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Abstract

This report is the most detailed report about the Finite Difference Element Method (FDEM). FDEM has
been implemented in the FDEM program package. The development of the method and of the code are
closely interconnected.

FDEM is a black-box solver that solves by a finite difference method arbitrary non-linear systems of
PDEs (partial differential equations) on an unstructured FEM grid. The 2-D or 3-D PDEs must be of el-
liptic or parabolic type. The FEM grid serves only for the structuring of the space, i.e. the determination
of the neighboring nodes. In 2-D we use triangles, in 3-D tetrahedrons. For each node we generate with a
sophisticated algorithm by means of neighboring nodes difference formulas of consistency orderq, option-
ally q = 2 or q = 4 or q = 6. By the use of formulas of orderq + 2 an estimate of the discretization error
is obtained. For parabolic equations we use in time direction (for stability reasons) fully implicit difference
formulas of consistency orderp < 6, with error estimate by formulas of orderp + 1.

The knowledge of the error permits a selfadaptation of the solution method. In time direction the orderp

and the time step are always automatically optimized. In space direction the solution can be adapted to a
requested accuracy by grid refinement (bisection of triangle or tetrahedron edges).

For many technical applications the solution domain is composed from subdomains in which hold dif-
ferent PDEs, e.g. a fluid structure coupling. It is not possible to differentiate the solution across boundaries
of the subdomains. Therefore we have introduced in FDEM “dividing lines” (which are in 3-D in effect
dividing areas). These dividing lines are internal boundaries. The solutions on both sides of the dividing
lines are coupled by coupling conditions (CCs). Thus one gets over the whole domain (composed of several
subdomains) a global solution with global error estimate. The meshes on both sides of a dividing line have
not to coincide, one may have non-matching grids.

Because FDEM must solve arbitrary non-linear systems of PDEs, the linearization is executed by the
Newton-Raphson method. In order to make the method as robustas possible we check after each iteration
step if the defect has decreased. If this does not hold we try with a selfadapted relaxation factor to reduce the
defect. The Newton method is terminated if the Newton defectis smaller than a corresponding discretization
error term, that no unnecessary digits are computed.

From the discretization of the PDEs result very large and sparse linear systems of equations. These
are solved by the LINSOL program package that has also been developed at the Computer Center of the
University of Karlsruhe. LINSOL comprises CG methods of quite different types for the iterative solution,
and also contains a direct solver with optionally reduced fill-in that can be used as preconditioner for the
iterative solvers.

FDEM and LINSOL have been developed from the beginning for efficient data structures on distributed
memory parallel computers. Here the distribution of the data to the processors plays the decisive role. We
use a 1-D domain decomposition that can be executed automatically and runs over dividing lines. For grid
refinement a new distribution of the data is executed after each refinement step. The exchange of the data
between the processors takes place by the quasi standard MPI. Thus FDEM is running efficiently on shared
and distributed memory computers.

FDEM is a program package for the solution of PDEs that hasunique properties. To us no other
program package is known that unifies in a single code comparable properties concerning the flexibility of
the solution method, of the solution domain, of the error estimate and of the parallelization.

As FDEM is a black-box solver, the user must enter the PDEs, BCs (boundary conditions) and CCs as
Fortran code in given program frames. In Chapter 4 this is demonstrated for the PDEs of Section 3.4.

In Chapter 3 three examples for the application of FDEM to different technical problems are presented:
for the numerical simulation of the manufacturing of metal bellows, of the lubrication gap in a Diesel High
Pressure Injection Pump and of the oxygen diffusion in a PEM fuel cell.
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Preface

1 Preface

On January 1, 2001 started the research project “FDEM: Weiterentwicklung und Anwendung des
Finite Difference Element Method (FDEM) Programmpaketes zur Lösung von partiellen Differen-
tialgleichungen” (the title of this report is the English translation). It was a cooperative project
(Verbundprojekt) between the Computer Center of the University of Karlsruhe (Rechenzentrum der
Universität Karlsruhe), the Institute for Metal Forming Technology of the University of Stuttgart
(IFU=Institut für Umformtechnik) and three manufacturers: The IWKA-BKT (Stutensee near Karls-
ruhe), that were interested in the numerical simulation of the manufacturing process of metal bellows
for which the IFU had to deliver the material equations, the High Pressure Diesel Injection Pump
branch of Bosch (Stuttgart), that were interested in the numerical simulation of certain aspects of
injection pumps at 2000 bar, and Freudenberg Forschungsdienste (Weinheim) that were interested in
the numerical simulation of oxygen diffusion in the non-woven (Vliesstoff) layer of a fuel cell. The
two universities were supported by the BMBF (German Ministry of Education and Research) under
grant 01 IRA 16A and 16B, the manufacturers financed their part themselves.

There were two main goals of the research project: a) the evolution of the FDEM program package
so that it could treat domains where different subdomains had non-matching grids and could slide
relative to each other, and b) to demonstrate that FDEM couldsolve difficult industrial problems for
which there is no standard software available on the commercial market. The evolution according to
a) was needed to treat the problem of Bosch and will be needed for future problems of IWKA-BKT
for multi-layered metal bellows.

We want to thank all institutions and people that cooperatedto make this research project possible.
We hope that the result will help to develop in the future better and more efficient technologies to
advance the German economy in the worldwide technical competition.

This research report is organized as follows: In Chapter 2 the FDEM is presented in all details.
Chapter 3 describes the application of FDEM to the three problem areas of the industrial partners.
Chapter 4 is a type of User‘s guide for FDEM.
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2 The FDEM Program Package

2.1 Introduction

The basic purpose of FDEM is to deliver a robust and efficient black box solver for the solution
of arbitrary nonlinear systems of elliptic and parabolic PDEs under arbitrary nonlinear boundary
conditions (BCs) on an arbitrary 2-D or 3-D domain. The domain may be composed from differ-
ent subdomains with different PDEs and different non-matching grids. The subdomains may even
slide relative to each other. The solution method is the FDM (Finite Difference Method) with ar-
bitrary consistency orderp in time direction (for parabolic PDEs) and arbitrary consistency orderq
in space direction. The difference formulas are generated on an unstructured FEM (Finite Element
Method) mesh, in 2-D triangles, in 3-D tetrahedrons, hence the name Finite Difference Element
Method (FDEM). It should be stressed that the FEM mesh (mostly generated by a commercial mesh
generator, e.g. I-DEAS, PATRAN) is only used for the structure of the space, i.e. for the neighbor-
hood relations of the nodes. The solution method is purely FDM.

The explicit character of the FDM (in contrast to the FEM) together with the fact that we can
generate difference formulas of arbitrary consistency order allows a simple and easy access to the
discretization error. The knowledge of the error in turn allows to adapt the solution by local mesh re-
finement to a prescribed relative tolerance, and it allows even to determine for each node the optimal
consistency order.

It is evident that such a highly sophisticated algorithm cannot be invented from scratch. We needed
more than a decade to develop all the building blocks that arefinally used in FDEM. The basic
ideas were developed in the SLDGL (Selbstadaptive Lösung von Differentialgleichungen) program
package [1] that consisted of several subpackages for different types of elliptic and parabolic PDEs
(1-D, 2-D, 3-D, fixed or variable grid etc.). This was for scalar computers. Then came the vector
computers and we made a complete redesign, the FIDISOL program package [2] to vectorize the
code efficiently, see Chapter 17 in [2]. Up to here the PDEs were solved on a rectangular domain
with rectangular grid. So the geometrical flexibility was still missing. To improve the geometrical
flexibility we developed the CADSOL (Cartesian Arbitrary Solver) program package [3]. Here we
have arbitrary geometrical domain, but with a body-oriented grid. We developed the algorithm to
generate difference and error formulas of arbitrary consistency order on an arbitrary set of 2-D or 3-D
points and we also developed the concept of dividing lines totreat coupled domains with different
PDEs. For a body-oriented grid each node knows its neighborsfrom the node indices. However,
the usually hand-generated body-oriented grid is still a severe restriction. What we needed is such a
method on an unstructured FEM mesh.

This final goal was attained in the FDEM program package: The structure of the 2-D or 3-D space
is given by a corresponding FEM mesh that gives us full geometrical flexibility. The neighborhood
relation between the nodes is given by the element list, we have dividing lines with matching grid
and sliding dividing lines with non-matching grid to separate subdomains with different PDEs. The
most challenging problem, however, was the efficient parallelization of such a complicated algorithm
on distributed memory parallel computers. Here we make ample use of the basic principle of the
separation of the selection and of the processing of the datato save communication [4]. A basic
paper on FDEM is [5], a progress report is [6].

This chapter is organized as follows: In Section 2.2 the generation of difference and error formulas
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is presented. Section 2.3 tells how we estimate the discretization error that is used in Section 2.4 to
estimate the total error of the solution. In Section 2.5 the selfadaptation is discussed. Section 2.6
presents how different subdomains with different PDEs are treated by dividing lines. In Section 2.7
the extension to 3-D is discussed, Secion 2.8 presents the parallelization for distributed memory par-
allel computers. In Section 2.9 we make some remarks to our linear solver LINSOL. In Section 2.10
are presented some “academic” examples to demonstrate the properties of FDEM.

2.2 The generation of difference and error formulas of arbit rary consistency
order for space and time

FDM means that the solutionu is in each node locally approximated by a polynomial. Here wedis-
cuss at first the approximation in the space coordinatesx, y, z. For the sake of simplicity we explain
the procedure for 2-D, i.e. forx, y, and we discuss the extension to 3-D below. If we want a FDM
of consistency orderq we select for the approximation a polynomial of orderq which means that we
get the exact solution if the solution itself is a polynomialof orderq. This is used for the test of the
FDM, see later section. The 2-D polynomial of orderq is

Pq(x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + · · · + am−1y

q. (2.2.1)

This polynomial hasm coefficientsai, where

m = (q + 1)(q + 2)/2. (2.2.2)

For the determination of them coefficientsa0 to am−1 we needm nodes with coordinates (x0, y0)
to (xm−1, ym−1) . Forq = 2 we needm = 6 nodes, see Fig. 2.2.1.

Figure 2.2.1:Example ofm = 6 nodes for a polynomial of orderq = 2.

If we would directly determine a polynomial that interpolates the 6 function valuesui of the
6 nodes, the function values would be “hidden” in the polynomial. However, for the FDM we need
difference formulas where the function valuesui (variables) appear explicitly. Therefore we deter-
minem “influence polynomials”Pq,i of orderq. The influence polynomialPq,i has function value1
in nodei and0 in the otherm − 1 nodes:

Pq,i =

{
1 in nodei,
0 in other nodes.

(2.2.3)
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2.2 The generation of difference and error formulas of arbitrary consistency order for space and time

To determine the coefficientsak of the influence polynomialPq,i we put into (2.2.1) the coordinates
(xj, yj) of them nodes and forj = i the value ofPq,i is 1 and0 for j 6= i. This givesm systems of
equations with the same matrixM and them columns of the unit matrixI as r.h.s. Thesem systems
can be expressed in the following form:

i = 0 · · · m − 1

equ : j = 0 : 1 · a0,i + x0a1,i + · · · + yq
0am−1,i = 1 0

1 0 0

· · ·

· · ·

j = m − 1 : 1 · a0,i + xm−1,ia1,i + · · · + yq
m−1am−1,i = 0 1.

(2.2.4)

The solution of each system are the coefficientsa0,i to am−1,i of the ith influence polynomialPq,i.
If we denote byM the coefficient matrix of the systems (2.2.4)

M =








1 x0 y0 x2
0 x0y0 y2

0 . . . yq
0

1 x1 y1 x2
1 x1y1 y2

1 . . . yq
1

...
...

1 xm−1 yq
m−1








(2.2.5)

and byA the matrix whose columni are the coefficients of theith influence polynomial, i.e. the
solution of theith system (2.2.4), we can write (2.2.4) and its solution

M · A = I, A = M−1 (2.2.6)

which means that the coefficients of theith influence polynomial are theith column of the inverse
M−1 of the coefficient matrixM (2.2.5), which is an interesting interpretation of the inverse in our
case.

With the influence polynomials (2.2.3) we can define the interpolated functionu which we denote
by ud (the indexd means “discretized” )

ud(x, y) :=
m−1∑

i=0

uiPq,i(x, y). (2.2.7)

This interpolates with a polynomial of orderq theui in them nodes. If we need later for the sliding
dividing lines the function valueu in some arbitrary point in the space, we can interpolate it oras a
“variable” express it by the neighboring function values using (2.2.7).
If we want difference formulas, we must differentiate (2.2.7) correspondingly. E.g. if we want a
difference formula forux which we denote byux,d, we use
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ux,d :=
∂ud

∂x
=

m−1∑

i=0

ui
∂Pq,i(x, y)

∂x
. (2.2.8)

Similarly, if we wantuxx,d we use∂2ud/∂x2 or for uxy,d we use∂2ud/∂x∂y.
Before we can use formulas of type (2.2.7) or (2.2.8) we must decide where we want to use them.

In the case of Fig. 2.2.1 we want to use them for the node0. Then we have to evaluate thePq,i(x, y)
in (2.2.7) or the∂Pq,i(x, y)/∂x in (2.2.8) forx = x0, y = y0. Then these expressions become mere
numbersαi or βi and we have from (2.2.7) or (2.2.8)

ud(x0, y0) :=

m−1∑

i=0

αiui, (2.2.9)

ux,d(x0, y0) :=

m−1∑

i=0

βiui.

(2.2.10)

For each node we store the coefficients of the interpolation formula and of all derivative formulas with
respect tox, y, xx, yy andxy, which are in 2-D 6 formulas withm = (q + 1)(q + 2)/2 coefficients,
each. Below we will see that we also must store correspondingcoefficients for the error formulas.

The next problem is: How to selectm “good” nodes around the evaluation node where we want
the formulas, e.g. node0 in Fig. 2.1.1. The surrounding nodes should be as close as possible around
the evaluation node because nodes that are far away increasethe bandwidth of the resulting large and
sparse matrix for the solution of our PDE, and they may introduce “false” (non-local) information if
the function values change rapidly. This latter point is thereason why on a coarse mesh high orderq
is “overdrawn”, i.e. gives larger errors than lower order.

The FEM mesh is usually generated by a mesh generator, e.g. PATRAN, I-DEAS. In 2-D we use
linear triangles that are determined by 3 nodes, see Fig. 2.2.2. The element list which we call nek list

Figure 2.2.2: Illustration of triangular element and corresponding element list (nek list).
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2.2 The generation of difference and error formulas of arbitrary consistency order for space and time

gives for each element the number of the global nodes for the 3local nodes. Clearly there is also a
node list where for each global node its coordinatesx andy are stored. This is the basic information
about the structure of the space. It should be recalled that we use a FDM on that FEM mesh. The
FEM mesh is only used for the neighborhood relation between nodes.

It is easy to invert the nek list so that we get the nekinv list where for each node the information
is stored in which element it occurs, see Fig. 2.2.3. An indexcounter vector with the length of the

Figure 2.2.3:nekinv list that gives for each node the element numbers in which it occurs.

element list for each node is initialized by zeros. Then one goes through all node numbers of the
nek list and for each node that is met in this processing the corresponding index counter of the node
is increased by one. So one knows for each node in how many elements it occurs. Then an array
nekinv is defined with length equal to the number of nodes and width equal to the maximal value in
the index counter vector. Then one initializes again the index counter vector by zero and goes again
through all nodes of the nek list. For each node that is met itsindex counter is increased by one and
the element number is stored in the corresponding column position of the nekinv array.

The next problem is the determination of the nearest neighbor ring for each node, see Fig. 2.2.4.
We want to create a list fstring (first ring) where for each node the node numbers of its direct neigh-
bors on the mesh are stored, see Fig. 2.2.5. The nearest neighbor ring are all node numbers of all
triangles in which the node occurs, see Fig. 2.2.4. The triangles (elements) are obtained from the
nekinv list, Fig. 2.2.3. For each triangle we get the node numbers from the nek list, Fig. 2.2.2. For
each node that occurs a “true” is entered in a logical list that extends over all nodes (initialized by
“false”). Then for the central node also a “false” is entered. Now all nodes that have a “true” are
entered in the fstring list, Fig. 2.2.5. Quite naturally in afirst step the “width” of the fstring list is
determined, then it is filled in a second step.

Now all the information about the structure of the space is stored in the fstring list for the nearest
neighbor rings and the nek list and nekinv list could be deleted. If the “central” node is at or close
to the boundary the nearest neighbor ring extends unsymmetrically into the interior of the domain.
With the information of the fstring list it is now easy to search for nodes in further rings around the
central node, see Fig. 2.2.4.

For the determination of them coefficients of them influence polynomials from them linear
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Figure 2.2.4: Illustration for nearest neighbor ring and ring search for nodes.

systems (2.2.4) we need for the computation of them × m matrix M (2.2.5) m nodes. These
nodes should be as close as possible to the central node because nodes far away introduce false
(non-local) information. So we search for nodes in surrounding rings around the central node, see
Fig. 2.2.4. Naively one would search only form nodes. However, on straight lines the nodes are
linearly dependent. Then the matrixM would be singular. Therefore we do not search form nodes
sufficient for the orderq but for the orderq + ∆q. Usually we select∆q = 4 because, as we will
see below, we also generate formulas of orderq + 2 for the estimation of the error and we thus need
additional nodes because of the linear dependencies. But there is still another request: If in Fig. 2.2.4
the “central” node would be at a boundary, we need for the order q = 2 at least 3 nodes in the

Figure 2.2.5: fstring list that gives for each node the node numbers of the nearest neighbor ring on the
mesh.

8



2.2 The generation of difference and error formulas of arbitrary consistency order for space and time

x-direction, i.e. 2 rings, and with the orderq + 2 = 4 for the error estimate 4 rings, we therefore
search for the nodes in up toq + 2 rings. Which limit is decisive, either the number of nodesm for
q + ∆q or for the number of ringsq + 2 depends on the situation of the central node in the mesh. We
have now availablem + r nodes.

For the gathering of the nodes of the next ring (the first ring is the nearest neighbor ring) one
creates a logical vector that extends over all nodes (for distributed memory parallelization over all
local nodes, see later section). It is initialized by “false”. Then one goes through all nodes of the
previously selected ring and enters a “true” in the positionof all nodes of the nearest neighbor rings
of these nodes. So these nodes are “registered”. Then one goes through all nodes of the two previous
rings and enters a “false” in the corresponding position of the logical vector to exclude these nodes.
The remaining positions with “true” give the numbers of the nodes of the next ring. This can be seen
if one looks at Fig. 2.2.4.

Because we have selected more than the necessary number ofm nodes there is the problem to
select from them+r nodes them best ones for the matrixM . The situation is depicted in Fig. 2.2.6.
As mentioned above we want narrow formulas, i.e. with nodes close to the central node. However,

Figure 2.2.6: Illustration for the selection ofm “good” equations from the m+r equations.

because of linear dependencies on straight lines there may not be information for the coefficient that
should be computed by the actual row in the Gauss eliminationprocess for the solution of (2.2.4).
In such a situation the pivot (diagonal) element (by which must be divided) is zero or very small.
Therefore we must use row pivoting: we search for the largestabsolute value in the pivot column
below the diagonal element and exchange the corresponding row and the old pivot row. However,
the new pivot row may belong to a node that is far away from the central node. Therefore we arrange
the nodes (equations) in the(m + r) × m matrix “M ” (that contains the desired matrixM ) in the
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sequence of the rings, see Fig. 2.2.6. We prescribe a valueεpivot and search for the pivot only in the
equations of the actual ring. We allow a crossing of a ring limit only if

| pivot |< εpivot. (2.2.11)

This procedure gives narrow difference and error formulas of high quality. The parameters∆q
(usually∆q = 4) andεpivot are key parameters for the generation of the formulas. The value of
εpivot may depend on the type of grid and of the orderq. So by “playing” with the value ofεpivot

one may improve the formulas which can be seen directly by thebetter error estimate (see below).
Rather robust values areεpivot = 10−2, 5 · 10−3, 10−3 for the ordersq = 2, 4, 6. This algorithm
has been developed and used for 2-D examples. However, it failed for certain 3-D examples. So we
developed an alternative algorithm which will be describedbelow. It should be mentioned that the
inversion ofM is executed by the Gauss-Jordan algorithm.

