we switch on
the mesh refinement and order control for a global relative error of 0.25%.
The results are shown in Table 2. The requested accuracy needs 3 refinement
cycles. “no. of nodes ref.” is the number of refinement nodes that determine
the refinement elements from which then follows the new number of nodes.
Observe the excellent error estimate that results from the optimal local order.
Figure 1 shows the grid after the 3rd cycle, the refinement is clearly visible.

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1 Grid of 3 cyclerd

Fig. 1. Refined grid after 3rd cycle of Table 2

As mentioned above we wanted to demonstrate the quality of the error
estimate. The estimate is the better the smaller the error is, this is a natural
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consequence of (3). What we have seen in Table 1 is also part of our test
technique for each new problem: we at first create from the new problem a
test PDE Pu − P ū = 0 and check with polynomial test solutions ū the error
estimate like in Table 1.

4 The Numerical Simulation of Fuel Cells (FCs)

This project was supported by the Research Alliance Fuel Cells (FABZ) of
the state of Baden-Württemberg. The corresponding report [4] was written
by ZSW Ulm for the equations of the PEMFCs (Part I), by the IWE of the
University of Karlsruhe for the equations of the SOFCs (Part II) and by the
RZ of the University of Karlsruhe for the numerical solution of the corre-
sponding PDEs (Part III). These problems are characterized by the extreme
nonlinearity of their coefficients that depend in a complicated way on the vari-
ables themselves. Quite naturally we will report here only on that part of [4]
that deals with the numerical solution of the PDEs. Up to now nobody had
solved these PDEs with an error estimate.

4.1 Numerical Solution of the PDEs for PEMFCs

The PEMFCs (Polymer–Electrolyte–MembraneFC or Proton Exchange Mem-
brane FC) are the “cold” FCs, operating at about 300K. The domain of so-
lution for the used model is the GDL (gas diffusion layer) that is at its lower
left half open to the oxygen channel and at its lower right half closed by a
rib, see Fig. 2. How this is cut out of a whole cell can be seen at Fig. 1 on
page III.4 in [4].
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symmetry
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�
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reaction layer
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r/2

(0.5 mm)

rib

Fig. 2. Domain of solution for the PEMFC

The variables for this problem are the molar flux densities of oxygen in
x-direction ṅx

o and y-direction ṅy
o , similarly for water vapor ṅx

w and ṅy
w, and
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for nitrogen ṅx
n and ṅy

n, the partial pressure for oxygen po, for water pw and
for nitrogen pn, the total pressure p and as a special variable that has physical
meaning only at the reaction layer the current density i. So we have 11 vari-
ables and need a system of 11 PDEs. These PDEs are given in Part I of [4],
and in Table 1 on page III.6 is shown which equation is used for which variable
position. We show below as an example a typical species transport equation,
but without explanation of the notations:

ṅx
o

DKno
+ pwṅx

o−poṅx
w

Dowp + pnṅx
o−poṅx

n

Donp + 1
RT

∂po

∂x − po

RTp
∂p
∂x

+
[

Bo

DKno
+ Bopw

Dowp

(
1 − Bw

Bo

)
+ Bopn

Donp

(
1 − Bn

Bo

)]
po

RTp
∂p
∂x = 0 .

(6)

The effective permeabilities Bj depend in a complicated nonlinear way from
the pressure p and the partial pressures pi. We do not discuss here the BCs,
they are given on pages III.9–III.11 in [4].
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Fig. 3. Contour plot of molar flux density of water vapor in y-direction ṅy
w and its

error
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We computed with 32 processors of the HP XC6000 with 1.5GHz Itanium2
processors on a grid of 200 × 201 nodes in x,y-direction, we used consistency
order q = 4. Because we have 11 variables per node we have 442200 unknowns.
The computation time was 4123 sec on the master processor 1.

Figure 3 shows a typical result for ṅy
w and its error. There is a quasi-

singularity at the lower boundary where the BCs change from channel to rib.
Figure 4 shows the current density i and its error along the reaction layer.
This is the most interesting quantity for the engineers.

imean = 2981,92                              i
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Fig. 4. Current density i along the reaction layer and its error

In [4] on pages III.15–III.24 are figures of type Fig. 3 for all variables.
So the engineer can see if he can trust the solution. If there would be no
error estimate he had to do grid refinement tests and observe for all variables
and nodes (here 442200 values) how they change with finer grid. So the error
estimate that consumes only a fraction of the total computation time is an
invaluable feature in the solution process.
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4.2 Numerical Solution of the PDEs for SOFCs