However, we want to mention at first two further points for thecomputation of the matrix “M ” of
Fig. 2.2.6 which is generated fromm + r nodes according to the prescription (2.2.5), i.e. a rowi
consists of1, xi, yi, x

2
i , · · · , yq

i . As we have a black-box solver we never know what are the values
of the coordinates and thusxq

i , y
q
i may have very large or very small values. Therefore we transform

the set of nodes that has been selected, e.g. the nodes of Fig.2.2.1 so that the central node is in the
origin and the largestx- or y-coordinate is atx = ±1 andy = ±1, see Fig. 2.2.7. Ifa, b are the

Figure 2.2.7: Illustration for the coordinate transformation(x, y) → (x′, y′).

maximal distances of a node inx, y-direction from the central node andx0, y0 are the coordinates of
the central node, we have

x = ax′ + x0, x′ =
1

a
(x − x0),

y = by′ + y0, y′ =
1

b
(y − y0). (2.2.12)

10



2.2 The generation of difference and error formulas of arbitrary consistency order for space and time

We determine the influence polynomials in the transformed system, i.e. we form the matrix “M ”
with (2.2.5), but withx′, y′ from (2.2.12). The resulting coefficients areai, and the polynomial
(2.2.1) now writes

Pq(x, y) = a′0 + a′1(
1

a
(x − x0)) + a′2(

1

b
(y − y0)) + a′3(

1

a
(x − x0))

2 + · · · (2.2.13)

+a′m−1(
1

b
(y − y0))

q.

Because the central node in the transformed system is the origin, for the influence polynomial of the
central node we havea′0 = 1 and for the other influence polynomials we havea′0 = 0.

The next problem is the normalization of the matrix “M ”. As we use a pivot thresholdεpivot in
(2.2.11) for the crossing of a ring limit, it is useful to normalize the linear system (2.2.4) that has
now the matrix “M ” of Fig. 2.2.6. Therefore we normalize to absolute row sum equal to1, i.e. we
divide each row by the sum of the absolute values of the elements of the row.

The extension to 3-D is straight forward. Here we use tetrahedrons for the structure of the space.
A 3-D polynomial of orderq is now

Pq(x, y, z) = a0 + a1x + a2y + a3z + a4x
2 + a5xy + a6xz + a7y

2 + (2.2.14)

+a8yz + a9z
2 + a10x

3 + · · · + am−1z
q.

It has

m = (q + 1)(q + 2)(q + 3)/6 (2.2.15)

coefficientsai that are basically determined as in 2-D. For the selection ofthe nodes for the ma-
trix “ M ” , Fig. 2.2.6, we have now nearest neighbor balls, but for simplicity we will call them as in
2-D “rings”. We select nodes that are sufficient for the orderq + ∆q and we use at leastq + 2 rings
(balls), resulting in the(m + r) × m matrix “M ”.

Above we described the algorithm how to select from them + r rows of “M ” m good ones with
the criterion (2.2.11). This strategy that worked excellently in 2-D failed mostly in 3-D (in some
examples it worked). So we generalized the condition (2.2.11) in the following way: during the
solution process for the inversion of the matrix “M ” of Fig. 2.2.6 we accept an element as pivot in
the pivoting process, if

| element|≥ min(εpivot, α · pivotmean, pivotmax). (2.2.16)

Here εpivot is that of equ. (2.2.11),α is an appropriate parameter in the range10−3 to 10−1,
pivotmean is the mean value of the absolute values of the pivot candidates of the pivot column,
andpivotmax is the maximal value.

However, if we go down in the pivot column to select the pivot element, it depends on the se-
quence of the nodes in the pivot column. Remember that the rows in the matrix “M ” are created by
corresponding nodes that have been gathered in the rings (2-D) or balls (3-D). For this sequence we
have three types of strategies:
Arrangement:

1. according to single rings, so the nodes have been gathered,

11
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2. combining two rings, e.g. ring1 and2 are treated like one ring, ring3 and4 as one ring etc.,

3. all gathered nodes are considered as one unit.

Sorting (in the corresponding arrangement):

a. for global node number,

b. for distance to central node,

c. at first sortinga., then sortingb.

Note: the gathering on the parallel processors is made for the local node numbers, and for a regular
grid there are several nodes with the same distance. If we do not applyc., on a parallel computer the
results may be different for different number of processors.

Search:

1. search linearly (independent of ring limits) until an element is found that fulfills (2.2.16),

2. search max. absol. element in the ring (for arrangement1.) or in double ring (for arrange-
ment 2.), accept as pivot if (2.2.16) is fulfilled, else go to next ring/double ring.

In many “critical” examples the strategy “2./c./1.” for arrangement, sorting, search has been
proved to be the best one. If we have a class of problem, e.g. the manufacturing of metal bellows,
we can easily optimize the parameterα in (2.2.16) by looking at the error estimates. In this case
α = 0.75 · 10−1 was optimal. For the Bosch problem in axisymmetric cylindrical coordinates
α = 0.01 was the best value, but there ist a large good range.

We have learned in the solution process of the extreme technical problems with mesh ratios of
1 : 10000 that the selection of the appropriate nodes, above all on curved grids, is a very critical and
central point. The error estimate gives the insight in this selection process and shows the way to the
best selection.

One should imagine what happens in 3-D: E.g. for a100 × 100 × 100 unstructured tetrahedral
FEM mesh, generated by a mesh generator, for each of the one million nodes the nearest neighbor
ring (ball) must be determined, and from that the necessary set of nodes for the(m + r)×m matrix
“M ”. For each “M ” the m appropriate nodes for the difference (and error) formula ofarbitrary order
q must be selected with the criterion (2.2.16). This must be done for interior nodes and boundary
nodes. As FDEM is a black-box solver one never knows what mesha user puts into the algorithm.
Later we discuss the selfadaptation of the mesh and also of the orderq. So the mesh and the difference
formulas may be changing during the solution process. All these items necessitate an extremely
robust algorithm. In such a situation it is mandatory to havean error estimate that tells us if our
solution is reliable and how good it is.

Here are some remarks to “mesh-free” methods. We use in 2-D the triangular and in 3-D the
tetrahedral FEM mesh only for the structure of the space, to determine the neighborhood relations
between the nodes. If we have determined for each node its nearest neighbor ring (ball), we forget
the FEM mesh. From this point on we have a “mesh-free” method that operates only on the nodes.
So one could use instead of the FEM mesh an arbitrary set of points in the 2-D or 3-D space, with

12



2.3 The estimate of the discretization error

the information which of the points are boundary points. Then one had to invent an algorithm to
determine the nearest neighbor ring for each point. The simplest but most expensive algorithm is the
search for the distance. But then there is the question how todistribute the nodes in the computa-
tional space. Such a distribution will be made efficiently bya triangular or tetrahedral grid that gives
automatically the structure of the space. And thus we are back at our FDEM. Up to here we have

Figure 2.2.8: Illustration for the difference formulas of orderp for ut.

discussed the generation of 2-D or 3-D difference formulas for spatial direction. For parabolic PDEs
we need 1-D formulas in time for the time derivativeut. We use backward difference formulas of
consistency orderp that lead in FDEM to fully implicit methods for parabolic equations. Fig. 2.2.8
shows symbolically the formulas for the ordersp = 1 to 3. For stability reasons we use the formulas
only up to the orderp = 5. The generation of such 1-D interpolation and difference formulas of type

Pp(t) = b0 + b1t + b2t
2 + · · · + bpt

p (2.2.17)

has been presented in detail in [1]. We use the Newton interpolation polynomial for the generation of
thep+1 influence polynomials that are easily determined by Newton’s scheme of divided differences.
Basically they also could be determined by a 1-D version of our space method.

2.3 The estimate of the discretization error

In Section 2.2 we have explained how we can generate difference formulas of arbitrary consistency
orderq in space and orderp in time. This can be used to estimate the discretization error. This is
explained at first for the spatial formulas.

If we denote e.g. the difference formula for the derivativeux by ux,d (indexd means “discretized”)
or more precisely byux,d,q which indicates that it is of consistency orderq (exact for a polynomial
of orderq), we estimate the discretization errordx by

dx := ux,d,q+2 − ux,d,q, (2.3.1)

13
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i.e. by the difference of the difference formulas of orderq + 2 and actual orderq. The exact dis-
cretization error is

dx := ux − ux,d,q. (2.3.2)

So we have for the estimate replaced the unknown derivativeux by a higher order formulaux,d,q+2.
Numerical investigations have shown that for the type of “central” formulas the odd orders are not
better than the preceding even orders. Therefore we estimate the error of the actual orderq by the
difference to the orderq + 2.

But be careful: The estimate (2.3.1) assumes implicitly that the formula of orderq +2 is a “better”
formula, which means that it is “closer” to the derivativeux. However, if we have a coarse grid
relative to the changing of the solution and use a high order formula with many nodes (m nodes, for
2-D given by (2.2.2) and for 3-D by (2.2.15)), nodes that are far from the central node may introduce
false information. This leads to the experience that on a coarse grid the higher order may give worse
results than the lower order; the higher order is “overdrawn”. Just this effect gives us a built-in self-
control of the estimate (2.3.1). If we have large errors there is a large difference between orderq + 2
andq. If on the other hand there is a small error, we can trust our estimate. This was a very beneficial
experience that we observed when we applied for the first timethe estimate (2.3.1). It is trivial that
the type of estimate holds for all other derivatives, e.g.uxx, uxz etc.

This effect of overdrawing an order leads us to the decision that we use for practical reasons only
the ordersq = 2, 4, 6. For the error estimate of the orderq = 8 we needed the formula of order
q = 10. Such a formula is usually (highly) overdrawn on practical meshes for technical problems.
So we limited the order byq = 6 (error estimation byq = 8). The error estimate gives us also the
possibility to check which order is the best one. We will see later that we use this property to select
in a selfadaptive algorithm an own individual order for eachnode. Looking at the discretization error
estimate allows us also to select optimal parameters for theselection of the nodes for the difference
formulas, i.e. the parameterεpivot in (2.2.11) andα in (2.2.16). We still see below in the error
equation how the mere discretization errors propagate intoerrors of the solution.

For the error estimate we do not use explicitly the derivatives of orderq+2 andq as seen in (2.3.1)
but we generate directly error formulas. If e.g. the formulafor ux,d,q+2 has coefficientsai and for
ux,d,q has coefficientsbi we have

dx := a0u0 + a1u1 + · · · + am(q+2)−1um(q+2)−1 − (2.3.3)

−(b0u0 + b1u1 + · · · + bm(q)−1um(q)−1).

Herem(q + 2) (m of q + 2) denotesm for 2-D from (2.2.2) and for 3-D from (2.2.15) whereq has
been replaced byq + 2, andm(q) is (2.2.2) or (2.2.15). Then we have

dx := (a0 − b0)u0 + (a1 − b1)u1 + · · · + (am(q)−1 − bm(q)−1)um(q)−1 + (2.3.4)

+am(q)um(q) + · · · + am(q+2)−1um(q+2)−1.

The corresponding coefficients are directly stored asci so that we have for the evaluation

dx := c0u0 + c1u1 + · · · + cm(q+2)−1um(q+2)−1. (2.3.5)
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2.4 The black-box solver and the error equation

As mentioned above we use for the time derivativeut backward difference formulas of orderp = 1
to 5, see Fig. 2.2.8. Here we estimate the discretization error by the difference to the next orderp+1:

dt := ut,d,p+1 − ut,d,p. (2.3.6)

For this estimate basically hold all the arguments that we have discussed for the spatial error estimate.
We also store directly the error coefficients like in (2.3.5).

2.4 The black-box solver and the error equation

We want to solve arbitrary non-linear systems of 2-D or 3-D parabolic and elliptic PDEs under
arbitrary non-linear boundary conditions (BCs) on an arbitrary unstructured mesh. The domain of
solution may be composed of subdomains with non-matching grids and different PDEs and BCs. The
user may prescribe a relative maximal errortol (tolerance) and in a selfadaptive process the mesh is
refined and the order optimized to get the desired accuracy. Clearly, in 3-D such a process is always
very expensive in computation and storage. It should be mentioned that in the equations (and quite
naturally in the BCs) there may not be derivatives, so that weinclude algebro-differential systems.
This is a very ambitious goal and we will show how we can solve this problem quite naturally and
evidently by the FDEM.

The most general operator that we admit for the PDEs and BCs isin 3-D, with the unknown solu-
tion u(t, x, y, z) has the form:

Pu ≡ P (t, x, y, z, u, ut, ux, uy, uz, uxx, uyy, uzz, uxy, uxz, uyz) = 0. (2.4.1)

If we have a system ofm PDEs the solutionu and the operatorPu havem components:

u =





u1

. . .
um



 , Pu =





P1u
. . .

Pmu



 . (2.4.2)

If t is included, the system must be parabolic, withoutt it must be elliptic. Basically it should also
be possible to solve hyperbolic equations if they do not havediscontinuities, but we do not have
experiences in that area.

We explain the solution method for 2-D and discuss the extension to 3-D later. If we dropz in
(2.4.1) we get the 2-D operator for PDEs and BCs:

Pu ≡ P (t, x, y, u, ut, ux, uy, uxx, uxy, uyy) = 0. (2.4.3)

Because it is non-linear inu and its derivatives we linearize with the Newton-Raphson method by
the approach

u ⇐ u(ν+1) = u(ν) + ∆u(ν) (2.4.4)
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but we immediately drop the iteration indexν. We get a linear PDE or BC for the Newton correction
function∆u (it is not yet discretized):

Q∆u ≡ −
∂Pu

∂u
∆u −

∂Pu

∂ut
∆ut −

∂Pu

∂ux
∆ux − · · · −

∂Pu

∂uyy
∆uyy =

= P (t, x, y, u, ut, ux, uy, uxx, uxy, uyy). (2.4.5)

Here e.g. ∆ux is the x-derivative of the Newton correction function∆u. The r.h.s. P (· · · )
is formally (2.4.3), but here we have dropped the Newton iteration index so that it is in reality
P (t, x, y, u(ν), u

(ν)
t , · · · ). This is the Newton residual or Newton defect. It is zero onlyif u is

the solution, it is non-zero foru(ν) 6= u.
The∂Pu/∂u are the Jacobi matrices. For a scalar PDE (one unknown variable) it is a scalar value.

If we have a system ofm PDEs,u andPu havem components (2.4.2) and e.g.

∂Pu

∂ux
=






∂P1u
∂u1,x

· · · ∂P1u
∂um,x

.. · · · ..
∂Pmu
∂u1,x

· · · ∂Pmu
∂um,x




 =

∂Piu

∂uk,x
(2.4.6)

is am×m matrix and likewise the other∂Pu/∂u.... They represent the dependencies of the operator
Pu from the unknown functionu and its derivatives and are introduced by the linearizationprocess.

Now we discretize the linear Newton-PDE (2.4.5) using difference formulas of type (2.2.10). For
the derivatives of∆u we do not use error estimates because these are errors of errors and thus small
of second order. This discretization generates a large and sparse matrixQd. Fig. 2.4.1 illustrates
how for a scalar PDE the term∂Pu

∂x ∆ux contributes to rowi of the matrixQd, wherei denotes the
central node of the formula for∆ux. For a system ofm PDEs there arem × m blocks instead of
scalar elements.

The derivatives in the r.h.s.Pu of (2.4.5) are replaced by difference formula plus error estimate,
e.g.

ux ⇒ ux,d + dx (2.4.7)

and we linearize in the error estimate terms which introduces again Jacobian matrices of type (2.4.6).
These additional error terms on the “level of the equation”,i.e. on the consistency level where we
approximate a differential equation by a difference equation, create corresponding error terms on the
“level of the solution”. If we arrange all error terms on the l.h.s. we get theerror equation

level of solution

∆ud = ∆uPu + ∆uDt + ∆uDx + ∆uDy + ∆uDxy =

Q−1
d [(Pu)d + Dt + { Dx + Dy + Dxy

︸ ︷︷ ︸

space key error

}]. (2.4.8)

level of equation
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Q−1
d is the inverse of the matrixQd of Fig. 2.4.1, but it is never computed explicitly (it would be a full

matrix), (Pu)d is the “discretized” Newton residual, i.e. the r.h.s.Pu in (2.4.5), where discretized
means that all derivatives have been replaced by differenceformulas. TheDν are discretization error
terms, e.g.

Dt =

(
∂Pu

∂ut

)

d

dt, Dx =

(
∂Pu

∂ux

)

d

dx +

(
∂Pu

∂uxx

)

d

dxx. (2.4.9)

The terms in the brackets in (2.4.8) are error terms that can be computed on the level of the equation.
The corresponding errors of the solution are arranged abovethese source terms. So on the level of the
solution the total error∆ud has been split up into its parts resulting from the terms in the brackets.

∆uPu is the Newton correction that results from the Newton residual (Pu)d and is computed from

Qd∆uPu = (Pu)d. (2.4.10)

Here we see why we do not needQ−1
d explicitly. The Newton correction∆uPu is the only error

term that is in each Newton step applied to the solution according to (2.4.4). The other error terms
in the first row of (2.4.8) are only used for the error control.If we would apply these terms we had
(eventually) a “better” solution but no longer an error estimate.

Dx (2.4.9) shows transparently the contribution ofx-discretization errors to the solution: The
discretization error estimatesdx of ux,d anddxx of uxx,d are multiplied with their Jacobian matrices,
added and (formally) multiplied byQ−1

d to transfer the error from the level of the equation to the

Figure 2.4.1: Illustration for the generation of rowi of the matrixQd for a scalar PDE.
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level of the solution. This possibility to follow explicitly the propagation of all errors is the essential
advantage of FDEM.

In the error equation (2.4.8) the space errors in the braces{} play the role of a key error. For given
solution, grid and space orderq this value is given in each node. In the sense of error balancing it
does not make sense to have the other terms in the brackets, namelyDt (for parabolic equations) and
(Pu)d larger or much smaller. If they are larger, they destroy the accuracy, if they are much smaller,
they only waste computation time because the accuracy is then determined only by the space key
error. So the error equation not only makes transparent all errors but tells us also how to balance the
different errors for an efficient solution of the PDEs.

2.5 The selfadaptation for space and time

Let us assume we have a system ofm PDEs and a grid withnnod nodes. Then we haven = m ·nnod

unknowns. If we want to discuss accuracy we must have a singlenumber that characterizes the ac-
curacy of the whole field of solution in the nodes. Therefore we introduce norms‖ · ‖. Because for
technical applications always the maximal values, e.g. maximal stress or velocity, are relevant, we
introduce max norms. For the solutionud (indexd means “discretized”) we use

‖ud‖ = max |ud,i,k|, (2.5.1)

i = 1, m

k = 1, nnod

i.e. the maximum over allm components and allnnod nodes.
For the errors we want to have relative error norms. However,for a black-box we never know if a

solution component has a local zero value which makes a localrelative error unfeasible. Therefore
we use “global relative” errors. For a componenti the global relative error is

‖∆ud‖rel,i =

max
k=1,nnod

|∆ud,i,k|

max
k=1,nnod

|ud,i,k|
, (2.5.2)

i.e. we have the max error of the componenti relative to the max of that component. If we have
a zero or very small component in the whole domain, even this global relative error does not make
sense. This allows to check individually the accuracy of thecomponents. The global relative error is
then

‖∆ud‖rel = max
i=1,m

‖∆ud‖rel,i, (2.5.3)

i.e. the max of the global relative component errors.
The Newton correction∆uPu is computed from (2.4.10). In the sense of error balancing in(2.4.8)

we stop the Newton iteration if

‖(Pu)d‖ < 0.1 · max(0.5 tolg, ‖{}‖) (2.5.4)
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with tolg from (2.5.13) (see explanation there) and where{} denotes the space key error, see (2.4.8)
and 0.1 is a “tuning factor”. This means that we must compute the space key error{} in each Newton
step. However, as we need it nevertheless after the last Newton step for the computation of the error,
this may not be too much additional computation time. The solution of (2.4.10) for the computation
of a Newton correction is much more expensive.

Here we should mention that we have designed a very robust Newton algorithm: After each New-
ton step, before we accept a Newton correction, we check if

‖(Pu)νd‖ < ‖(Pu)ν−1
d ‖, (2.5.5)

i.e. we check if the Newton residual has decreased. If this does not hold, we use instead of (2.4.4) a
damped Newton method by

u
(ν+1)
d = uν

d + ω∆u
(ν)
Pu

, (2.5.6)

where the relaxation factorω initially is ω = 1. If (2.5.5) does not hold, we repeatedly putω ⇐ ω/2
and we try again until either (2.5.5) holds orω < 0.01. In the latter case we stop the Newton iteration
and print out “Newton iteration does not converge”. Ifω < 1 we have no longer the quadratic
convergence of the Newton method. However, if we are close enough to the solution we must have
ω = 1 and quadratic convergence.

Another numerical engineering decision is to use the “simplified” Newton method, i.e. to iterate
with the “old” matrixQd, if we have fast convergence, i.e. if

‖(Pu)
(ν+1)
d ‖ < 0.1‖(Pu)

(ν)
d ‖ (2.5.7)

holds. Then we do not compute a new matrixQd. If we use a direct solver for (2.4.10) we do not
have to repeat the LU factorization in such a Newton step. However, then we cannot expect (fully)
quadratic convergence.

Eventually the computation of the Newton correction∆uPu from (2.4.10) is executed by an itera-
tive solution of the linear system. Ifν denotes the index of the Newton iteration we want to solve

Qd∆u
(ν)
Pu

= (Pu)
(ν−1)
d . (2.5.8)

If this system for theν-th Newton correction∆u
(ν)
Pu

is solved itself by an inner iteration with iteration
indexµ. we stop the inner iteration if the following condition holds:

‖Qd∆u
(ν,µ)
Pu

− (Pu)
(ν−1)
d ‖

‖(Pu)ν−1
d ‖

≤ ε∗ = (2.5.9)

= 0.1max





(

‖∆u
(ν−1)
Pu

‖

‖u
(ν−1)
d ‖

)2

,
0.8‖{}‖

‖(Pu)
(ν−1)
d ‖

,
0.4tolg.

‖(Pu)
(ν−1)
d ‖



 .
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We want to explain the three terms in the brackets. For the first term we assume that we want to
solve iteratively a linear systemAx = b. In thekth iteration step we havexk andrk = Axk − b. The
error isek = x − xk. Multiplication byA and adding/subtracting ofb yieldsAek = Ax − Axk =
Ax − b − Axk + b = −rk becauseAx − b = 0. In this notation the l.h.s. of (2.5.9) corresponds to

‖rk‖

‖b‖
=

‖ − Aek‖

‖Ax‖
≈

‖A‖‖ek‖

‖A‖‖x‖
= γ

‖ek‖

‖x‖
.

At the other hand for quadratic convergence of Newton’s method we expect an error∆x(ν) ≈
(∆x(ν−1))2 or a relative error norm(‖∆x(ν−1)‖/‖x(ν−1)‖)2. This means that the next Newton
correction will change the digits in this region so that it does not make sense to compute the solution
more accurately than to these digits. This explains the firstterm in the brackets. Term two in the
brackets means in a similar way that it does not make sense to compute digits that are below the
discretization error. Term three uses in the same way the tolerancetolg on the level of the equation
that is obtained from the user-prescribed relative tolerancetol as is explained below in equ. (2.5.13).
The coefficients 0.1, 0.8, 0.4 are typical numerical engineering tuning factors.

So we can summarize the meaning of (2.5.9): It does not make sense to compute in the iterative
solution of (2.5.7), i.e. in the iterative computation of a Newton correction∆u

(ν)
pu , more digits than

are overwritten by the next Newton correction or are more accurate than the discretization error or
the prescribed accuracy.

As we do not have a previous Newton correction for the first iteration we take

ε∗ = 0.1 for ν = 1 (2.5.10)

and we restrict for practical reasonsε∗ by

0.1 ≥ ε∗ ≥ 10−4. (2.5.11)

Before we discuss the selfadaptation for time and space we need a scale of the accuracy on the
level of the equation in the sense of the error equation (2.4.8). The user prescribes a global relative
tolerancetol for the solution and requests

‖∆ud‖rel ≤ tol (2.5.12)

with ‖∆ud‖rel from (2.5.3). What is a corresponding valuetolg on the level of the equation that is
needed for the control? The admissible error istol · ‖ud‖ becausetol is a relative error. We know
from the solution of (2.4.9) how the Newton residual(Pu)d is transformed from the level of the equa-
tion to the Newton correction∆uPu on the level of the solution. We assume that the same relation
holds between the errortol · ‖ud‖ (level of solution) and a corresponding valuetolg on the level of
the equation and we make the numerical engineering approach

tolg := tol · ‖ud‖
‖(Pu)d‖

‖∆uPd
‖
. (2.5.13)
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This value is used in the selfadaptation process.
Now we want to discuss the selection of the step size∆t and of the consistency orderp in time

direction for parabolic equations. Here we use backward difference formulas of the type of Fig. 2.2.8
and error estimates of type (2.2.3). At a time steptk we want to compute a time increment∆tk+1 for
the next time step that makes the size of the time discretization error termDt (2.4.9) roughly 1/3 the
size of the space key error term{} in the error equation (2.4.8) in the sense of error balancing, or
roughly 1/3 the size oftolg. If we have equidistant time step size∆t the time discretization error is
∼ (∆t)p. Therefore we request, ifi denotes theith equation of a system ofm equations,

∆tk+1 = min
i=1,m

[
1

3
max(‖{}i‖, tolg)/‖Dt,i‖

]1/p

k

· ∆tk. (2.5.14)

However, this is a prediction for the situation at timetk+1 that may fail. Therefore we check before
we accept the new solution if

‖∆Dt,i‖ < max(‖{}i‖, tolg) (2.5.15)

holds for alli and if not we drop the solution and compute from (2.5.14) a new∆tk+1, now using in
the r.h.s. the infomation oftk+1. The user can prescribe limits∆tmin, ∆tmax for ∆t.

The control of the orderp in thet-direction is made in the following way: Thet-discretization error
terms‖Dt,i‖ (2.4.9) for them componentsi are computed for the actual orderp and the neighboring
ordersp±1. If the error term of the actual orderp is the smallest for all componentsi, the orderp is
optimal and is used for the next time step. If the error term for the orderp + 1 is the smallest one for
all componentsi, i.e. the error decreases with increasing order, the orderp + 1 is used for the next
time step. If on the other hand the error term forp − 1 is the smallest one for onlyone component
i, the orderp is “overdrawn” and the orderp − 1 is used for the next step. As mentioned above the
orderp is limited to 1 ≤ p ≤ 5 for stability reasons. If we took off the upper limit for tests, the
method only occasionally selectedp = 6 and returned quickly top ≤ 5.

Clearly the starting is with orderp = 1. The user prescribes an initial value∆tinit. With this
∆tinit 2 “blind” steps are executed. Then with the solution fort0, t1, t2 the error fort1 can be
estimated. If the condition (2.5.15) does not hold, the solution is dropped and from (2.5.4) a new∆t
is computed. This procedure is repeated until (2.5.15) is fulfilled. The algorithm for the optimization
of the orderp can start att3.

Here we want to discuss the optional possibility to compute aglobal error estimate in the time
direction. At each time steptk there is a timelocal error that can be computed from the error equation
(2.4.8). However, be careful: How do we discretize∆ut in the Newton differential equation (2.4.5)?
If we look only at the errors at timetk, the preceding values at timetk−ν are considered to be “exact”,
i.e. we do not consider their errors. In this case we have in the formulas of types of Fig. 2.2.8 for the
discretization of∆ut in (2.4.5) only the term fortk as nonzero. The∆u - values for precedingtk−ν

are considered to be zero. This gives from (2.4.8) the local error.
If we want to follow the historyof the local errors in time, i.e. how they propagate in time, we

must discretize∆ut in (2.4.5) with all the previous error values∆u for tk−ν, i.e. in the formulas for
∆ut of type of Fig. 2.2.8 we have to consider the previous error profiles. These error profiles must be
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stored like the solution for the preceding time steps. We always store 7 profiles because of the error
estimate by the orderp = 6 for the maximal actual orderp = 5. This procedure then delivers the
globalerror in time that gives the development of the discretization and linearization errors in time.
The corresponding error equation is formally (2.4.8), but differs from that for the local error by the
contribution of preceding errors in the∆ut discretization.

These time discretization items are relevant only for parabolic equations. Now we return to the
discussion of elliptic equations.

The next problem is the individual control of the space orderseparately for each node. This is a
unique feature that becomes possible only by our simple and explicit estimate of the discretization
error. Let us consider a nodei and ask: What is its optimal (space) orderq? Here we must at first
mention that we consider for practical reasons only the orders q = 2, 4, 6. Numerical tests have
shown that the odd orders do not give better results than the preceding even orders. So we consider
only even orders. The error of the orderq = 6 is estimated by the orderq = 8. Practical experience
has shown that for common mesh sizes the orderq = 8 is mostly “overdrawn” so that the error
estimate fails (built-in self-control). This has already been mentioned in Section 2.3. So we do not
consider ordersq > 6. Basically arbitrary orders could be used.

For the optimization of the order we compute at nodei the space key error term{} (see (2.4.8))
for the ordersq = 2, 4, 6: ‖{}‖i,q=2,4,6. We take the higher order only if

‖{}‖i,higher order ≤ f · ‖{}‖i,lower order, (2.5.16)

wheref is a numerical engineering tuning factor. Presently we take

f2↔4 = 0.5, f4↔6 = 0.01, (2.5.17)

which means that we take the order 4 only if its error term is less than0.5 that of the order 2 and we
take order 6 only if its error term is less than 0.01 of that of the order 4. The reason is that higher
order has more nodes in the difference formula which means that there are correspondingly more
nonzeros in the large and sparse matrixQd, see Fig. 2.4.1, which makes the solution of the linear
system (2.4.10) more costly. This holds more pronounced forthe order 6 so that we accept this order
only if its discretization error term is significantly smaller than that of the order 4.

This unique feature to have an individual optimal order for each node is rather expensive because
we must store for each node the coefficients of the differenceand error formulas for all 3 orders
2,4,6. However, it gives the most reliable error estimate because the method checks in each node if
the order would be overdrawn which is visible by a larger error term for the higher order.

The next point is mesh refinement. The user prescribes a global relative tolerancetol and wants
for the solution the accuracy requirement (2.5.12). If the initial grid does not fulfil (2.5.12) the only
possibility is to refine the mesh where it is necessary. Because the control is made on the level of the
equation (consistency level) we again need the valuetolg that is computed by (2.5.13) fromtol. We
check in each nodei

if ‖{}‖i > sgrid · tolg − then nodei is refinement node. (2.5.18)
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We have again a tuning factorsgrid which depends largely on the type of problem to be solved so
that no special value can be recommended. Eventuallysgrid = 10 may be a starting guess. If the
global relative error (2.5.3)‖∆ud‖rel > tol and for the given value ofsgrid no refinement node is
found, sgrid is too large and we putsgrid ⇐ 0.1sgrid, i.e. we reducesgrid by a factor of 10. This
procedure is eventually repeated until at least one refinement node is found. So we have ultimately a
selfadaptation also forsgrid itself.

If in a triangle at least one node is a refinement node, the edges of the triangle are halved by 3 new
nodes so that 4 similar triangles result, see Fig. 2.5.1. Thevalueud at a new node is computed by
a 2-D interpolation formula of orderq (2.2.9), the order of the new node is the min of the order of
its two neighbors. If in Fig. 2.5.1 the left neighbor triangle of the original triangle is not refined,

Figure 2.5.1: Illustration for the refinement of a triangle.

this triangle has 2 edges with 2 nodes and one edge with 3 nodesafter the refinement step. If in
a following refinement step an adjacent small triangle is again refined, there would be more than
3 nodes on an edge of the large triangle. Therefore we have limited for reasons of data organization
the number of nodes on an edge to three. If more than three nodes on an edge would be created, the
larger triangle must also be refined, but now not for reason ofaccuracy but for reason of data storage
scheme. This induces a refinement cascade.

A sophisticated algorithm has been developed for the refinement cascade. For each triangle its
refinement stage is stored:0 means not refined,1 means refined once etc. A logical list is created
where for each triangle is noted in which refinement stage it must be refined. This list has the fol-
lowing shape:

element refinement logical list for refinement stages
number stage stage 0 1 2 3

1 1 false true false false
2 0 true false false false
3 3 false false false true
4 2 false false (true) false
...
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This means e.g. that element 1 is refined in stage0 because of accuracy. Element 4 is refined
because of the cascade. Before the refinement is made, it is checked if the triangles that must be
refined have neighbors that are of one refinement stage lower,i.e. that are larger. Those triangles
must also be refined that there are not more than three nodes onone edge.

The search for such neighbors is as follows: Investigate thethree edges of a triangle. If there are
3 nodes on an edge no further search at this edge is needed because there is no larger neighbor. At
other edges with the inverted nek list and logical lists for the triangles of the edge nodes the neighbor
triangle is found and thus its refinement stage is known. Thissearch must be executed after each
stage of the refinement that starts with the largest elementsand ends with the smallest ones. At the
time of writing this report a doctoral thesis is in preparation that describes in all details the mesh
refinement on a distributed memory parallel computer, see Remark 3 at the end of the References.

2.6 Dividing lines

In many technical applications the whole (global) solutionresults from the solution of coupled sub-
domains with (eventually) different PDEs. In Fig. 2.6.1 we have e.g. a block composed of 4 different

Figure 2.6.1: Illutration for dividing lines (DLs) and coupling conditions (CCs).

materials with different heat conduction coefficients. If we want to compute the heat flux in the whole
block subjected to some boundary conditions, we can discretize the whole solution domain, but we
cannot differentiate across a material boundary. Therefore we must compute the solution separately
in the subdomains and couple the different solutions acrossthe interfaces.

So from the geometrical configuration on the left side of Fig.2.6.1 results the logical configuration
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on the right side. For the separation of the subdomains we introduce “dividing lines” (DLs). From
one geometrical node on an interface there result two logical nodes on the dividing line. Therefore
at such a node we have two variables that each belong uniquelyto one of the domains. For the two
variables we need two coupling conditions (CCs), e.g. for a heat conduction problem we have equal
temperature and heat flux which meansT1 = T2, λ1T1,x = λ2T2,x at the indicated DL in Fig. 2.6.1.
At the crossing of two DLs we have a quadruple point with4 variables and4 CCs, see Fig. 2.6.1, at
the intersection of3 DLs we have6 etc. If we have a system ofm PDEs we have2m or 4m or 6m
CCs for the above mentioned cases.

As we cannot differentiate across a DL we use one-sided difference stars at the DLs that use
function values of the corresponding subdomain. Thus the DLs are treated as “interior” boundaries.
As a mesh generator delivers a configuration as shown on the left of Fig. 2.6.1, at the beginning of
the solution process at first the new variables must be generated so that the logical configuration on
the right of Fig. 2.6.1 results. Here we have a grid that goes straight through the whole domain, i.e.
we have a matching grid on both sides of the DLs.

The solution algorithm then creates a global matrixQd for the whole domain that is composed
from the PDEs in the interior, from the CCs at the interfaces of the subdomains and from the BCs
at the exterior boundaries. Special care must be taken wherea DL hits a boundary. There results a
global solution with a global error estimate for the whole domain.

However, the situation in practical applications may be still more complicated: the different sub-
domains may have different grids and they may even slide relatively to each other, see Fig. 2.6.2.
Here we can recognize that the lower boundary of the upper domain changes the property between

Figure 2.6.2: Illustration for sliding dividing line (SDL).

“free boundary” and “coupling boundary”. We call such an interface a sliding dividing line (SDL). It
should be mentioned that the lower domain may not slide. Thenwe have a static non-matching grid
that is also included in this algorithm.

The problem is now, how to couple the solutions of the subdomains across the SDL. For the DL
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with matching grid we had always two (or more) coupled nodes that result from one geometrical
node. The solution of the problem for the SDL is illustrated in Fig. 2.6.3. A geometrical node of

Figure 2.6.3: Illustration to the coupling across a sliding dividing line(SDL).

one grid generates automatically a fictitious opposite nodeon the other grid. However, for a FDM
function values and derivatives are directly known only at geometrical nodes. What are the values at
fictitious nodes, e.g. at nodeB in Fig. 2.6.3.? We search for a fictitious nodeB the nearest geometri-
cal node of its grid, this is nodeA in Fig. 2.6.3. For nodeA we know the coefficients of the influence
polynomials and these polynomials have been evaluated forxA, yA to get interpolation, difference
and error formulas atA. We store for SDL nodes not only the coefficients of these formulas but
also the cofficients of the influence polynomials, i.e. the inverseA = M−1 (2.2.6). The influence
polynomials are now evaluated at nodeB = (xB , yB) and we get the coefficients of an interpolation
formula (2.2.7) or a difference formula of type (2.2.8) for the fictitious nodesB. Thus we have dif-
ference and error formulas for the fictitious nodeB that are used in the coupling conditions between
the geometrical node and its fictitious twin node like for thematching DL nodes.

For the DL we had e.g. in Fig. 2.6.1 for a heat condition problem the coupling conditions (CCs)
equal temperature and equal heat flux that delivered the two equations for the two logical variables
at the DL. However, for SDLs in Fig. 2.6.3 we have at a couplingnode only one variable for the
geometrical node. The formulas of the opposite fictitious node contain the variables of the formulas
of the nearest opposite geometrical node, but no new variable. So we can impose at a geometrical
node of a SDL onlyone CC. Therefore we prescribe in the example of a heat conduction problem in
Fig. 2.6.3 for the geometrical nodes of the upper domain equal temperatureTup = Tl0 and for the
geometrical nodes of the lower domain equal heat fluxλupTy,up = λl0Ty,l0 .

If we look at Fig. 2.6.2 we recognize that the lower boundary of the upper domain is partially free
boundary and partially SDL that couples to the lower domain.A sophisticated algorithm has been
developed to determine which node has which property. The details of the algorithm are not reported
here.

It should be mentioned that for domains that are separated bySDLs the mesh refinement is made
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independently for the different domains. This is possible because here we have non-matching grids.

2.7 Extension to 3-D

Up to now we have explained FDEM for 2-D. In the following we goagain through sections 2.4 to
2.6 and discuss the extension to 3-D.

The general PDE and BC operator for 3-D is given in (2.4.1) andhas been specialized to 2-D in
(2.4.3). Corresponding to (2.4.5) the 3-D Newton PDE for the3-D Newton correction function∆u
now reads:

Q∆u ≡ −
∂Pu

∂u
∆u −

∂Pu

∂ut
∆ut −

∂Pu

∂ux
∆ux − · · · −

∂Pu

∂uyz
∆uyz

= P (t, x, y, z, u, ut, ux, uy, uz, uxx, uyy, uzz, uxy, uxz, uyz). (2.7.1)

The discretization results like (2.4.8) now in the 3-D errorequation

∆ud = ∆uPu + ∆uDt + ∆uDx + ∆uDy + ∆uDz + ∆uDxy + ∆uDxz + ∆uDyz =

Q−1
d [(Pu)d + Dt + { Dx + Dy + Dz + Dxy + Dxz + Dyz }]. (2.7.2)

{} = space key error

The overall error∆ud is now split into its8 contributions on the level of the solution that result from
the 8 contributions in the brackets on the level of the equation. The space key error{ } has now
6 terms.

In Section 2.5 the selfadaptation has been formulated that it holds basically also for 3-D. For the
mesh refinement, Fig. 2.5.1, we halve the edges of a triangle if at least one of its nodes was a
refinement node according to (2.5.18). Similarly in 3-D we halve the edges of a tetrahedron from
which then result8 “half tetrahedrons”. Again the request that on an edge are atmost 3 nodes
leads to a refinement cascade where larger tetrahedrons musteventually be refined not because of a
refinement node but for the sake of the request that comes fromthe rules of data organization. The
sophisticated algorithm for the cascade that has been sketched for 2-D extends similarly to 3-D.

In Section 2.6 we introduced matching dividing lines (DLs) and non-matching sliding dividing
lines (SDLs). In 3-D these are now dividingsurfaces. Nevertheless we will call them DLs or SDLs.
For each geometrical node of a DL (that is now a surface) now result two logical nodes, each one
belongs uniquely to one of the domains that are separated by the DL. At the intersections of several
DLs similarly to Fig. 2.6.1 there may result more than two logical nodes from one geometrical node.
It is difficult to show such a situation in a picture.

Still more complicated is the situation for SDLs similar to Fig. 2.6.2 and 2.6.3. Because the grids
are non-matching, a node of one grid creates a fictitious nodeat the other side of the SDL and now
one must search on the grid of that surface for the nearest geometrical node. If the two surfaces
slide relatively to each other like depicted for 2-D in Fig. 2.6.2 one must determine which part of
the surfaces is free boundary and which part is SDL. The corresponding algorithm is still far more
complicated than in 2-D and is not explained here.
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2.8 Parallelization

The numerical solution of PDEs, above all for 3-D problems, needs much computation and memory,
often up to the available limits of the computer, or by other words: the user finally wanted a much
larger computer than the available one. This need is the motor to drive the ever faster development of
ever larger computers. Large computers are always parallelcomputers that combine the computation
and memory of hundreds or thousands of processors. So there are the two main reasons for parallel
computing: more computation and more memory.