The SOFCs (Solid Oxide FCs) are the “hot” FCs, operating at about 1200K.
The domain of solution for the used model is the anode with flow in porous
media and the gas channel with Navier-Stokes equations, see Fig. 5.
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Fig. 5. Domain of solution for the SOFC and numbering of the boundaries

Here we have a solution domain that consists of two subdomains with
different PDEs and a dividing line in-between for which we must prescribe
coupling conditions (CCs) which are interior BCs. Because the model includes
methane reforming, the variables are the flow velocities ux, uy in x- and y-
direction, the mole fractions YCH4 = Y3 for methane, YCO = Y4 for carbon
monoxide, YH2 = Y5 for hydrogen, YCO2 = Y6 for carbon dioxide, YH2O = Y7

for steam, and pressure p. So we have 8 variables and need 8 PDEs for the
anode domain and 8 PDEs for the gas channel domain. These PDEs are given
in Part II of [4]. In Table 12 on page III.31 the sequence of the variables and
equations in the channel is given and in Table 15 on page III.36 in the anode.

In the channel we have Navier-Stokes-type equations, e.g. the y-momentum,
(18) on page III.32 in [4]:

�ux
∂uy

∂x + �uy
∂uy

∂y + ∂p
∂y − ∂µ

∂y

(
4
3

∂uy

∂y − 2
3

∂ux

∂x

)

− µ
(

4
3

∂2uy

∂y2 + 1
3

∂2ux

∂x∂y + ∂2uy

∂x2

)
− ∂µ

∂x

(
∂ux

∂y + ∂uy

∂x

)
= 0 ,

(7)

and we have transport equations like that for methane, (19) on page III.32
in [4]:

− ∂p
∂xuxY3 − ∂ux

∂x pY3 − ∂Y3
∂x pux − ∂p

∂y uyY3 − ∂uy

∂y pY3 − ∂Y3
∂y puy

+ ∂D3,gas

∂y

(
∂p
∂y Y3 + ∂Y3

∂y p
)

+ D3,gas

(
∂2p
∂y2 Y3 + 2 ∂p

∂y
∂Y3
∂y + ∂2Y3

∂y2 p
)

= 0 .
(8)

In the anode the Navier-Stokes equations are replaced by Darcy’s law. The
species transport equations have additional terms by the y-dependence of p
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and by the chemical reactions. The transport equation for methane, (34) on
page III.37 is now

− ∂p
∂xuxY3 − ∂ux

∂x pY3 − ∂Y3
∂x pux − ∂p

∂y uyY3 − ∂uy

∂y pY3

− ∂Y3
∂y puy + D3,gas

(
∂2p
∂y2 Y3 + 2 ∂p

∂y
∂Y3
∂y + p∂2Y3

∂y2

)

+ ∂D3,gas

∂y

(
∂p
∂y Y3 + ∂Y3

∂y p
)

+ D3,gas

(
∂2p
∂x2 Y3 + 2 ∂p

∂x
∂Y3
∂x + p∂2Y3

∂x2

)

+ ∂D3,gas

∂x

(
∂p
∂xY3 + ∂Y3

∂x p
)
− RT

dA
r3 = 0 .

(9)

These equations are extremely nonlinear because µ in (7) and the Di,gas de-
pend nonlinearly on the Yj , similarly the reaction rates rk are depending.

Here we must define the BCs for the 6 boundaries of Fig. 5 and the CCs
for side 1 and side 2 of the dividing line DL. These conditions are given in
Tables 17–19 on pages III.40 and III.41 in [4].
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Fig. 6. Contour plot of mole fraction YCO and its error for the anode

The numerical solution of these equations was much more critical than
that of the PEMFCs because of the extreme nonlinearity of the coefficients.
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We computed with a grid with 80 nodes in x-direction and 41 nodes in the
channel and 41 nodes in the anode in y-direction, resulting in 52480 unknowns.
We used consistency order q = 4. The computation time on 8 processors of
the HP XC6000 with processors Itanium2, 1.5GHz, was 510 sec on the master
processor 1. The colour plots of the results and error estimates for all 8 vari-
ables in the channel and anode are presented in [4], pages III.47–III.62. We
present here only the mole fraction YCO and its error in Fig. 6 for the anode.

The ampleness of the generated information can be estimated only if one
looks at all the nice colour plots of the report [4]. Here the engineer can
immediately see the quality of the solution from the error plots, this is an
unprecedented gain in information.