The essential drawback of a parallel computer is the communication. The local data on a processor
are accessible with the bandwidth and latency of the cache hierarchy or of the much slower memory.
However, if remote data, i.e. data that is stored on other processors, must be accessed, the bandwidth
and the latency of the communication network are essential parameters that determine the “usability”
of a parallel computer. A cluster of workstations is also a parallel computer, but it suffers from bad
communication parameters.

So the essential goal of parallelization is to minimize communication. In a certain amount commu-
nication and storage can be exchanged: If data are requestedfrom another processor at the moment
when they are needed, the processor has to wait until the datahave arrived. If the data, e.g. informa-
tion about the nodes of a mesh, is stored inp parts onp processors, communication must be executed
if for the generation of difference and error formulas data of other processors are needed. If on the
other hand in a preparatory step data that will be needed is stored also on the processors that will use
it, i.e. the data are stored several times, this creates storage overhead, but avoids communication.

For an efficient parallelization one should always follow the priciple of the “separation of the
selection and of the processing of the data”, which means in this context: at first store the needed
remote data on the own processor and then process the data, see [4], p. 136. The FDEM program
package has been designed with this priciple in mind.

If FDEM should run on all types of parallel computers with shared and distributed memory, the
only possibility is message passing. Therefore we use the quasi-standard MPI. Many examples have
been published that demostrate that MPI is more efficient than the shared memory quasi-standard
OpenMP, even if there is a shared memory or global address space.

In FDEM it is often necessary to rearrange the data over the processors. Here we make use of the
“basket principle”, Fig. 2.8.1: Each processor sends its (old) data in a “basket” in a ring shift through
all processors and each processor takes out the data that it needs for the “new” data distribution. As
the sends and receives of the MPI messages must fit together and it is often not known how many data
must be exchanged between which processes, the processors exchange in a first step the information
about the data to be exchanged and then in a second step exchange the data.

When the mesh data are read (usually from a file) they are distributed inp equal parts to thep pro-
cessors in the order of the (global) node numbers. However, we want to have “neighboring” nodes,
that are needed for the generation and evaluation of difference formulas, on the own processor to
avoid communication. Therefore we sort the nodes for theirx-coordinate. This is made by presort-
ing of the nodes on each processor and then sorting over the processors where up top/2 processors
are active. This sorted sequence of the nodes is distributedin p equal parts to the processors which
means a one-dimensional domain decomposition of the domain, see left part of Fig. 2.8.2 forp = 4
processors.

To avoid communication we store the needed data of the left and right processor or processors also
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Figure 2.8.1: Illustration of the basket principle forp = 4 processors.

on the own processor. We call this overlap data. For the orderq we need for the error formulasq + 2
rings, i.e. grid lines (2-D) or grid planes (3-D) to the left and right. We determine a “mean” edge
lengthh of the elements and we store the nodes of the left and right processors

from xleft − aoverlap · (q + 2)h
to xright + aoverlap · (q + 2)h,

(2.8.1)

whereaoverlap ≥ 1 is a safety factor. There is a list where for each processor isstored the information
about the coordinates of its own leftmost and rightmost coordinatexleft andxright. This list is stored
on each processor so that it knows which data are stored on theother processors. The transfer of the
overlap data is made in such a way that the whole data of the concerned left and right processor(s) is
stored on the own processor and then superfluous data is eliminated.

For the elements we have the rule that an element belongs to the processor that holds its leftmost
node on thex-axis, i.e. the node with smallestx-coordinate. After the distribution of the nodes the
elements are distributed according to this rule. In Fig. 2.8.3 the triangle belongs to the processor
that owns node 1. A similar rule holds for the edges which is important if an edge must be halved in
the mesh refinement process. In Fig. 2.8.3 edges 1 and 3 belongto the processor that holds node 1,
edge 2 belongs to the processor that holds node 2.

Figure 2.8.2: Illustration for the distribution of the data to the processors.
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If there is mesh refinement, after each refinement step the nodes and elements are redistributed.
this is exactly the same procedure as for the first distribution because new nodes are always added at
the end of the old node list.

Now we must differ between global node numbers that include all nodes and local node numbers
that include all nodes stored on a processor, including the overlap nodes. After the distribution of the
nodes and elements to the processors these get a local node number and local element number on the
processor. We have then on each processor a local nek list that gives for each element its local nodes
and a local inverted nek list that gives for each node the local numbers of the elements to which it
belongs. So we have the following node information:

• local node number

• global node number

• home processor

• domain number (all domains, separated by DLs or SDLs, but also all boundaries have a domain
number because a boundary is treated as “domain”)

• number of coupling nodes to which the node couples (=1 for regular nodes,> 1 for DLs or
SDLs, so for =1 it couples only to itself, for =2 it couples to one other node etc.)

• coefficients of difference and error formulas

• coordinates

Figure 2.8.3: Illustration for the owning of triangles and edges.
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• consistency orderq

• solution (m values for a system ofm PDEs)

• local element numbers of the elements to which the node belongs

element information

• local element number

• global element number

• home processor

• domain number

• local node numbers of the nodes that belong to the element

• element of a DL or SDL: yes/no

• refinement stage

Figure 2.8.4: Illustration for the refinement of a triangle whose nodes aredistributed to 3 processors.

An element may have in 2-D 3 to 6 nodes, depending on the refinement stage of its neighboring
elements. If one of the nodes of the element of Fig. 2.8.3 is a refinement node, the element must
be refined, see Fig. 2.8.4. The home of the original triangle is processorip, there is its leftmost
node. However, this triangle is surely also in the overlap ofprocessorip + 1 andip + 2. The rule is
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that only the home processorip refines the triangle. Processorip owns also the edges 1 and 3, but
edge 2 belongs to processorip + 1. The resulting smaller triangleA belongs to processorip, but the
trianglesB, C, D belong to processorip + 1. Similar ownings hold for the new edges. Besides the
refinement by the accuracy request (2.5.18) there is also therefinement cascade (explained in Section
2.5) so that on an edge there are no more than 3 nodes because ofthe data organization.

Newly created nodes and triangles must get new global numbers that are behind the old numbers.
However, that the processors can work in parallel they must know how many new nodes/triangles
are created by the other processors so that they know what is the number range of their new num-
bers. Therefore in an initial step this information is created and exchanged between the processors.
Then the refinement process is started from the largest to thesmallest elements with continuous ex-
change of information between the processors, always with distinguishing between home data and
overlap data. The illustrations 2.8.3 and 2.8.4 have been shown for 2-D. It is practically impossible
to illustrate graphically the corresponding situation in 3-D, but the rules are the same.

It is quite obvious that the whole algorithm for the mesh refinement for distributed memory parallel
computers is extremely complicated and we needed much more time than expected to develop this
algorithm. It will be presented in a separate paper, see Remark 3 at the end of the References. After
the refinement process the data (nodes, triangles) are againdistributed newly onto the processors as
shown in Fig. 2.8.2.

The solution process of the PDEs starts with the data distributed onto the processors where on each
processor a local numbering over all own and overlap data is used. So each processor can compute
its part of the matrixQd, Fig. 2.4.1 and the r.h.s.(Pu)d of equation (2.4.10) completely independent
of the other processors without communication, see Fig. 2.8.5.

Figure 2.8.5: Illustration for the distribution of the data to the processors.

As each processor has all the necessary data in its memory with local numbering, it can compute
for its own nodes (not for overlap nodes) the difference and error formulas, its part of the matrixQd

and r.h.s.(Pu)d as if it would be a single processor and not a processor in a parallel computer. The
key for this seemingly quite simple procedure is the overlapand the local numbering. It is clear
that between Newton steps the values ofud for the overlap data must be exchanged between the
processors.
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2.9 Remarks to the linear solver LINSOL

When a processor has computed its part of the matrixQd and r.h.s.(Pu)d of (2.4.10), see Fig. 2.8.5, it
calls the parallelized linear solver LINSOL. LINSOL has been developed together with the previous
PDE solvers FIDISOL [2], Chapter 17 and CADSOL [3] and has been enhanced continuously since
that time. It is now publicly available, see [7] and the references given there. As thep processors call
LINSOL independently they are automatically synchronizedby the data.

Originally LINSOL was a purely iterative linear solver withdifferent types of CG (conjugate
gradient) methods. As there are CG methods with quite different properties, a polyalgorithm has
been developed that switches over methods, see [2], Chapter17. The polyalgorithm starts with a fast
but less robust method (stagnates if the matrix is not sufficient diagonally dominant), switches to a
medium method if the convergence is not satisfactory, and toa very robust but very slow method as
emergency exit if the convergence is very slow.

Because many of our technical problems could not be solved efficiently by pure CG we developed a
very sophisticated parallelized LU or ILU preconditioning[8] (this reference can be accessed via [7],
documentation). For full LU preconditioning one has a direct solver with automatic post-correction.
LINSOL has also several bandwidth optimizers [9]. For 3-D problems an efficient bandwidth opti-
mizer is essential.

LINSOL has 8 basic data structures: diagonals full and packed, rows full and packed, columns
full and packed, main diagonal and starry sky (double index). A matrix is composed from these
basic “elements”, an information vector gives the necessary information. These data structures are
split up into row and column blocks to support an efficient parallelization of the matrix-vector mul-
tiplication [4] which is the kernel operation of all iterative solvers. For the (I)LU factorization we
use a single row wrap-around over the processors with an active buffer window for efficient load
balancing. The factorized partsL andU then are reorganized in packed columns and rows for an
efficient forward elimination and backward substitution, following the principle of the separation of
the selection and processing of the data.

2.10 Academic test examples

In this section we present “academic” test examples (in contrast to “real” hard technical examples in
later chapters). We explain our test method for 2-D. The problem we want to solve, i.e. the PDEs
and BCs, is abbreviated by

Pu ≡ P (x, y, u, ux, uy, uxx, uyy, uxy) = 0. (2.10.1)

For the test of our program, i.e. the test of the FDEM solver and of the PDEs and BCs that are
programmed by the user, we use a PDE whose exact solution is known. This PDE should have as
far as possible the properties of the original problem (2.10.1). For this purpose we prescribe the
test solution u(x, y) and generate from (2.10.1) a problem that has the solutionu. This problem is
the test PDE

Pu − Pu = 0. (2.10.2)
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Pu is our problem with the known functionu(x, y) instead of the unknown functionu. Pu is then a
given function ofx, y which is in (2.10.2) an absolute term (that contains no variables). Let us take
for illustration the PDE

Pu ≡ uxx + uyy = 0. (2.10.3)

We want to have the test solution

u (x, y) = x4 + x2y2 + y4. (2.10.4)

So we have

ux = 4x3 + 2xy2, uxx = 12x2 + 2y2,

uy = 2x2y + 4y3, uyy = 2x2 + 12y2. (2.10.5)

We get

Pu = uxx + uyy = 12x2 + 2y2 + 2x2 + 12y2

= 14x2 + 14y2. (2.10.6)

Our test PDE is then

Pu − Pu ≡ uxx + uyy − (14x2 + 14y2) = 0. (2.10.7)

So we see thatPu is a pure forcing term that does not influence the part with thevariables.
Quite naturally we must proceed similarly with the BCs. Let us assume we have Dirichlet BCs on
the boundary

u − f(x, y) = 0, (2.10.8)

then the test BCs are

u − f(x, y)
︸ ︷︷ ︸

BC(u)

− (u(x, y) − f(x, y))
︸ ︷︷ ︸

BC(u)

= 0, (2.10.9)

which formally gives

u − u(x, y) = 0 (2.10.10)

with u from (2.10.4).
The test problem (2.10.6), (2.10.10) has the desired solution u (2.10.4). The test solutionu is a

polynomial of order 4. If we use a solution method of consistency orderq = 4 we must get the
exact solutionu and an error estimate in the range of the rounding error. If weuse a solution method
of consistency orderq = 2 we get an error that should be well estimated. Theoreticallywe should
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get an exact error estimate because the error is estimated bya polynomial of order 4. However, the
polynomial of order 4 (which would beu) cannot be reproduced exactly by the solution method of
orderq = 2. So far the illustration of the test PDE (2.10.2) by a simple example.

If we want to check if we have correctly programmed our PDE, wemust programPu completely
independently ofPu. Then we start our solution process for the test problem (2.10.2) with initial
(starting) solutionu = u. Then the defectPu−Pu must be small, it is usually in the range of10−11.
We then compare the estimated relative error‖∆ud‖rel (2.5.3) to the exact error

‖u − ud‖

‖ud‖
. (2.10.11)

Usually we choose as test funtionu a polynomial of order 2, 4, 6 and solve with consistency order
q = 2, 4, 6. Then the relative error‖∆ud‖rel and the exact error (2.10.11) are usually in the range of
rounding errors. We will see examples below.

In the generation of the Newton correction∆uPu the Jacobian matrices enter as can be seen in
Fig. 2.4.1 for∂Pu/∂x. They also enter into the computation of the error as can be seen in (2.4.9). As
the generation of the formulas for the Jacobians and the programming of the formulas is a dangerous
source of errors, we have developed a “Jacobi tester”. E.g. for ∂Pu/∂x we compare the value of
∂Pu/∂x computed from the corresponding subroutine to a differencequotient

∆Pu

∆ux
=

P (· · · , ux + ε, · · · ) − Pu

ε
(2.10.12)

and print out where there are unadmissible differences. This is a severe test for the Jacobians. Above
this has been explained for a scalar PDE. If we have a system ofm PDEs we test them×m Jacobian
matrices, e.g. (2.4.6) in the same way by components. It should be mentioned that the termPu in
the test PDE (2.10.4) does not change the Jacobians because it is an explicit function ofx, y (andz
in 3-D). The Jacobi test gives the exact value of the derivative only if the variable occurs linearly in
Pu. If it occurs in the form off(u) the derivative is accurate up toε · f ′(u). Nevertheless also in
such a case the Jacobi tester reveals immediately an error, either caused by a false derivative or by a
typing error in the code. According to our experience the Jacobian matrices are the main source of
errors in the implementation of the PDEs.

Another important question for non-linear PDEs is: Does theNewton-Raphson method converge?
Newton’s method converges quadratically, but only if we areclose to the solution. If we are far
away with the starting solution, everything may happen. Forthis reason we have above introduced
a damped Newton with a relaxation factor that controls if theNewton defect(Pu)d decreases in the
Newton step. According to our experience the test PDE gives agood impression how the real problem
will behave. Above all we have seen that for a bad selection ofthe nodes for the difference formulas
Newton may diverge while it converges for a better selection. Therefore we start for the test of the
Newton convergence by a disturbed initial solution. We solve the test PDE (2.10.2) with starting
solution1.01 u (1% disturbance) or with1.1 u (10% disturbance) and observe the convergence. So
we can see if we can solve our PDEs at least for the test solution. For some plasticity models Newton
did not converge for more than0.1% disturbance of the test functionu. Consequently we could not
find a solution of the original problem because Newton diverged. So we know from our test PDE
that the PDE system is correctly programmed and that there are solutions of this type of problem, but

35



The FDEM Program Package

Table 2.10.1:Results for the solution of (2.10.13), (2.10.14) on a circlewith 751 nodes for different
consistency ordersq and test functionsu.

orderq = 2 orderq = 4 orderq = 6
error exact CPU error exact CPU error exact CPU

type ū error estim. sec error estim. sec. error estim. sec.
pol. 0.177 0.55 0.904E − 2 0.63 0.300E − 10 5.81

order 6 0.159 0.138E − 1 0.260E − 7

sugar- 0.439E − 1 0.44 0.144E − 1 0.62 0.229E − 1 4.66
loaf 0.554E − 1 0.954E − 2 3.448 *)

*) here the order 8 for the error estimate is overdrawn (too coarse grid)

that the system is so sensitive to minimal disturbances thatpractical physical solutions are unusable,
see the corresponding discussion in a later chapter.

If we have successfully solved our test PDE (2.10.2) we can take out of the code the terms ofPu
and we have regained our original problem that we wanted to solve. Practically we write the code for
Pu in separate lines that then are declared by a “!” in Fortran ascomment and thus are ineffectual.

In the following we present some 2-D “academic” test examples. We want to solve the following
system of 3 PDEs for velocity componentsu andv and vorticityω:

uxx + uyy + ωy − f1 = 0,

vxx + vyy − ωx − f2 = 0, (2.10.13)

uωx + vωy − (ωxx + ωyy)/Re − f3 = 0.

These are the Navier-Stokes equations in velocity/vorticity form for a 2-D viscous fluid. We set the
Reynolds numberRe = 1. Thefi are forcing functions that are selected so that we get a prescribed
solutionu(x, y). So we ultimately solve a test PDE. The BCs are

u − g1 = 0, v − g2 = 0, ω + uy − vx − g3 = 0. (2.10.14)

Here thegi are again forcing functions that are determined so that we get the prescribed solution
u(x, y). We prescribe

u = v = ω = polynomial inx, y of order 6 (2.10.15)

or

u = v = ω = e−32(x2+y2) (2.10.16)

which is a sugar loaf type function, see Fig. 2.10.1.
We compute on an IBM SP WinterHawk2 with Power3-2 processors, 375 MHz. We use parallel

computing with 8 processors. The CPU time in sec is for the master processor 1.
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Figure 2.10.1:Sugar loaf type function equ. (2.10.16).

We solve the equations (2.10.13), (2.10.14) on a circle withradius=1 on a grid with 751 nodes,
1410 elements that has been generated by the commercial meshgenerator I-DEAS. The results are
shown in Table 2.10.1. If we use foru, v, w a polynomial of order 6 and use for the solution
consistency orderq = 6 we must reproduce the exact solution up to rounding errors. The exact
global relative error (2.10.11) is0.3 · 10−10, the estimated global relative error (2.5.3) is0.26 · 10−7

which means that both are in the rounding error range. If we solve with ordersq = 4 or 2 the errors
increase and the CPU time decreases. If we take foru, v, w the sugar loaf test solution (2.10.16) the
exact and estimated errors go down from the orderq = 2 to the orderq = 4, but they increase for
the orderq = 6: This is the built-in self-control of the error estimate. That the exact error goes up
means that the order 6 is already “overdrawn”: the used grid is too coarse for this order and change of
function values on the grid, above all near the top of the sugar loaf Fig. 2.10.1. The error is estimated
by the orderq = 8 which is still more overdrawn and results in an error estimate of 3.45, i.e.345%.
This shows that and how the error estimate fails in this case.The most important property is that it
shows that it fails. The user sees only the 3.45 error estimate and thus knows that he cannot trust the
error estimate. He does not know if the solution is usable. The exact error is0.23 · 10−1, i.e. 2.3%,
but he does not know it in the general case. Here we know it onlybecause we know for test purposes
the exact solution.
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Table 2.10.2:Results of the selfadaptation of mesh and order for sugar-loaf test function for
tol = 0.25 · 10−2.

no. no. no. of no. of nodes global relat. sec.
of of nodes with order error for

cycle nodes elem. ref. 2 4 6 exact estimated cycle
1 751 1410 230 443 304 4 0.161E-1 0.108E-1 2.53
2 1623 3075 104 281 1336 6 0.613E-2 0.622E-2 6.03
3 2408 4398 — 237 2152 19 0.166E-2 0.169E-2 13.43

For the demonstration of selfadaptation we solve the same problem with the sugar-loaf test func-
tion on the same computer, but we now switch on the mesh refinement and order control and we
request a relative tolerancetol = 0.25 · 10−2, i.e. 0.25% in the check (2.5.12). The result is shown
in Table 2.10.2.

Figure 2.10.2:Refined grid after the 3rd cycle of Table 2.10.2.
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In cycle 1 we start with the 751 nodes, 1410 elements of the original grid that has been generated
by the I-DEAS mesh generator. The condition (2.5.18) and therefinement cascade condition find
230 refinement nodes. From the 751 nodes 443 are solved with order q = 2, 304 withq = 4 and
only 4 with q = 6. The exact and estimated errors are0.16 · 10−1 and0.11 · 10−1. Then between
cycle 1 and cycle 2 the triangles that contain the 230 refinement nodes are refined by which there
result totally 1623 nodes and 3075 elements that are then redistributed on the 8 processors according
to thex-coordinate with the overlap as described above. In cycle 2 now 104 refinement nodes are
found that lead for cycle 3 to 2048 nodes and 4398 elements. Then there are found no refinement
nodes and the exact and estimated errors are belowtol. Observe the accurate estimate of the error
which results from the fact that the optimal order is selected by the order control. The CPU time for
a cycle clearly increases with the increasing number of nodes.

Fig. 2.10.2 shows the grid after the 3rd cycle. The coarsest grid is the 751 node grid, the medium
sized grid is that of cycle 2 and the fine grid is that of cycle 3.The refined grid on the left boundary of
the circle eventually results from a bad choice of the nodes for the difference formulas that resulted
in a larger error estimate. In this sense the mesh refinement is also a control for the quality of the
difference formulas. In order to see the influence of the order q and of the grid we made a series

Figure 2.10.3:Type of grid for 4× 1 domain.

computation with 5 grids and different orders for the solution of (2.10.13), (2.10.14) for the test
function (2.10.16) (sugar loaf with top in the middle of the domain) on a4 × 1 domain with the grid
type of Fig. 2.10.3. The characteristics of the 5 grids are shown in Table 2.10.3. The number of
grid points inx- andy-direction is doubled from one grid to the other which results in the 4-fold
number of nodes and unknowns. We compute on the same IBM SP as above, but now for grids 1 to 4
with 16 processors and for grid 5 with 64 processors for storage reasons. The results are shown
in Table 2.10.4. We are interested only in the exact and estimated errors and in the CPU time (of
processor 1).

Table 2.10.3:Characteristics of the 5 grids.

grid♯ dimension nodes elements unknowns
1 80 × 20 1600 3002 4800
2 160 × 40 6400 12402 19200
3 320 × 80 25600 50402 76800
4 640 × 160 102400 203202 307200
5 1280 × 320 409600 816002 1228800
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Table 2.10.4:Results for solution of (2.10.13), (2.10.14) on the4×1 domain with test function (2.10.16)
for the 5 grids of Table 2.10.3.

orderq = 2 q = 4 q = 6
grid no. error exact CPU error exact CPU error exact CPU

# proc. error estim. sec error estim. sec error estim. sec
1 16 0.1024 0.97 0.1429 1.32 0.3383 2.80

0.291E-1 0.4048 0.5702
2 16 0.152E-1 2.20 0.993E-2 3.42 0.987E-3 6.94

0.533E-2 0.122E-1 0.195E-2
3 16 0.297E-2 9.15 0.196E-2 7.02 0.159E-5 19.40

0.126E-2 0.183E-2 0.187E-5
4 16 0.307E-3 18.37 0.989E-5 26.02 0.346E-7 104.24

0.302E-3 0.101E-4 0.432E-7
5 64 0.758E-4 43.10 0.392E-6 65.03 0.939E-9 154.5

0.749E-4 0.388E-6 0.991E-9

For grid 1 the smallest errors are for the orderq = 2, i.e. the ordersq = 4, 6 are overdrawn. For
the other grids higher order gives smaller errors. If we go for one grid from orderq = 2 to order
q = 4 we see how the errors go down with increasing order which is the more pronounced the finer
the grid. If we go down in a column for fixed orderq we find approximately the error law that the
error goes down like(1/2)q . For the very small errors we are already in the rounding error range so
that the error law does no longer hold.

Theoretically we should get for grid 4 and grid 5 the same CPU time because we have 4-fold
number of processors. However, if the number of unknowns increases from 307 200 to 1 228 800 the
condition number of the matrixQd increases which results in much more iterations for the iterative
solver BiCGSTAB2 [10], see also [11], p. 139. Thus a problem with 4-fold number of unknowns is
for an iterative solver a problem that needs much more than the 4-fold computation because with the
number of unknowns the properties of the linear system become significantly worse.

The following is a 3-D example. We want to solve the system of 3PDEs for the variablesu, v, w
which is again of Navier-Stokes type

uxx + uyy + uzz + u + uux + vuy + wuz − f1 = 0,

vxx + vyy + vzz + v + uvx + vvy + wvz − f2 = 0,

wxx + wyy + wzz + w + uwx + vwy + wwz − f3 = 0, (2.10.17)

with the BCs

u − g1 = 0, v − g2 = 0, w − g3 = 0. (2.10.18)

Thefi andgi are forcing functions that are determined so that the exact solution is

u = v = w = e−32(x2+y2+z2). (2.10.19)
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We solve on a unit cube with 8 processors of the IBM SP as above.We use the iterative CG solver
ATPRES that is very robust but very slow, see [7]. We start with a 10 × 10 × 10 grid, compute
with fixed orderq = 4, switch on the mesh refinement. For the refinement we prescribe 3 cycles
with total refinement, i.e. each node is a refinement node. In 3-D with this coarse initial grid local
refinement caused difficulties. It resulted in a quite irregular grid so that the error increased instead
of the expected decreasing. However, the total refinement preserved the regular (now finer) grid and
decreased the error.

Table 2.10.5:Results for complete mesh refinement for the solution of (2.10.17), (2.10.18).

no. no. no. global relat. sec.
of of of error for

cycle nodes elements unknows exact estimated cycle
1 1000 3645 3000 0.315E-2 0.417E-2 12.5
2 6130 29160 18390 0.401E-3 0.828E-3 66.2
3 43361 233280 130089 0.264E-4 0.951E-4 548.0

Table 2.10.5 shows the results for the 3 cycles. In 3-D we havetetrahedron elements. For total
refinement from each tetrahedron result 8 tetrahedrons which gives the sequence3645 → 29160 →
233280 tetrahedrons which shows how fast the number of elements grows in 3-D for total refinement.
We also can see that the error estimate in 3-D is worse than in 2-D. Here we estimate the error of
the 3-D polynomials of orderq = 4 by the error polynomials of order 6. Under these circumstances
we find it really astonishing that the maximal difference between order 4 and 6 for 43361 local
approximations is so small. This shows the robustness of ourerror estimate.

Figure 2.10.4:Domains for the example with SDL (non matching grids).
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As mentioned above we used for the solution of the linear system for the computation of the
Newton correction and error the generalized CG method ATPRES which is robust and slow. The
kernel operation of CG-type methods is the matrix-vector multiplication (MVM). ATPRES needs
2 MVMs per iteration step. In cycle 3 of Table 2.10.5 we neededfor the 3 Newton iterations
28+2091+1622 MVMs and for the computation of the error 1247 MVMs. This is the essential com-
putation of the 548 sec total time (of processor 1).

The next of these “academic” examples is for a 2-D Sliding Dividing Line (SDL). Fig. 2.10.4
shows a2 × 1 domain and a1 × 0.5 domain and their (fixed) relative position to each other. We use
on both domains a40 × 20 grid or an80× 40 grid. So the smaller domain has half the mesh lengths
of the larger domain, we have thus non-matching grids. We solve the problem (2.10.13) (2.10.14)
from above. The test function is either (2.10.15) or (2.10.16) with top atx = 0, y = 0, but we add
+1 in the larger domain① and+2 in the smaller domain②. The coupling conditions (CCs) at the
SDL are the jump in the function values and equal derivatives. We compute on 8 processors of the
IBM SP. The results are shown in Table 2.10.6.

Table 2.10.6:Results for the example with Sliding Dividing Line (SDL) of Fig. 2.10.4.

orderq = 2 q = 4 q = 6
type error exact CPU error exact CPU error exact CPU
ū error estim. sec error estim. sec error estim. sec

(Newt.) (Newt.) (Newt.)
grid 40 × 20 for each domain (4800 unknowns)

pol. 0.2164 2.61 0.405E-2 2.88 0.167E-11 2.75
ord.6 0.1801 (6) 0.503E-2 (4) 0.714E-10 (1)
sugar- 0.3121 1.62 0.3044 3.12 0.552E-1 6.16
loaf 0.1163 (4) 0.1926 (6) 0.612E-1 (5)

grid 80 × 40 for each domain (19200 unknowns)
pol. 0.729E-1 8.91 0.451E-3 4.29 0.135E-11 9.58
ord.6 0.631E-1 (5) 0.732E-3 (1) 0.917E-10 (1)
sugar- 0.551E-1 5.05 0.211E-1 8.69 0.664E-2 18.41
loaf 0.159E-1 (3) 0.109E-1 (4) 0.437E-2 (4)

Because the coupling of the global solution for the two domains is made by the CCs at the SDL
we need more Newton iterations than for a single domain. Therefore we give in Table 2.10.6 the
number of Newton steps in parentheses below the CPU time. Thestarting solution is always the
exact solution. If we took another starting solution, e.g.u = 1, we would need one or two more
Newton steps. This starting solution explains why we need only 1 Newton step for test function as
polynomial of order 6 and consistency orderq = 6 because here the starting solution is the exact
solution.
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3 Applications

3.1 Introduction to Applications

Besides the evolution of the FDEM program package to moving subdomains with non-matching grid
the application of FDEM to some industrial problems should be demonstrated as result of the research
project. When we addressed some firms if they would be interested to participate in a cooperation, it
became immediately clear that they were interested only if they had a problem for which there was
no standard software on the commercial market available. This means that the selected problems are
really difficult problems. The agreement was that the firms delivered the PDEs and BCs and we tried
to solve them with FDEM.

The first problem was the simulation of the manufacturing process of metal bellows (Metallbälgen)
from stainless steel sheet. However, the industrial partner IWKA could only deliver the problem
description and not the PDEs. They were no specialists for the plasticity equations of stainless steel
sheet. So we looked for a partner that could deliver the necessary PDEs and we addressed (by the
advice of the metallurgists of the University of Karlsruhe)the Institute for Metal Forming Technology
(IFU) of the University of Stuttgart. They promissed to deliver the necessary PDEs and to determine
the corresponding empirical coefficients in the equations by tensile tests in their laboratory. For
this purpose IWKA had to furnish the tensile test pieces. Unfortunately, the IFU used itself for
their calculations commercial codes for metal forming processes and had themselves no practical
experience with the PDEs that were used in these codes. All these codes were FEM codes where the
PDEs are not explicitly used as we do it in the FDM. So a for us terrible learning process started:
The IFU delivered a plasticity model, we programmed it and tested the code with the test methods
described above so that we were sure that the PDEs were implemented correctly. Then we tried
to solve the physical problem for the simulation of the tensile test to reproduce the measurements.
However, either the numerical solution of the physical problem failed because the Newton iteration
failed to converge, even for severe linearizations of the equations, or the solution was physically
unrealistic. Then we got another plasticity model from the IFU and the play started anew. This for us
extremely frustrating process lasted two and a half years until we finally, after the official end of the
project funding, had the desired plasticity model that could simulate the measurements. Only then
the programming of the manufacturing process could start. The details of this part of the project are
presented in Section 3.2.

The second industrial project was delivered by the High Pressure Diesel Injection Pump branch
of Bosch. It is a fluid-structure interaction problem. The injection pressure for Diesel is now up to
2000 bar. This means that under this force the piston and the housing of the pump are considerably
deformed so that the lubrication and caulking gap that has a width of only a few micrometers is
affected correspondingly. The difficulty comes from the different scales: The housing and length
of the gap is in the range of centimeters, the diameter of the piston in the range of millimeters,
but the width of the gap is in the range of micrometers. If we want to solve the PDEs correctly,
which are for the piston and the housing the elasticity equations and for the fluid in the gap the
incompressible Navier-Stokes equations, we must resolve the equations over the width of the gap.
So we will have quite different grids for housing, piston andgap. For the present case the piston is
fixed. In later applications the piston will be moving and also the heat conduction will be computed.
These problems need the coupling of the solutions for housing, piston and gap and thus initiated the
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evolution of FDEM for Sliding Dividing Lines (SDLs) that allow a global solution with global error
estimate for the coupled domains of housing, piston and gap.The details of this part of the project
are discussed in Section 3.3.

The third industrial project was from the area of fuel cells.The manufacturer Freudenberg pro-
duces non-woven materials that are used in PEM (proton exchange membrane) fuel cells. Originally,
the intention was to simulate a whole fuel cell and to find out how the properties of the non-woven
material that is used as a gas diffusion layer (GDL) influences the performance of the fuel cell. How-
ever, when Freudenberg Forschungsdienste, our partner, investigated the problem of compiling the
PDEs for the whole cell they recognized that they were not able within the intended effort to for-
mulate the equations at the catalytic membrane and to determine the necessary coefficients for the
chemical reactions. Therefore they simplified the problem to GDL with catalytic production of water
vapor at the membrane. The details of this part of the projectare presented in Section 3.4.

Originally there was still a fourth industrial partner fromthe area of electric machinery. However,
because of financial difficulties they closed the research lab with which we intended to cooperate
soon after the start of the FDEM project.

3.2 Simulation of the manufacturing of metal bellows

As mentioned above we went together with the scientists of the IFU through an extremely frustrating
learning process until we finally had a system of PDEs that could describe the plastic deformation of
stainless steel sheet. We got plasticity models at 13.7.01,15.12.01, 25.1.02, 3.4.02, 17.7.02, 14.8.02,
25.10.02 and finally 18.12.02 (this is the German writing of date: day, month, year). The last model
was—as we believed—a correct complete description of the desired plasticity model. It is extremely
non-linear. We programmed the model and tested the code withthe test function. However, due to
this non-linearity Newton’s method did not converge if we started with a0.1% disturbed solution.
This was a bad warning for the solution of the physical problem that had as starting solution the
solution of the last elastic step. As expected Newton’s method did not converge. We then linearized
the equations in time by taking appropriate function valuesfrom the previous time step which helped
for the first plastic step but resulted in non-physical results for further time steps. Our conclusion is:
We cannot decide from the point of view of the numerical solution if this plasticity model is a valid
model. We only can state that it is an unusable model. Nevertheless we will describe in Section 3.2.2
the numerical solution method of this model. Before we can dothis we must at first discuss in
Section 3.2.1 the solution of the elastic equations that deliver the starting solution for the plastic
equations and finally describe the spring-back solution at the end of the metal forming process.

Because the full “theoretical” plasticity model could not be used we tried, like FEM-users do, to
solve also for the plastic region the elastic equations and to project the stresses that are then much
too large down to the yield curve. This resulted in far too large stresses because the material was
too hard. If the material yields it is soft. Then we got at 27.5.03 a proposal of the IFU for a “soft”
elasticity module. We played with the empirical coefficients in this approach and could for the first
time simulate the tensile test approximately. By the investigation between the simulation and the
experiment we could recognize how the functional approach had to be modified to simulate exactly
the physical experiment of the tensile test machine. So we had finally the desired plasticity model
for the stainless steel sheet. This part of the research is described in Section 3.2.3.

Now we could attack with this plasticity model the simulation of the manufacturing of a single

44



3.2 Simulation of the manufacturing of metal bellows

wave of a metal bellow. A whole bellow is composed of a sequence of single waves, but the com-
putation of a single wave determines the properties of the whole bellow. The manufacturing process
consists of different phases: initial blowing with pure hydroforming, then combined forming by pres-
sure and moving tool, and finally the spring-back if pressureand form are taken off. However, the
numerical simulation revealed that the steel sheet bursts under the internal pressure and “explosion”
into the form. Because of the inherent instability of the problem this resulted in (nearly) unsurmount-
able difficulties. This part of the research is presented in Section 3.2.4.

The equations that we want to solve are presented in the report of the IFU on their part of the
compound project [12]. Quite naturally we have continuously to refer to equations given in that
report. If we e.g. refer to equation (x.y) in [12] we denote itby [12](x.y).

3.2.1 The numerical solution of the elasticity equations fo r the tensile test

We want to simulate the tensile test in order to adapt the plasticity model to the measurements.
However, the tensile test starts with elastic deformation.So we must at first solve the elasticity
equations.

Figure 3.2.1.1:Tensile test piece (above) and simplification (below).

Fig. 3.2.1.1 shows in the upper part the test piece. It is clamped in the end regions. As we do
not know how the force is entered into the test piece we simplify the configuration, see Fig. 3.2.1.1
lower part.

Because the thickness of the metal sheet is only0.2 mm we use a 2-D model inx, y. We get
the elasticity equations for 2-D by equating the geometrical definition of strain and the definition of
strain from Hooke’s law. From [12](2.11) and [12](2.26) we get forεxx
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1

Ex
[σxx − νxyσyy] =

∂ux

∂x
. (3.2.1.1)

In [12] is used an orthotropic Hooke material law (in contrast to the usual isotropic law) because by
the rolling process of the thin steel sheet the properties ofthe material are different in the rolling direc-
tion and orthogonal to it. Here we assume that the rolling direction is thex-direction in Fig. 3.2.1.1.
ThusEx is Young’s module inx-direction, similarlyEy in y-direction, and there is the shear mod-
ule Gxy. νxy is Poisson’s ratio. Values for the steel of the test piece aregiven in [12](2.81) to
[12](2.83). The stresses are denoted byσxx, σyy, σxy. The strainsε.. are defined in [12](2.11) to
[12](2.14) by the derivatives of the displacementsux, uy in x- andy-direction, and by the stresses in
[12](2.26) to [12](2.31).

As we will see later, for plastic deformation not the displacementsux, uy but the displacement
velocitiesυx, υy are decisive:

υx =
∂ux

∂t
, υy =

∂uy

∂t
. (3.2.1.2)

With the displacement velocities we can define strain velocities. For small deformations they are
given as the linear part of equs. [12](2.5) to [12](2.10), e.g.

ε̇xx =
∂υx

∂x
, ε̇yy =

∂υy

∂y
, ε̇xy =

1

2
(
∂υx

∂y
+

∂υy

∂x
). (3.2.1.3)

They are used in the formulation of the plasticity equations, see Section 3.2.2.
If we want to simulate the tensile test until the test piece breaks, we must start with the elastic

PDEs and then, if the yield limit is crossed, continue with the plastic PDEs. So, at this limit, we had
to change from the variablesux, uy that are used in the elastic PDEs to the variablesvx, vy that are
used in the plastic PDEs. Because this is unsuitable we use inboth cases the variablesvx, vy. For
this purpose we solve the elastic PDEs in incremental form. We proceed in the elastic part by a time
increment∆t. We have

υx =
∂ux

∂t
≈

∆ux

∆t
. (3.2.1.4)

Therefore we use

υx =
∆ux

∆t
, ∆ux = ∆t · υx, (3.2.1.5)

υy =
∆uy

∆t
, ∆uy = ∆t · υy.

This gives us the displacements in the time increment∆t if vx, vy are known.
There is still another reason to proceed incrementally in time: If we solve the plastic equations we

have large deformations, i.e. the original configuration isstrongly disturbed. Therefore, after each
time step, we update the coordinates of the nodes by the displacements:

xnew = xold + ∆ux,
ynew = yold + ∆uy,

(3.2.1.6)
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where the index “old” denotes the values after the precedingtime step.
For the stresses the incremental advancing means that we compute stress increments∆σxx, ∆σyy,

∆σxy that are then added to the “old” value of the previous time step. This means a stretching of the
material in increments instead of a continuous stretching.
For the incremental stretching equ. (3.2.1.1) becomes

1

Ex
[∆σxx − νxy∆σyy] =

∂∆ux

∂x
. (3.2.1.7)

We have

σxx = σxx,old + ∆σxx, ∆σxx = σxx − σxx,old,

σyy = σyy,old + ∆σyy, ∆σyy = σyy − σyy,old, (3.2.1.8)

σxy = σxy,old + ∆σxy, ∆σxy = σxy − σxy,old.

From (3.2.1.5) we get

∂∆ux

∂x
=

∂(∆t · vx)

∂x
= ∆t

∂vx

∂x
,

∂∆uy

∂y
=

∂(∆t · vy)

∂y
= ∆t

∂vy

∂y
, (3.2.1.9)

∂∆ux

∂y
=

∂(∆t · vx)

∂y
= ∆t

∂vx

∂y
,

∂∆uy

∂x
=

∂(∆t · vy)

∂x
= ∆t

∂vy

∂x
.

If we replace in (3.2.1.7)∆σ.. and∆ux by (3.2.1.8) and (3.2.1.9) we get

1

Ex
[σxx − σxx,old − νxy(σyy − σyy,old)] − ∆t

∂υx

∂x
= 0. (3.2.1.10)

By a similar procedure we get forεyy from [12](2.11) and [12](2.27)

−
νxy

Ex
(σxx − σxx,old) +

1

Ey
(σyy − σyy,old) − ∆t

∂υy

∂y
= 0. (3.2.1.11)

and forεxy we get from [12](2.12) and [12](2.31)

1

Gxy
(σxy − σxy,old) − ∆t(

∂υx

∂y
+

∂υy

∂x
) = 0. (3.2.1.12)

These are 3 equations for the 5 unknownsvx, vy, σxx, σyy, σxy. The missing 2 PDEs come from the
balancing of the forces which are for 2-D from [12](2.2)

∂σxx

∂x
+

∂σxy

∂y
= 0, (3.2.1.13)

∂σxy

∂x
+

∂σyy

∂y
= 0. (3.2.1.14)
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Here we do not need to formulate the balancing in incrementalform because it holds as consequence
of the linearity of the equations for theσ’s and the∆σ’s.