5 Fluid/Structure Interaction for a High Pressure Diesel
Injection Pump

A detailed presentation of this problem (cooperation with Bosch) is given
in Section 3.3 in [1]. In a high pressure Diesel injection pump the housing
extends under the injection pressure of 2000bar and the piston is compressed
so that the lubrication gap between housing and piston changes its form and
consequently the leakage flow changes. This is a fluid structure interaction
problem. The problem is simplified by replacing the complicated shape of the
housing by a tube or bush, see Fig. 7. The piston does not move, so we have
a static configuration.
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Fig. 7. Symbolic configuration and dimensions in mm. In reality the gap is extremely
thin

Our domain of solution now has 3 subdomains with different PDEs: in the
housing and piston we must solve the elasticity equations of steel, in-between
we have the gap with the Navier-Stokes equations for Diesel. The coupling
between these domains is the following: the fluid pressure p is the normal
stress for housing and piston, so we have a direct interaction of the flow on
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the structure. By this normal stress the housing expands and the piston is
compressed, thus the form of the gap changes and this changes the flow which
changes p and thus the normal stress etc. So the interaction of housing and
piston on the flow is indirect and more complicated and requires an iterative
procedure.

We solve the problem in axisymmetrical coordinates, then x in Fig. 7
becomes the radius r. For the elasticity equations in housing and piston the
dependent variables are the displacements w and u in z- and r-direction,
the stresses σz , σr, σϕ and the shear stress τrz (= τzr). Although we have
rotational symmetry with ∂/∂ϕ = 0, there is circumferential stress σϕ. So
we have 6 variables and need 6 PDEs. They are given in (3.3.4.1)–(3.3.4.6)
on page 129 in [1]. Here we show the first and last of these equations in
incremental form (index “old” is for the last solution):

1
E

[σz − σz,old − ν(σϕ − σϕ,old) − ν(σr − σr,old)] − ∂w

∂z
= 0 , (10)

∂τrz

∂r
+

∂σz

∂z
+

τrz

r
= 0 . (11)

Here E is the elasticity module and ν is Poisson’s ratio. Table (3.3.4.7) in [1]
gives the information which equation is used in which position (for which
variable) in the system of 6 equations.

In the lubrication gap we must solve the Navier-Stokes equations. The
variables are the velocity components w and u in z- and r-direction, and the
pressure p. So we need a system of 3 equations. Here we show the momentum
equation in r-direction and the continuity equation, (3.3.4.17) and (3.3.4.19)
on page 123 in [1]:

u
∂u

∂r
+ w

∂u

∂z
+

1
�

∂p

∂r
− η

�

(
∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2

)
= 0 , (12)

∂u

∂r
+

u

r
+

∂w

∂z
= 0 . (13)

Here η and � are the dynamical viscosity and the density. But now we have
a problem: the whole domain has 3 subdomains where two of them have
6 variables and PDEs, and one has 3 variables and PDEs. However, the code
is designed for the same number of variables in the whole domain. So we add
in the fluid domain 3 dummy variables with variable= 0 as PDEs and BCs.

Table (3.3.4.20) on page 133 in [1] shows which equation is used in which
position of the system, i.e. for which preferred variable: for w we take the con-
tinuity equation, for u the r-momentum equation and for p the z-momentum
equation. This is a quite natural ordering. If we want to discuss the BCs for the
flow we immediately meet a serious problem: at the entry we have a prescribed
pressure of 2000bar = 200N/mm2 and at the exit of 0 bar. Because in the
Navier-Stokes equations there is only ∂p/∂z we can prescribe for incompress-
ible flow the pressure only at one position, e.g. 2000bar at the entry. Then the
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pressure at the exit is the result of the Navier-Stokes equations. At the high
pressure entry we prescribe a parabolic velocity profile for w: w(r) =parabola
with wmax in the middle of the entry. The choice of wmax determines the
pressure at the exit, i.e. the pressure drop in the gap. This introduces what
we call wmax-iteration: we start with an appropriate value of wmax, deter-
mine pexit and if it is too large we increase wmax (gives larger pressure drop),
if it is too small, we reduce wmax. This is made by a sophisticated iteration
procedure.

The detailed discussion of the BCs for housing, piston and fluid is given
in Section 3.3.4 in [1] and would be too lengthy for this paper. However,
the essential part is the coupling between fluid and structure: if we have
computed displacements for the pressure p given by the fluid flow, we apply in
an incremental form these displacements by a shift algorithm that is presented
in Section 3.3.3 in [1]. The index “old” in (10) denotes the values before the
shifting (on the old grid). Then we observe if the grid still shifts. This induces
what we call grid iteration. If the grid does no longer move we have the
solution of our problem. Thus we have the nested iterations shown in Fig. 8:

pressure incrementation

grid iteration

wmax-iteration

Newton iteration

Fig. 8. The nested iterations for the solution process

The innermost iteration is the Newton iteration for the solution of the PDEs,
then we must determine wmax for the exit pressure zero, then we must apply
the displacements until the grid does no longer move. The outermost iteration
gives the possibility to increase gradually the entry pressure.