Table 3.2.1.1:Sequence of variables and equations for the solution of the elastic equations.

no. variable equation
1 vx (3.2.1.10)
2 vy (3.2.1.12)
3 σxx (3.2.1.13)
4 σyy (3.2.1.11)
5 σxy (3.2.1.14)

The numerical solution of this system of 5 PDEs turned out to be rather critical because we use in
FDEM “centralized” difference stars and in the PDEs there are only first derivatives which lead to
odd/even uncoupling of the solution (the BCs are given below). We see the discretization error from
the error estimate und we found that the sequence of variables and PDEs that is given in Table 3.2.1.1
was optimal. Because we found in the simulation of the tensile test with the simplified configuration
of Fig. 3.2.1.1, lower part, thatσyy = 0, σxy = 0 theoretically and numerically, we used also a
“3-equation model” where the PDEs forσyy andσxy were replaced by explicit value zero. Then we
have the sequence of variables and PDEs given in Table 3.2.1.2.

Table 3.2.1.2:Sequence of variables and PDEs for the “3-equation model” for elastic equations.

no. variable equation
1 vx (3.2.1.10)
2 vy (3.2.1.11)
3 σxx (3.2.1.13)
4 σyy σyy = 0
5 σxy σxy = 0

Before we discuss the BCs we want to give the expressions for the stress components of a surface
and the normal and tangential stresses. Fig. 3.2.1.2 shows asurface elementdS with components
dSx, dSy and the normaln (length 1) with componentsnx, ny. In σxx the first index denotes the
normal direction of the surface on whichσ acts and the second index denotes the direction of the
stress. From that definition the forcedF at a surface element is, withσxy = σyx:

dF

Force

=

(
dSxσxx +dSyσxy

dSxσxy

ondSx, ondSy

+ dSyσyy

)
x-component
y-component.

(3.2.1.15)
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3.2 Simulation of the manufacturing of metal bellows

From Fig. 3.2.1.2 we can see that

dSx

dS
=

nx

1
,

dSy

dS
=

ny

1
,

from which we get

dSx = nx dS, dSy = ny dS. (3.2.1.16)

So we get from (3.1.2.15)

dF =

(
σxx nx + σxy ny

σxy nx + σyy ny

)

dS. (3.2.1.17)

Because stress isσ = dF
dS we get for the stress vector at the surface

σ

surface element
with normal in

=

(
σxxnx +σxyn

y

σxyn
x

x-dir. y-direction

+ σyyn
y

)
x-component
y-component.

(3.2.1.18)

At a surface whose normal is in thex-direction we get from (3.2.1.18)

n =

(
nx

ny

)

=

(
1
0

)

: σ =

(
σxx

σxy

)

. (3.2.1.19)

and at a surface whose normal is in they-direction

n =

(
nx

ny

)

=

(
0
1

)

: σ =

(
σxy

σyy

)

. (3.2.1.20)

In Fig. 3.2.1.3 we see the tangent vectort at the surface elementdS. We can directly see from the

Figure 3.2.1.2:Illustration for surface elementdS.
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geometry thattx = −ny (negative direction),ty = nx. Thus we get

t =

(
tx

ty

)

=

(
−ny

nx

)

. (3.2.1.21)

If we denote byσT the transpose of the stress vector (3.2.1.18) we get the normal stress as the com-
ponent of the stress vector in the normal direction as the scalar product ofσ andn:

σn = σT · n = σxx(nx)2 + 2σxyn
xny + σyy(n

y)2, (3.2.1.22)

and similarly with (3.2.1.21) the tangential component

σt = σT · t = −σxxn
xny + σxy((n

x)2 − (ny)2) + σyyn
x ny. (3.2.1.23)

We will need these expressions later in this report.

Now we want to discuss the BCs for the solution of the equations of Table 3.2.1.1 for the elastic
part of the tensile test with the simplified test piece of Fig.3.2.1.1. Fig. 3.2.1.4 shows the BCs. We
want to explain them a little. At the upper and lower edge, without the corners (end points of the
edge), we use forvx, vy, σxx the indicated PDEs. For the BCs, like for the PDEs, it is important to
have the right PDE for the right variable, else there are numerical problems (divergence of LINSOL,
divergence of Newton, large errors). The upper and lower edge are force-free edges. The stress
components there are zero. The normal is in they-direction,ny = 1 (upper) orny = −1 (lower),
nx = 0. thus from (3.2.1.18) we getσxy = 0 andσyy = 0 from x- andy-component to be zero.

The left end of the simplified test piece is fixed:υx = 0. The right end moves with the speed
υx,test of the tensile test maschine. For the other variables the BCsof the left and right end are the
same. Forυy we use PDE (3.2.1.12), but in order to fix the test piece in they-direction we useυy = 0

Figure 3.2.1.3:Illustration for tangentt.
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Figure 3.2.1.4:BCs for the simplified tensile test piece for the equations ofTable 3.2.1.1.

at the nodes of the center line of the test piece.σxx andσyy result from the movement of the right
end, we use PDEs (3.2.1.10) and (3.2.1.11). Because there isno y-component of the stress and we
have the normal withnx = ± 1, ny = 0 we get from (3.2.1.18)σxy = 0. Thus we have used at all
edges the basic elasticity equations (3.2.1.10)–(3.2.1.12).

For the “3-equation model” of Table 3.2.1.2 we merely replace the condition forσyy at the left and
right end byσyy = 0.

Because the elastic equations are only used to produce starting conditions for the plastic equations
we do not present results here. They are trivial because the problem is linear and the solution could be
obtained by the theory because of the simple geometry. However, if we look carefully the problem
is severely non-linear because we move the coordinates of the configuration when the test piece
extends in thex-direction and shrinks consequently in they-direction. The results of the full model
of Table 3.2.1.1 showed thatσyy ≈ 0 andσxy ≈ 0 so that we later used the “3-equation model”
of Table 3.2.1.2. The spatial maximal relative discretization errors were estimated in the range10−8

down to10−10 because of the linearity of a single time step.

3.2.2 The attempt to solve numerically a “full” plasticity m odel for the tensile test

After many vain trials the IFU finally presented a “full” plasticity model, the theoretical background
is given in [12]. Here we restrict to the discussion of the numerical solution. We could solve nu-
merically the system of PDEs—for the test function. However, all attempts to get solutions for the
physical model failed because of the extreme non-linearityof the system. These attempts, for the
model discussed below and for all the preceding models, consumed most of the project resources.
The only result was: the model is “unusable” for practical applications. Nevertheless we present here
the numerical solution method to show how we attacked the problem.

For the plasticity we have now, besides the variablesvx, vy, σxx, σyy, σxy that had been introduced
in the elastic part, an additional variable: the plasticityparameterλ. With the discussion in [12] about
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the von Mises stress and the equations [12](2.32), [12](2.39), [12](2.56) we get that the material gets
plastic, i.e. is above the yield stress, if we have

σ ≧ Y0 + K(ε0 + λ)n, (3.2.2.1)

with the equivalence stress

σ =
√

σ2
xx + σ2

yy − σxxσyy + 3σ2
xy (3.2.2.2)

for the 2-D case. The values forY0,K, ε0, n are given for the stainless steel sheet in [12](2.72) to
[12](2.77) where we take thexx-values und haveY0 = Axx. As λ is a variable whose value may be
different for each node, and asσ depends also on the values of theσ’s of the node, we must check in
each node individually the condition (3.2.2.1) to decide ifthe material at the node is elastic or plastic.

The question is now: with which equations the next time step (in a time incremental procedure)
should be solved, with the elastic or plastic PDEs? For the simulation of the manufacturing process of
the metal bellows we know for the previous time step if a surface node of the steel sheet is a free node
or if it is forced by the tool, i.e. moves with the tool. As we want to develop for stability reasons
a totally implicit method we must know which conditions holdat the endof the actual time step
because they decide. Therefore we always make twotime steps: a test stepwith the conditions of the
previous step to check if the steel is elastic or plastic at the end of the step (and for the manufacturing:
is a boundary node free or forced) and then execute the computation stepwith the conditions found
at the end of the test step.

The explicit plasticity equations are obtained by equatingthe geometrical expression for the strain
velocity, e.g.ε̇xx [12](2.5) with that of the plastic expression [12](2.68). In the geometrical expres-
sion is now the linear Cauchy term and the non-linear Green term. With the notation

λ̇ =
dλ

dt
=

∂λ

∂t
+

∂λ

∂x
vx +

∂λ

∂y
vy (3.2.2.3)

from [12](2.51) where we have useddx/dt = vx, dy/dt = vy, ∂λ/∂z = 0 we get

(
∂λ

∂t
+ vx

∂λ

∂x
+ vy

∂λ

∂y
)

1

2σ̄
(2σxx − σyy) − (3.2.2.4)

−(
∂vx

∂x
+

∂ux

∂x

∂vx

∂x
+

∂uy

∂x

∂vy

∂x
) = 0.

Similarly we get byε̇yy

(
∂λ

∂t
+ vx

∂λ

∂x
+ vy

∂λ

∂y
)

1

2σ
(2σyy − σxx) − (3.2.2.5)

−(
∂vy

∂y
+

∂ux

∂y

∂vx

∂y
+

∂uy

∂y

∂vy

∂y
) = 0

and byε̇xy

(
∂λ

∂t
+ vx

∂λ

∂x
+ vy

∂λ

∂y
)
3σxy

2σ
− (3.2.2.6)

−[
1

2
(
∂vx

∂y
+

∂vy

∂x
) +

∂ux

∂x

∂vx

∂y
+

∂uy

∂x

∂vy

∂y
] = 0.
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These are 3 equations for the 6 variablesvx, vy, σxx, σyy, σxy, λ. Two further equations are the equi-
librium equations (3.2.1.13) and (3.2.1.14) that are the same as for elastic deformation. The6th

equation is the equation forλ that is in reality an equation foṙλ, equation [12](2.60) that we rear-
range in the form

∂λ

∂t
+ vx

∂λ

∂x
+ vy

∂λ

∂y
−

1

Kn(ε0 + λ)n−1
·
1

σ̄
·

·{
1

2
[2σxx(

∂σxx

∂t
+ vx

∂σxx

∂x
+ vy

∂σxx

∂y
) +

+2σyy(
∂σyy

∂t
+ vx

∂σyy

∂x
+ vy

∂σyy

∂y
) +

+6σxy(
∂σxy

∂t
+ vx

∂σxy

∂x
+ vy

∂σxy

∂y
) − (3.2.2.7)

−σxx(
∂σyy

∂t
+ vx

∂σyy

∂x
+ vy

∂σyy

∂y
) −

−σyy(
∂σxx

∂t
+ vx

∂σxx

∂x
+ vy

∂σxx

∂y
)]} = 0.

Here we recognize that the first 3 terms (that areλ̇) and the terms in the parentheses are total time
derivativesd/dt. The corresponding justification for these equations is given in [12].

We have now the problem to solve these equations. The sequence of the variables and equations is
given in Table 3.2.2.1 similarly to Table 3.2.1.1. The BCs are that of Fig. 3.2.1.4 where we replace
the elastic equations by the corresponding plastic equations: (3.2.1.10)→ (3.2.2.3), (3.2.1.11)→
(3.2.2.4), (3.2.1.12)→ (3.2.2.5).

There are two problems. The first problem are the time derivatives. The PDEs are time evolution
PDEs, i.e. of parabolic type. FDEM can solve directly parabolic equations. However, in this case we
cannot use this possibility but we must proceed by time increments as explained above for the elastic
equations. Therefore we use in (3.2.2.4)–(3.2.2.7) e.g.

∂λ

∂t
≈

∆λ

∆t
=

λ − λold

∆t
,

∂σxx

∂t
≈

∆σxx

∆t
=

σxx − σxx,old

∆t
(3.2.2.8)

and similarly forσyy, σxy. λold, σxx,old etc. are the profiles of the previous time step. The second
problem are the derivatives∂ux/∂x, ∂ux/∂y, ∂uy/∂x, ∂uy/∂y, i.e. the space derivatives of the
displacementsux, uy in the non-linear Green terms of the strain velocities in equations (3.2.2.4)–
(3.2.2.6). We have for a nodei: ux,i = xi(t) − xi(t = 0). However, we knowxi(t) only after the
moving of the coordinates at the end of a time step. Thereforewe use

ux,i = xi(told) − xi(t = 0), uy,i = yi(told) − yi(t = 0), (3.2.2.9)

wheretold is the time of the previous step. We store the profiles ofux anduy for all nodes and
compute with the difference formulas the required derivatives with respect tox andy.
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Table 3.2.2.1:Sequence of variables and equations for the solution of the “full” plastic equations.

no variable equation
1 vx (3.2.2.4)
2 vy (3.2.2.6)
3 σxx (3.2.1.13)
4 σyy (3.2.2.5)
5 σxy (3.2.1.14)
6 λ (3.2.2.7)

This system of equations is, with the exception of the two linear equilibrium equations, extremely
non-linear, above all theλ-equation (3.2.2.7). Observe that inσ (3.2.2.2) the stresses appear non-
linearly. We compute with the elastic equations until in thetest step the condition (3.2.2.1) holds,
then for this node the plastic equations are used for the computation step. As long as the equations
are elastic, we haveλ = 0. The starting values for the other variables are those of thelast elastic
step. So we solve, by the time discretization (3.2.2.8), in each time step an elliptic problem. This
means a fully implicit procedure because all 6 variables arecomputed at the new time step. So we
expect unconditional stability in time.

We have implemented the PDEs and used a test polynomialu of second order and solved with
consistency orderq = 2. So we should reproduce the test solution in the range of the rounding
errors. This could indeed be observed which proves that the equations were implemented correctly.
We switched on the Jacobi tester that finally did no longer report errors so that we are sure that the
Jacobian matrices were correct. It should be mentioned thatfor these extremely non-linear equations
the Jacobian matrices are correspondingly complicated expressions that could be made treatable only
by the definition of smaller intermediate expressions.

Then we used, as usual, a starting solution with1% disturbance and expected that Newton’s
method finds back with a1% correction to the exact solution. However, Newton diverged. It tried
to reduce the Newton defect by a relaxation factorω and finally gave up ifω was below 0.01. Then
we made a series of numerical experiments that showed: belowa disturbance of0.2% Newton found
back the exact solution, for larger disturbances it diverged. So we see that we had correctly imple-
mented the PDEs, but the extreme non-linearity made the numerical solution very critical.

When we then took off the terms of the test solution and tried to solve the physical problem as
continuation of the elastic solution, Newton did not converge (as we had expected). We then made
numerous experiments with linearizations of the system. Ifthe index “old” denotes the values at
the previous time step, we replacedσ by σold, or in theλ-termsvx(∂λ/∂x) → vx,old(∂λ/∂x), or in
(3.2.2.7)(ε0 + λ) → (ε0 + λold), or the whole braces{} → {}old. We could get solutions of the
linearized systems, but only for one plastic time step. The second plastic time step then gave always
physically unrealistic solutions.

In order to simplify the system we intended to go to a “3-equation model” like in Table 3.2.1.2
with σyy = 0, σxy = 0. However, this is not possible and shows the strange character of the system:
In equation (3.2.2.4) we have forσyy = 0, σxy = 0
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1

2σ
(2σxx − σyy) =

1

2
√

σ2
xx

· 2σxx = 1. (3.2.2.10)

So the variableσxx for which this equation should be used, drops out. We leave itto the metallurgists
to discuss this property.

The consequence of these very frustrating numerical experiments is: the PDEs of the “full” plastic-
ity model can be solved as we have seen for the test solution, but they are “unusable” for the physical
problem because Newton converges only very close to the solution as a consequence of the extreme
non-linearity. We then gave up to try to find physical solutions of these equations as continuation of
the elastic solution.

3.2.3 The approach with a “plastic” E-module for the tensile test

Because we could not get physical solutions of the “full” plastic model equations we proceeded as
follows: We solved the elastic equations of Table 3.2.1.1 for a time incremental step and checked if
the equivalent stress was above the yield stress with the condition (3.2.2.1). If we are above the yield
surface we have the situation of Fig. 3.2.3.1: The value ofσ is too large.

Therefore we project all stresses down so that we come down ator below the yield surface. We
use the approach

σxx = a σxx,el, σyy = a σyy,el, σxy = a σxy,el, (3.2.3.1)

where the index “el” means computed with the elastic equations. The projected stresses fulfil still
the equilibrium equations (3.2.1.13) and (3.2.1.14) because the factora drops out. We have with
(3.2.3.1), (3.2.2.2)

Figure 3.2.3.1:Illustration forσ too large.

σ =
√

a2σ2
xx,el + · · · = a

√

σ2
xx,el + · · · = a σel. (3.2.3.2)
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With the yield stressY [12](2.39)

Y = Y0 − K(ε0 + λ)n, (3.2.3.3)

we want the coefficienta such thatσ ≦ Y . For more flexibility we use

a = 1 − α(1 −
Y0 + K(ε0 + λ)n

√

σ2
xx,el − σ2

yy,el − σxx,elσyy,el + 3σ2
xy,el

). (3.2.3.4)

For α = 1 we haveσ = Y , i.e. we project onto the yield surface, forα = 2 we have the situation
of Fig. 3.2.3.2: we go down twice the difference to the yield surface so that the yield surface runs
between the elastic and the projected values. With these projected stresses and PDE (3.2.2.7) the
valueλ for the next time step is computed.

Figure 3.2.3.2:Illustration of (3.2.3.4) forα = 2.

We made numerical experiments with the coefficients in the elastic equations given in [12](2.81)
to [12](2.83) and forY given in [12](2.75) to [12](2.77). However, the results were such that the
stresses were far too large for a certain strain: The material was too hard. If the steel yields it is
“dough” and not a spring. We tried with lower values of theE-module to meet the measurements,
but the attempts failed. This wasnot the way to solve the problem.

From the numerical experiments it became obvious that theE-module must be very “soft” and
depend on the strainε. Therefore the IFU made the following proposition, forYx (in our notation)

Yx = Y0,x + Kx(ε0,x + εxx)nx , (3.2.3.5)

from which follows withEx = ∂Yx/∂εxx [12](2.78)

Ex = Kx nx(ε0,x + εxx)nx−1. (3.2.3.6)
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3.2 Simulation of the manufacturing of metal bellows

The proposed coefficients are [12](2.75) to [12](2.77):

Y0,x = 60
N

mm2
, Kx = 175

N

mm2
, ε0,x = 1.02, nx = 0.293. (3.2.3.7)

As we have for plastic deformation large strain, we must takefor ε the non-linear Cauchy-Green
form [12](2.3). For 2-D we have in tensor notation

εik =
1

2

(
∂ui

∂xk
+

∂uk

∂xi

)

+
1

2

2∑

j=1

∂uj

∂xi

∂uj

∂xk
(3.2.3.8)

from which we get in our notation

εxx =
∂ux

∂x
+

1

2

(

(
∂ux

∂x
)2 + (

∂uy

∂x
)2
)

, (3.2.3.9)

εyy =
∂uy

∂y
+

1

2

(

(
∂ux

∂y
)2 + (

∂uy

∂y
)2
)

, (3.2.3.10)

εxy =
1

2

(
∂ux

∂y
+

∂uy

∂x

)

+
1

2

(
∂ux

∂x

∂ux

∂y
+

∂uy

∂x

∂uy

∂y

)

. (3.2.3.11)

If we equateεxx from Hooke’s law [12](2.26) and from (3.2.3.9) we get

1

Ex
[σxx − νxyσyy] =

∂ux

∂x
+

1

2

(

(
∂ux

∂x
)2 + (

∂uy

∂x
)2
)

. (3.2.3.12)

If we want to proceed incrementally as explained in the context of equs. (3.2.1.7)–(3.2.1.10) we get
from (3.2.3.12) for an incremental stress and displacement

1

Ex
[∆σxx − νxy∆σyy] =

∂∆ux

∂x
+

1

2

(

(
∂∆ux

∂x
)2 + (

∂∆uy

∂x
)2
)

. (3.2.3.13)

For a time increment∆t we get with (3.2.1.5) and (3.2.1.8)

1

Ex
[σxx − σxx,old − νxy(σyy − σyy,old)] −

−∆t
∂υx

∂x
−

1

2
∆t2

(

(
∂υx

∂x
)2 + (

∂υy

∂x
)2
)

= 0. (3.2.3.14)

Similarly we get forεyy andεxy

−
νxy

Ex
(σxx − σxx,old) +

1

Ey
(σyy − σyy,old) −

−∆t
∂υy

∂y
−

1

2
∆t2

(

(
∂υx

∂y
)2 + (

∂υy

∂y
)2
)

= 0, (3.2.3.15)
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2(1 + νxy)

Ex + Ey
σxy −

1

2
∆t

(
∂υx

∂y
+

∂υy

∂x

)

−

−
1

2
∆t2

(
∂υx

∂x

∂υx

∂y
−

∂υy

∂x

∂υy

∂y

)

= 0. (3.2.3.16)

Here we have used [12](2.83)

Gxy =
Ex + Ey

4(1 + νxy)
. (3.2.3.17)

The equilibrium equations (3.2.1.13), (3.2.1.14) are the same as in the elastic case.
Like explained for Table 3.2.1.2 we reduce withσyy = 0, σxy = 0 these 5 equations to the “1-D”

3-equation model for the simplified tensile test piece of Fig. 3.2.1.1. Here we write down explicitly
these equations:

1

Ex
(σxx − σxx,old) − ∆t

∂υx

∂x
−

1

2
∆t2

(

(
∂υx

∂x
)2 + (

∂υy

∂x
)2
)

= 0, (3.2.3.18)

−
νxy

Ex
(σxx − σxx,old) − ∆t

∂υy

∂y
−

1

2
∆t2

(

(
∂υx

∂y
)2 + (

∂υy

∂y
)2
)

= 0, (3.2.3.19)

∂σxx

∂x
= 0. (3.2.3.20)

These are 3 equations for the 3 variablesυx, υy, σxx. The BCs are those of Fig. 3.2.1.4, but now
we have at the left/right boundaryυy: PDE (3.2.1.19),σxx: PDE (3.2.3.18),σyy = 0, σxy = 0
and at the upper/lower boundaryυx: PDE (3.2.1.18),υy: PDE (3.2.3.19),σxx: ∂σxx/∂x = 0, the
non-mentioned conditions are the same.

Now we use for the simulation of the tensile test this 3-equation model, i.e. the “elastic” equa-
tions also in the plasticregion, but the constant elasticE-moduleEx is now replaced byEx from
(3.2.3.6). Thus we go automatically along the yield limit. Hereεxx is computed from the non-linear
Cauchy-Green form (3.2.3.9)

εxx =

{
∂ux

∂x
+

1

2

[

(
∂ux

∂x
)2 + (

∂uy

∂x
)2
]}

old

. (3.2.3.21)

The index “old” means that the values are computed from the result of the previous time step. For
the computation of∂ux/∂x, ∂uy/∂x see the remarks to equation (3.2.2.9). Hereu is the global
displacement. The check if the steel is elastic or plastic ismade withY from (3.2.3.3), i.e. by the
condition (3.2.2.1).

Here we should explain more precisely how we proceed: For a new time step we make at first
a test step with the conditions of the previous step, i.e. nodes that were elastic at the end of the
previous computation step are solved with the elastic equations. At the end of the test step we check
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3.2 Simulation of the manufacturing of metal bellows

if the nodes are elastic or plastic and then the computation step is executed with the corresponding
equations. At the end of the computation step the nodes are again checked for elastic or plastic and
with these properties the next test step is executed.

After the computation step a new value for the plasticity parameterλ is computed for plastic nodes.
As long as a node is elastic we haveλ = 0 until it becomes plastic for the first time. When a node is
plastic we computeλ from the PDE (3.2.27). For the 3-equation model (σyy = 0, σxy = 0) (3.2.2.7)
reduces to

∂λ

∂t
+ υx

∂λ

∂x
+ υy

∂λ

∂y
−

1

Kn(ε0 + λ)n−1

1

σ
·

· σxx

(
∂σxx

∂t
+ υx

∂σxx

∂x
+ υy

∂σxx

∂y

)

= 0. (3.2.3.22)

Time derivatives∂λ/∂t, ∂σxx/∂t are discretized with (3.2.2.8). In this scalar PDE onlyλ is the
unknown function, all other values are taken from the actualcomputation step. The so computed
value ofλ is then used in the next time step.

Then we made numerous numerial experiments withEx from (3.2.3.6) to simulate the measure-
ments of the tensile test. We started with coefficients that were proposed by the IFU and failed
completely to meet with the simulation the physical measurements. Then we varied systematically
the coefficients and observed how we had to change the values that we came with the numerical
result closer to the measurements. We finally ended up with a result that was not satisfactory, but the
possibilities of the coefficients were exhausted.

Therefore we looked how we could adaptEx by an additional functional term. We ended up with

Ex = (1 + δx(εxx)) Kx,0 nx(εx,0 + εxx)nx−1 (3.2.3.23)

which means that in (3.2.3.6) the constant valueKx is replaced by

Kx = (1 + δx(εxx))Kx,0, (3.2.3.24)

whereδx(εxx) is itself a function ofεxx. By an appropriate choice of this function we could nearly
perfectly simulate the measurement. For the solution of thePDEs we takeεxx = εxx,old, i.e. the
value of the previous time step to have an explicit formula.

However, there was a new problem: obviously the volume of thesimulated test piece was not
maintained, it was too small. This means that the transversecontractionν was too large. We had
used the constant value of [12](2.82)νxy = 0.5055. So the problem was much more complicated:
We had to adapt the parameters of our approach so that we reproduced the measurements and at the
same time to determine a value ofν that maintained the volume.

Fig. 3.2.3.3 shows the simplified test piece with the notations for the cross sectionF , the volumeV
and the dimensionsl, b, h in x-, y-, z-direction. The actual cross sectionF and initial valueF0 are

F = b · h, F0 = 20 · 0.2 = 4 mm2, (3.2.3.25)

59



Applications

see Fig. 3.2.1.1. The actual volumeV and initial valueV0 are

V = F · l, V0 = 4 · 180 = 720 mm3. (3.2.3.26)

The values ofl andb can be determined by the difference of thex- andy-coordinates of correspond-

Figure 3.2.3.3:Notations for the determination of the cross sectionF and VolumeV .

ing corner nodes.
Now we want to discuss the determination ofh, i.e. the actual thickness of the metal sheet. The

original value ish0 = 0.2 mm. By the expansion of the test piece and the corresponding transverse
contraction also in thez-direction the thickness shrinks fromh0 to the actual valueh. In the same
way as we have derived from [12](2.26) forεxx the incremental PDE (3.2.1.10) we compose from
[12](2.11) and [12](2.28) forεzz with σyy = 0, σxy = 0 (3-equation model) the PDE

−
νxz

Ex
(σxx − σxx,old) − ∆t

∂υz

∂z
= 0. (3.2.3.27)

Note thatσxx is constant for the simplified test piece. With∆t · υz = ∆uz we get

∂∆uz

∂z
= −

νxz

Ex
(σxx − σxx,old). (3.2.3.28)

This is a linear differential equation for∆uz, the incremental displacement inz-direction. We have
the situation of Fig. 3.2.3.4:∆uz has negative slope. It goes through the origin and at the “surface”
with distanceh it has the value∆uz = h · slope. The new thickness ish = hold − slope · hold =
(1 − slope)hold. So we get with the slope∂∆uz/∂z (3.2.3.28)

h =

[

1 −
νxz

Ex
(σxx − σxx,old)

]

hold. (3.2.3.29)
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3.2 Simulation of the manufacturing of metal bellows

Figure 3.2.3.4:Illustration for equ. (3.2.3.28).

We have formally derived this relation for elastic deformation. However, with our approach of “soft”
E-module and plastic value ofν we use this relation withνxz = νplastic andEx from (3.2.2.23)
also for plastic deformation. Here we do not need the non-linear Green strain tensor because the
corresponding terms of type(∂ux/∂z)2 (compare (3.2.3.9)) are zero for our 3-equation model (2-D).
The transverse contraction is here the only effect that mustbe considered inz-direction. Withh from
(3.2.3.29),F from (3.2.3.25) we can compute the actual volumeV from (3.2.3.26).

As mentioned above we observed a too small value of the volumeV because by the elastic value
νxy in (3.2.3.19) that determines the width of the test piece andνxz in (3.2.3.29) that determines the
thickness,the contraction was too large. Therefore we had to look for a value ofν that maintained
the volumeV at the initial valueV0. We found by numerical experiments thatνxy = νxz = νplastic

must be a function ofεxx (not a constant) of the form

νplastic(εxx) = −0.09 · ε3
xx + 0.066 · ε2

xx − 0.0107 · εxx + 0.492. (3.2.3.30)

For thisν the volumeV of the test piece was nearly equal toV0 = 720 mm3, see Fig. 3.2.3.5. For
the solution of the PDEs we takeεxx = εxx,old, i.e. the value of the previous time step to have an
explicit formula.

Now we must discuss how we can compare the measurements and the numerical simulation. From
the tensile test machine we get a stressσmachine that is defined by

σmachine =
forcemachine

F0
, (3.2.3.31)

where forcemachine is the measured actual force to extend the test piece andF0 is the original cross
section (3.2.3.25). Note that this is a purely fictitious stress because it does not consider the contrac-
tion of the cross section when the test piece extends. The valueσmachine is given as function of the
strainε80 with

ε80 =
d80 − 80

80
, (3.2.3.32)
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Figure 3.2.3.5:Volume V of the test piece for the simulation of the tensile test as function of εxx

(3.2.3.21).

whered80 is the distance of the two control pointsA andB of Fig. 3.2.1.1 that have the original
distance80 mm. The value ofd80 is measured by two claws that are fixed on the test piece.

Both valuesσmachine andε80 are not directly available in the solution of the elastic/plastic PDEs.
Therefore we compute

σcomp =
σxx · F

F0
, (3.2.3.33)

whereσxx is the solution of the PDEs from the 3-equation model (const.on test piece) andF and
F0 are the actual and original cross section (3.2.3.25) withh from (3.2.3.29). A valueε80,comp is
determined from

ε80,comp =
A′B′ − A′

0B
′

0

A′

0B
′

0

. (3.2.3.34)

A′

0, B′

0 are two grid points closest toA, B of Fig. 3.2.1.1,A′

0B
′

0 is the original distance of these grid
points andA′B′ the actual distance. For the comparison of measurement and simulation we put in
the figures

σmachine ⇐⇒ σcomp, ε80 ⇐⇒ ε80,comp. (3.2.3.35)
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We got early in the project from the IFU the measured values ofa tensile test as a table of values
of d80 andσmachine. The corresponding curveσmachine over ε80 can be seen in different scales
in Figs. 3.2.3.6 to 3.2.3.10. Unfortunately this measurement on which are based all our following
conclusions and adaptutions cannot be found in the IFU report [12].

Now we want to discuss the results of the simulation. For the simplified test piece, lower part of
Fig. 3.2.1.1, we used a triangular grid with182 × 23 nodes inx-, y-direction. The maximal relative
errors were forυx : 0.4 · 10−12, υy : 0.7 · 10−9, σxx : 0.2 · 10−13 so that we can say the results
for a time step have spatial error close to zero. This is the result of the simple test piece for the
3-equation model whereσxx is constant on the whole test piece. The maximal relative error for λ
was0.2 · 10−13.

The speed of the tensile test machineυx = υx,test, see the BCs of Fig. 3.2.1.4, is different for the
elastic and plastic part. Therefore we use different time steps:∆t = ∆telastic in the elastic region
until a first node becomes plastic in the test steps. Then we donot execute the corresponding com-
putation step but change∆t to a smaller value∆t = ∆ttrans to meet better the transition point and
continue the computation until again a first node becomes plastic. then we set∆t = ∆tplastic and in-
crease the speed of the tensile test machine innincr steps from the elastic speed (0.4·10−2 mm/sec)
to the plastic speed(0.4 mm/sec) because a sudden change is not realistic. We continue the com-
putation until the test piece “breaks” atσmachine = 995 N/mm2 (stop the computation). We did
numerical experiments to see how the result changes with the∆t’s and selected the values so that
the errors are far below 1%. We used∆telastic = 5.0 sec, ∆ttrans = 0.5 sec, ∆tplastic = 0.5 sec,
nincr = 5. In Figs. 3.2.3.6–3.2.3.10 we present the result of the measurement and of the computa-
tion in different scales. In Fig. 3.2.3.11 is presented the relation betweenε80,comp (3.2.3.34) andεxx

(3.2.3.21) for the actual computation. Variable coefficients like δx(εxx) in (3.2.3.23) orνplastic(εxx)
(3.2.3.30) must be taken as functions ofεxx (which is used asεxx,old for the solution of the PDEs)
that we can generalize these relations.

The results shown above have been computed with the following set of coefficients and functions
that appear inY (3.2.3.3) andEx (3.2.3.23):

Y0 = 60
N

mm2
,K = 215

N

mm2
, (3.2.3.36)

ε0 = 1.02, n = 0.293,

δx(εxx) =







0 ≤ εxx ≤ 0.08 : δ = 0

0.08 ≤ εxx ≤ 0.36 : δ = 100
70 εxx − 8

70

εxx > 0.36 : δ = 325
70 εxx − 89

70 ,

Kx,0 = 26000
N

mm2
,

εx,0 = 1.02, nx = 0.1.

The main result of this Section 3.2.3 is the “soft”E-module (3.2.3.23) that permits together with
the PDEs (3.2.3.18)–(3.2.3.20) the perfect simulation of the tensile test for stainless steel sheet. The
appropriate set of coefficients and functions is given by (3.2.3.30) and (3.2.3.36). This is not a mere
playing with coefficients but it is the macroscopic expression for microscopic crystal perturbation
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Figure 3.2.3.6:Stress/strain relation measured (solid line) and computed(dashed line), overview. Here
both coincide.
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Figure 3.2.3.7:Results for smallε.

processes in the metal sheet when it is deformed plastically. It is the task of the metallurgist to ana-
lyze these results. Our task is to use this approach for the simulation of the manufacturing process of
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Figure 3.2.3.8:Results for small to mediumε.
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Figure 3.2.3.9:Results for mediumε.

metal bellows. This is discussed in the next section.
Remark:Unfortunately we had later to recognize that there was a false information or a misunder-
standing: The values of the stresses for the measurements were based not on the original cross section
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Figure 3.2.3.10:Results for largeε.
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Figure 3.2.3.11:Relation betweenε80,comp undεxx.

of the test piece (as we assumed above) but on the actual crosssection, see the context of equation
(3.2.4.46) and the new values there.
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3.2.4 Simulation of the manufacturing of a single wave of the metal bellow

The manufacturing process of a wave of a metal bellow is explained in [12], Chapter 4. There the
geometry of the tool, its position at the beginning and at theend are shown in [12] Figs. 4.1 and
4.5. In the experiment at IWKA that we want to simulate several waves have been formed. How-
ever, here we want to simulate the forming process of a singlewave. Therefore we must introduce
“artificial” BCs that cut the single wave out of a group of waves. Thus the initial configuration is
that of Fig. 3.2.4.1. The manufacturing then is executed in the following way: In an initial blowing
step a pressure is built up in the interior of the metal sheet pipe. Then the right tool and the right
end of the pipe section move with a prescribed speed to the left until the right tool hits the left tool
so that we have the situation of Fig. 3.2.4.2. Then, after a “resting” phase in which other waves are
formed the pressure is taken off and then the tools, that are axially separated, are removed. Now in
the spring-back phase the remaining inherent stresses are relieved until an equilibrium configuration
is reached, see Fig. 3.2.4.3. The comparison of Figs. 3.2.4.2 and 3.2.4.3 shows the importance of the
spring-back phase.

Figure 3.2.4.1:Initial position of tool. Scale is inmm.

Now we want to present the rotationally symmetric PDEs for elastic deformation in cylindrical
coordinates, see Fig. 3.2.4.4. The variables are the displacement velocitiesvz, vr and the stresses
σzz, σrr, σϕϕ, σrz. Although we have for cylindrical symmetry no dependence onϕ and there is
vϕ ≡ 0, there is the stressσϕϕ in circumferential direction. The basic equations are given in [12],
Chapter 3. The geometric definition of the orthotropic elastic deformation is given in [12](3.38) to
(3.41), the deformation by the stresses (Hooke’s law) is given in [12](3.44) to (3.48). We proceed
like in Section 3.2.1 for the tensile test incrementally in time steps. We have with displacementu
and increment∆u

vz =
∂uz

∂t
≈

∆uz

∆t
, (3.2.4.1)

67



Applications

and we define

∆uz = ∆t · vz, ∆ur = ∆t · vr. (3.2.4.2)

After each time step we update the coordinates of the nodes with

znew = zold + ∆uz, rnew = rold + ∆ur. (3.2.4.3)

The index “old” denotes the result of the previous time step.
If we equate the expresions forεzz of [12](3.38) and [12](3.44) and go like in Section 3.2.1 to the

Figure 3.2.4.2:Closed tools.

Figure 3.2.4.3:Final configuration of a wave.
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incremental form we get

1

Ez
[σzz − σzz,old − νϕz(σϕϕ − σϕϕ,old) − νzr(σrr − σrr,old)] − ∆t

∂vz

∂z
= 0

(3.2.4.4)

Similarly we get fromεrr, εϕϕ, εrz = εzr

−
νϕz

Eϕ
(σϕϕ − σϕϕ,old) −

νrz

Ez
(σzz − σzz,old) +

1

Er
(σrr − σrr,old) − ∆t

∂vr

∂r
= 0,

(3.2.4.5)

−
νzϕ

Ez
(σzz − σzz,old) +

1

Eϕ
[σϕϕ − σϕϕ,old − νϕr(σrr − σrr,old)] − ∆t

vr

r
= 0,

(3.2.4.6)

1

2Grz
(σrz − σrz,old) −

1

2
∆t(

∂vr

∂z
+

∂vz

∂r
) = 0. (3.2.4.7)

We haveνϕz = νzϕ, νrz = νzr. From [12](3.4) we get the equilibrium equations with∂/∂ϕ = 0,
σrϕ = 0, σϕz = 0

∂σrr

∂r
+

∂σrz

∂z
+

1

r
(σrr − σϕϕ) = 0, (3.2.4.8)

∂σrz

∂r
+

∂σzz

∂z
+

σrz

r
= 0 (3.2.4.9)

which need not be written in incremental form as explained after equ. (3.2.1.14). In Table 3.2.4.1 the
sequence of the variables and equations is shown. The valuesfor the coefficients in the equations are
given in [12](3.79) to (3.81).

Figure 3.2.4.4:Coordinate system with initial and final configuration.ϕ is circumferential direction.
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Table 3.2.4.1:Sequence of variables and equations for the manufacturing of the metal bellow.

no variable equation
1 vz (3.2.4.4)
2 vr (3.2.4.5)
3 σzz (3.2.4.9)
4 σrr (3.2.4.8)
5 σϕϕ (3.2.4.6)
6 σrz (3.2.4.7)

For the plastic deformation we will use the same basic equations but now with variable “plastic”
E-module, “plastic” Poisson ratioν and non-linear Green strain term. This will be explained below.
Here we want at first discuss the BCs that we use. These are the “same” in both cases. As we check
in each node if it is elastic or plastic we may have adjacent nodes with different properties. This may
occur above all in a bending of the metal sheet where in the inner neutral zone the stresses may be
lower.

Figure 3.2.4.5:Illustration to normaln and tangentt.

In Fig. 3.2.4.5 we illustrate the normaln and tangentt with their components in cylindrical
coordinates. We have

n =

(
nz

nr

)

, t =

(
tz

tr

)

=

(
−nr

nz

)

. (3.2.4.10)

Similarly to (3.2.1.18) we have the stress at the surface of the metal sheet now in cylindrical coordi-
nates

σ

surface element
with normal in

=

(
σzzn

z +σrzn
r

σrzn
z

z-dir. r-direction

+ σrrn
r

)
z-component
r-component

(3.2.4.11)
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The normal and tangential components ofσ are

σn = σT · n = σzz(n
z)2 + 2σrzn

znr + σrr(n
r)2 (3.2.4.12)

σt = σT · t = − σzzn
znr + σrz((n

z)2 − (nr)2) + σrrn
znr (3.2.4.13)

Fig. 3.2.4.6 shows symbolically the 4 boundaries. For the boundary (c) we must distinguish if a

Figure 3.2.4.6:Symbolic illustration of the 4 boundariesa, b, c, d of the metal sheet.

node is “free”, i.e. it is not forced by the tool, or if it is “forced”, i.e. its movement is dictated by the
tool. As the left half of the original metal sheet tube can contact only the left tool (see Fig. 3.2.4.1)
we check only if its nodes “touch” the left tool, similarly wecheck the right half with the right tool.
We proceed as follows: In a test step that is executed with theconditions of the previous computation
step, we check if a node is elastic or plastic and for the nodesof boundary (c) also, if a node is free
or forced. How we do it is explained below.