When we made the first numerical experiments we had serious difficulties
caused by the extreme differences in length scales: housing and piston in cm,
lubrication gap in micrometer, see Fig. 7. After some trials we decided to use
cm as length scale. The discretization errors of housing and piston for the used
grid caused the surfaces to be “rough” in the micrometer scale. Therefore we
applied a smoothing of these surfaces.

We used a grid of 401 × 80 in z,r-direction for the housing, 401 × 40 for
the fluid and 401× 81 for the piston. We computed with 16 processors of the
HP XC6000 with 1.5GHz Itanium2 processors. The CPU time on the master
processor 1 was 3354 sec, of which 3296 sec were needed for the linear solver
LINSOL with full LU preconditioning. Table 3 gives some results for 2000bar
entry pressure for housing and fluid. In Table 3.3.5.1 on page 138 of [1] further
values for entry pressures of 1500bar to 3000bar are given. Figure 9 shows the
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Table 3. Maximum value of solution component, max. relat. error and mean relat.
error of solution component and volume flow through the gap for entry pressure of
2000 bar

Housing

max. solution max. error mean error

w cm 0.4143E−02 0.10E−03 0.11E−04
u cm 0.7584E−03 0.32E−03 0.82E−04
σz N/cm2 0.2244E+05 0.30E−02 0.12E−04
σr N/cm2 0.2000E+05 0.28E−02 0.22E−04
σϕ N/cm2 0.2772E+05 0.65E−03 0.67E−04
τrz N/cm2 0.9837E+03 0.24E−01 0.87E−04

Fluid

max. solution max. error mean error Volume [cm3/s]

w cm/s 0.3339E+04 0.87E+00 0.14E−01 2.40
u cm/s 0.3810E+00 0.96E+02 0.10E+01
p N/cm2 0.2000E+05 0.94E−01 0.60E−02

form of the lubrication gap for 2000bar entry pressure. The bold lines show
the original channel. It is amazing how the high injection pressure changes
the lubrication gap from the manufacturing dimension of 2.5micrometer to
up to 11.5micrometer. The error estimates in Table 3 show the quality of
the solution. For the fluid there is a maximal error of w of 87%, but the
(arithmetic) mean error is 1.4%, so large errors occur only locally.
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Fig. 9. Fluid domain with computational grid for 2000 bar entry pressure and orig-
inal channel (bold lines)
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Figure 10 shows the contour plot of the velocity w in z-direction which is
responsible for the leakage flow that is in this case 2.40 cm3/s. Figure 10 also
shows its error plot. Here we can see that the large errors occur only locally.
There a much finer grid should be used. As the mean error of w is 1.4% we can
conclude that the volume flow is also accurate to this error level. Note that
this is a global error estimate that includes all the errors of all the equations
in the coupled domains. Here again the error estimate gives us the certainty
that we can trust our solution. The reader may think how he could get this
certainty by other methods for this complicated fluid/structure interaction
problem.

z (cm)

r
(c

m
)

0 1 2 3 4

0.3998

0.4000

0.4002

0.4004

0.4006

0.4008

0.4010

0.4012
3000
2500
2000
1500
1000
500

w (cm/s) 2000 bar

z (cm)

r
(c

m
)

0 1 2 3 4

0.3998

0.4000

0.4002

0.4004

0.4006

0.4008

0.4010

0.4012
8.0E-01
6.0E-01
4.0E-01
2.0E-01
1.0E-01
5.0E-02

error-w 2000 bar

Fig. 10. Contour plot for the velocity w in z-direction for 2000 bar and its error

6 Concluding Remark

The purpose of this paper was to show that an error estimate is an invalu-
able advantage for a PDE solver. We have shown for some academic examples
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where we constructed PDEs with known solution, that our error estimate gives
an excellent approximation for the exact error. It is the better the smaller the
error is. Then we solved the PDEs for the numerical simulation of fuel cells
of PEMFC and SOFC type and the error estimates showed the quality of the
solution for all components of the systems. Finally, we solved a fluid/structure
interaction problem for a high pressure Diesel injection pump. The high pres-
sure of 2000bar bends up the housing that the lubrication gap widens from
2.5micrometer up to 11.5micrometer. The solution algorithm is a complicated
nested iteration. Nevertheless we compute a global error estimate for the cou-
pled domains of housing, piston and fluid that tells us that we can trust our
solution. The conventional way would be to do a sequence of grid refinements.
The reader may imagine what amount of work would be necessary to obtain
a comparable information like our error estimate.
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