Boundary conditions at the boundaries (a) and (b) of Fig. 3.2.4.6:

vz : vz = 0 at (a),

vz = vtool at (b),

vr : PDE (3.2.4.7).

A special case are the upper left and right corners. If in the initial blowing phase an upper corner
touches the tool (observe in Fig. 3.2.4.1 that there is initially a gap of0.5 mm between the metal
sheet and the tool), i.e. if in the test step

rcorner = rcorner,old + ∆t · vr,corner ≧ 23.5 (3.2.4.14)

we havevr,corner = 0. This condition holds until in the phase where the pressure is reduced we have

σn,corner > 0. (3.2.4.15)
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Then the corner does no longer touch the tool, the explanation for >0 is given at the discussion of
boundary (c).

σzz : PDE (3.2.4.4),
σrr : PDE (3.2.4.5),
σϕϕ : PDE (3.2.4.6),
σrz : PDE (3.2.4.8).

Before we present the BCs for boundary (c) of Fig. 3.2.4.6 we must explain how we check if a
node is free or forced by the tool. The surface nodes of the boundary (c) of Fig. 3.2.4.6 are denoted
by Si. We assume that the left and right tool of Fig. 3.2.4.1 are also given pointwise by pointsTj ,
see Fig. 3.2.4.7. Each nodeSi of the left half of the surface (c) of the metal sheet searches(with
a sophisticated algorithm) for the two nearest nodesTleft andTright of the left tool, those of the
right half of the metal sheet search at the right tool. Then wehave the situation of Fig. 3.2.4.8. The
normaln of nodeSi right tool is determined orthogonal to the lineSi−1Si+1 (we count nodes as
shown in the figure). We determine the intersectionA of the normaln with the lineTleftTright. The
vector fromSi to A is a · n. We have

Figure 3.2.4.7:Pointwise representation of the tools.

ASi = a · n =

(
zA − zSi

rA − rSi

)

=

(
a · nz

a · nr

)

, (3.2.4.16)

and we determinea from

if |nz| > |nr| then
a = (zA − zSi

)/nz

else
a = (rA − rSi

)/nr

endif
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to avoid division by zero. Ifd denotes the thickness of the metal sheet (e.g.0.2 mm) we denote

if a > α · d then
nodeSi is free

else
nodeSi is forced

endif.

Above all if a < 0 Si would be “in” the tool. We use e.g.α = 0.1.

If at the other hand a node is forced, we must check if the node wants to lift off from the surface of
the tool and become a free node. Our idea was: if the normal stressσn (3.2.4.12) becomes negative
the node wants to lift off. However, when we investigated thesign ofσn at a node that could not lift
off because it is pressed against the tool, we saw that thereσn is negative. From that we conclude
that a node wants to lift off ifσn > 0. To have some “security” we define:

if σn > 1 the node becomes free. (3.2.4.17)

After each test step we determine for each node of the metal sheet if it is elastic or plastic (see below)
and for the nodes of boundary (c) if the node is free or forced.The computation step then is executed
with these properties. Likewise we determine after each computation step again these properties and
execute the test step of the next time step with these new properties. Now we can present the BCs of
boundary (c) of Fig. 3.2.4.6.

Boundary conditions at the boundary (c) of Fig. 3.2.4.6:

Figure 3.2.4.8:Illustration for the check for free or forced node.
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node is free:

for |nz| ≧ |nr| |nz| < |nr|

vz : PDE (3.2.4.4), PDE (3.2.4.7),
vr : PDE (3.2.4.7), PDE (3.2.4.5),

σzz : σzzn
z + σrzn

r = 0, PDE (3.2.4.4),
σrr : PDE (3.2.4.5), σrzn

z + σrrn
r = 0,

σϕϕ : PDE (3.2.4.6), PDE (3.2.4.6),
σrz : σrzn

z + σrrn
r = 0, σzzn

z + σrzn
r = 0.

The condition with “=0” set one of the components of the surface stress equal to zero, see (3.2.4.11).
node is forced:

for |nz| ≧ |nr| |nz| < |nr|

vz : equ. (3.2.4.20), PDE (3.2.4.7),
vr : PDE (3.2.4.7), equ. (3.2.4.21),

σzz : PDE (3.2.4.4), PDE (3.2.4.4),
σrr : PDE (3.2.4.5), PDE (3.2.4.5),
σϕϕ : PDE (3.2.4.6), PDE (3.2.4.6),
σrz : equ. (3.2.4.24), equ. (3.2.4.24).

The condition forvz in the left column and forvr in the right column are the conditions that a forced
node of the metal sheet surface (c) can move only along the tool surface. We want to derive this
condition. The situation is illustrated in Fig. 3.2.4.9. Weassume that the metal creeps “upwards”
along the tool with velocityv with componentsvz, vr in z, r-direction at the left tool andv′ at the
right tool. At the left tool we have

vr

vz
=

nz
tool

−nr
tool

from which we get

vz = −vr
nr

tool

nz
tool

for |nz
tool| ≥ |nr

tool|, (3.2.4.18)

vr = −vz
nz

tool

nz
tool

for |nz
tool| < |nr

tool|. (3.2.4.19)

At the right tool we have the creepingv′ along the tool, but the tool moves withvz,tool to the left. We
have

v
′

r

−v
′

z

=
−nz

tool

−nr
tool
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from which we get

v
′

z = −v
′

r

nr
tool

nz
tool

for |nz
tool| ≧ |nr

tool|,

v
′

r = −v
′

z

nz
tool

nz
tool

for |nr
tool| < |nr

tool|.

We havevz = vz,tool + v
′

z or v
′

z = vz − vz,tool and we havevr = v
′

r. So we get

vz = vz,tool − vr
nr

tool

nz
tool

for |nz
tool| ≧ |nr

tool|, (3.2.4.20)

vr = −(vz − vz,tool)
nz

tool

nr
tool

for |nr
tool| < |nr

tool|. (3.2.4.21)

If we put vz,tool = 0 we get the equations (3.2.4.19) and (3.2.4.20). So the equations (3.2.4.21) and
(3.2.4.22) hold for the left tool(vz,tool = 0) and for the right tool.

The condition forσrz for the forced node of boundary (c) is the condition for the tangential compo-
nentσt (3.2.4.13). If we neglect friction we haveσt = 0. However, there is eventually considerable
frictional stress between tool and metal sheet for forced nodes. From [12], Section 3.6.2, we have
the frictional stress

σF = mF σn (3.2.4.22)

Figure 3.2.4.9:Illustration for the creeping of the metal sheet along the left tool (above) and right tool
(below).
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with the friction coefficientmF = mstatic (=0.08 for metal sheet with oiled surface) for static friction
(this is in reality not a “friction” but only a frictional stress because there is no relative movement)
andmF = mkin(=0.06) for kinetic (or sliding) friction. The boundary condition then is

σt = ±mF σn,old (3.2.4.23)

with σt (3.2.4.13) andσn,old (3.2.4.12) where “old” means thatσn is computed from the data of the
previous time step. Thus the friction acts like an external force.
There are now two problems: The first one is if we have static orkinetic friction. For kinetic friction
the metal sheet creeps along the tool, i.e. has a relative movement to the tool. As the left tool does
not move and the right tool moves only in thez-direction we have a relative movement if a forced
node of the surface (c) hasvr 6= 0. So we take

for vr 6= 0 : mF = mkin,
else: mF = mstatic.

The second problem is the sign “+” or “-” in (3.2.4.24) which depends on the sign ofσt and ofσn,old.
As mentioned in the context of equ. (3.2.4.18) at a forced nodeσn < 0. Therefore we use

σt = −mF σn,old (3.2.4.24)

with σt from (3.2.4.13) andσn,old from (3.2.4.12), but for the values of the previous time step. For
mF see the context of equ. (3.2.4.23).

The numerical behaviour was much more critical than we expected—and our error estimate told
us what we had to do to get an accurate solution—so we feared that the metal sheet that creeps along
the surface of the tool according to Fig. 3.2.4.9, would leave the tool. Remember that the sheet and
tool surface polygons are composed from straight lines between the nodes. Therefore we used the
following simplified method: In the test step we check if a node that was free attaches to the tool
according to Fig. 3.2.4.8. Then we prescribe in the computation step the values forvz, vr so that the
node just meets the tool. Then this node is a forced node for the following time steps, i.e. we have
vz = 0 left, vz = vtool right, and we have in both casesvr = 0. So the node adheres to the tool.
Therefore we have now for attaching and attached nodes the following BCs at boundary (c):

node attaching node attached
vz : vz = vz,test vz = 0 (left), vz = vtool (right)
vr : vr = vr,test vr = 0
σzz : PDE (3.2.4.4) PDE (3.2.4.4)
σrr : PDE (3.2.4.5) PDE (3.2.4.5)
σϕϕ : PDE (3.2.4.6) PDE (3.2.4.6)
σrz : PDE (3.2.4.7) PDE (3.2.4.7).

As the metal sheet nodes are now attached to the tool there is no relative movement and thus no
friction.

Boundary conditions at the boundary (d) of Fig. 3.2.4.6: Here we have normal stressσn = −p
and tangential stressσt = 0, with σn, σt from (3.2.4.12), (3.2.4.13). If|nz| > |nr| (3.2.4.12) is a
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good equation forσzz, else forσrr, in both cases (3.2.4.13) can be used forσrz, except if|nz| = |nr|,
whereσrz drops out of the equation. Therefore we subdivide the application of (3.2.4.12), (3.2.4.13)
into 3 regions, depending on|nz| and|nr|. We have introduced the same procedure in Section 3.3.1
in the context of Fig. 3.3.1.6 (herenx, ny). There the 3 sectors I, II, III are defined (this was at an
earlier time, therefore it is explained there). Thus we havethe following BCs at boundary (d):

sector I sector II sector III

vz : PDE (3.2.4.4), PDE (3.2.4.4), PDE (3.2.4.7),
vr : PDE (3.2.4.7), PDE (3.2.4.7), PDE (3.2.4.5),

σzz : σn = −p0, σt = 0, PDE (3.2.4.4),
σrr : PDE (3.2.4.5), PDE (3.2.4.5), σn = −p0,
σϕϕ : PDE (3.2.4.6), PDE (3.2.4.6), PDE (3.2.4.6),
σrz : σt = 0, σn = −p0, σt = 0.

Hereσn, σt are from (3.2.4.12), (3.2.4.13). The interior pressurep0(t) is approximated by [12](4.1)–
(4.3), the approximated function is shown in Fig. [12](4.3).

Up to here we have discussed the BCs that hold for the initial blowing phase, the phase where
the right tool moves, the rest phase where the pressurep0(t) changes only slightly and finally up to
the discharging of the pressure down top0 = 0. Until then the tools are still closed and the formed
metal sheet is still fixed by the tools. Now the axially separated tools are opened and the bellow wave
expands by the remaining inherent residual stresses until an equilibrium state is reached. This is the
essential spring-back phase. We stop the computation if with fixed left end the right end of the wave
does no longer move, i.e. if

|vz,max| < 10−3 (3.2.4.25)

where the max is taken over the nodes of the right end (boundary (b) of Fig. 3.2.4.6).
However, the stainless steel has after the forming process locally different propertiesE andν be-
cause the internal crystal structrure has been strongly disturbed by the deformation. The disturbance
depends on the total strain that the metal has passed through. Upon our request the IFU did a series of
experiments with tensile test pieces that had undergone different strainsε. In the tensile test machine
the strain is measured as

ε80 =
l − 80

80
(3.2.4.26)

wherel is the length between two test pointsA und B of the test piece whose original distance is
80 mm, see Fig. 3.2.1.1. However, this valueε80 is not available in the simulation process. Here
we measure the non-linear strainεxx by equ. (3.2.3.8). From the simulation of the tensile test we
have the relation ofεxx as function ofε80 given in Fig. 3.2.3.11. In [12], Section 5.1.1, the results of
the measurements of the different material parameters for different values of the initial strainε80 are
given.

For the spring-back expansion of the bellow wave we use the elastic equations of Table 3.2.4.1,
but now with reduced material parameters. We assume the bellow wave fixed inz-direction at the
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left end and the other 3 surfaces are free surfaces. The BCs atthe 4 boundaries (a)-(d) of Fig. 3.2.4.6
for the spring-back computation are:

Boundary conditions at the boundaries (a) and (b):

vz = 0 at (a), vz : PDE (3.2.4.4) at (b),
vr : PDE (3.2.4.7),
σzz = 0,
σrr : PDE (3.2.4.5),
σϕϕ : PDE (3.2.4.6),
σrz = 0.

The conditionsσzz = 0 andσrz = 0 mean that thez-component andr-component of the stress are
zero, see (3.2.4.11) fornz = ±1, nr = 0.

Boundary conditions at the boundaries (c) and (d):

for |nz| ≧ |nr| |nz| < |nr|

vz : PDE (3.2.4.4), PDE (3.2.4.7),
vr : PDE (3.2.4.7), PDE (3.2.4.5),

σzz : σzzn
z + σrzn

r = 0, PDE (3.2.4.4),
σrr : PDE (3.2.4.5), σrzn

z + σrrn
r = 0,

σϕϕ : PDE (3.2.4.6), PDE (3.2.4.6),
σrz : σrzn

z + σrrn
r = 0, σzzn

z + σrzn
r = 0.

Here the relations withnz, nr mean again that the corresponding components ofσ are zero, see
(3.2.4.11).

Here we want to summarize again the pre-requisites for a successful computation of the spring-
back. At first we must have the correct values of the stressesσzz, σrr, σϕϕ, σrz at the end of the
forming process. These are calculated with the “soft”E-module andν determined from the simula-
tion of the tensile test. These parameters depend on the non-linear strainsεα,β that are individual for
each node. Then, for the spring-back expansion, we have again individual parametersE andν that
depend also on the localεα,β , i.e. the previous deformation history. So we recognize that the result
of the spring-back calculation is an extremely hard and sensitive test for the quality of the material
parmeters.

Up to here we have discussed the problem with elastic PDEs in mind. Now we want to discuss the
plastic PDEs with the “soft”E-module and corresponding functionν. In Section 3.2.3 we have seen
that in the 1-D caseE andν are functions ofεxx, i.e. of the deformation history. For the simulation
of the manufacturing of the metal bellow we extend this approach to cylindrical coordinates. With
the displacementsuz, ur in z, r-direction we get from [12](3.8)–(3.12) the non-linear Cauchy-Green
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strains for rotational symmetry (uϕ = 0, ∂/∂ϕ = 0):

εzz =
∂uz

∂z
+

1

2
(
∂uz

∂r
)2 +

1

2
(
∂uz

∂z
)2, (3.2.4.27)

εrr =
∂ur

∂r
+

1

2
(
∂ur

∂r
)2 +

1

2
(
∂ur

∂z
)2, (3.2.4.28)

εϕϕ =
ur

r
+

1

2
(
ur

r
)2, (3.2.4.29)

εrz =
1

2
(
∂uz

∂r
+

∂ur

∂z
) +

1

2
(
∂ur

∂r
·
∂uz

∂r
+

∂ur

∂z
·
∂uz

∂z
). (3.2.4.30)

For the definition of the “soft”E-module for rotationally symmetric cylindrical coordinates we gen-
eralize relation (3.2.3.23) in the following way:

Ez = (1 − δx(εzz))Kx,0 nx(εx,0 + εzz)
nx−1, (3.2.4.31)

Er = (1 − δx(εrr))Kx,0 nx(εx,0 + εrr)
nx−1, (3.2.4.32)

Eϕ = (1 − δx(εϕϕ))Kx,0 nx(εx,0 + εϕϕ)nx−1. (3.2.4.33)

HereKx,0, nx, εx,0 are the values of (3.2.3.34),δx(εzz) is the function given in (3.2.3.34) whereεxx

is replaced byεzz and similarly forδx(εrr), δx(εϕϕ). For ε we always use the valueεold, i.e. the
value of the previous time step to get an explicit expressionfor theE’s.
ForGrz we use the relation [12](3.81)

Grz =
Er + Ez

4(1 + νrz)
. (3.2.4.34)

Here we must at first clarify what meansνrz, see (3.2.4.36) below. In Section 3.2.3 we have seen that
Poisson’s ratioνplastic (here we do not differ betweenνxy andνxz) for plastic deformation depends
onεxx as given in (3.2.3.29). We call thisνxx because it depends onεxx. We generalize this relation
and define

νzz = ν(εzz), νrr = ν(εrr), νϕϕ = ν(εϕϕ). (3.2.4.35)

This means that we take e.g. forνzz the value ofνplastic of (3.2.3.29) and replaceεxx by εzz etc.
Here we also use forε the valueεold of the previous time step. InGrz (3.2.1.36) we use:

for Grz take νrz = min(νrr, νzz) (3.2.4.36)

which means that we take the value ofν for minimal transverse contraction.
Like for the tensile test we have for plastic deformation large strains so that we must take the

non-linear Cauchy-Green strain. If we take forεzz equ. (3.2.4.29) and go with (3.2.4.2) to the incre-
mental form, then in (3.2.4.4) the negative last term (linear strain) is replaced and we get (with e.g.
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νϕz/Ez = νzϕ/Eϕ, see [12](2.18))

1

Ez
(σzz − σzz,old) −

νϕϕ

Eϕ
(σϕϕ − σϕϕ,old)−

−
νrr

Er
(σrr − σrr,old)− (3.2.4.37)

−∆t
∂νz

∂z
−

1

2
∆t2((

∂νz

∂r
)2 + (

∂νz

∂z
)2) = 0.

In the same way we get forεrr, εϕϕ, εrz from (3.2.4.30)–(3.2.4.32)

νϕϕ

Eϕ
(σϕϕ − σϕϕ,old) −

νzz

Ez
(σzz − σzz,old) +

1

Er
(σrr − σrr,old) − (3.2.4.38)

−∆t
∂νr

∂r
−

1

2
∆t2((

∂νr

∂r
)2 + (

∂νr

∂z
)2) = 0,

−
νzz

Ez
(σzz − σzz,old) +

1

Eϕ
(σϕϕ − σϕϕ,old) − (3.2.4.39)

−
νrr

Er
(σrr − σrr,old) − ∆t

νr

r
−

1

2
∆t2(

νr

r
)2 = 0,

2(1 + min(νrr, νzz))

Er + Ez
(σrr − σrr,old) −−

1

2
∆t(

∂νz

∂r
+

∂νr

∂z
) − (3.2.4.40)

−
1

2
∆t2(

∂νr

∂r
·

∂νz

∂r
+

∂νr

∂z
·

∂νz

∂z
) = 0.

Here theE’s are from (3.2.4.33)–(3.2.4.35) and theν ’s are from (3.2.4.37). The equilibrium equa-
tions (3.2.4.8), (3.2.4.9) are the same.

For the boundary conditions of the 4 boundaries (a)-(d) of Fig. 3.2.4.6 that have been presented
above we must now replace the elastic PDEs (3.2.4.4)–(3.2.4.7) by the plastic PDEs (3.2.4.39)–
(3.2.4.42).

The solution of the PDEs is executed in the following way, similar to the simulation of the tensile
test: For each time step at first a test step is executed with the conditions that were given after the
previous computation step, i.e. a node that was recognized there as elastic, is solved with the elastic
PDEs, else with the plastic PDEs and a node of boundary (c) of Fig. 3.2.4.6 that was forced is solved
with the BCs for a forced node, else with the BCs for a free node. After the test step we check if
a node is elastic or plastic and if a node of boundary (c) is forced or free and then the computation
step is executed with the corresponding properties. After the computation step for those nodes that
have been solved with the plastic equations a new value of theplasticity parameter is computed (see
below). Then again the check is executed if a node is elastic or plastic and if a node of boundary (c)
is forced or free. Then with these properties the test step for the next time step is executed.

To check if a node is elastic or plastic we need the equivalentstress [12](3.50) for cylindrical co-
ordinates:

σ =
√

σ2
rr + σ2

ϕϕ + σ2
zz − σrrσϕϕ − σϕϕσzz − σzzσrr + 3σ2

rz. (3.2.4.41)
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The yield stressY is given by (3.2.3.3)

Y = Y0 + K(ε0 + λ)n, (3.2.4.42)

and its coefficients by (3.2.3.34). We define:

if for a node σ ≧ Y it is plastic,
else it is elastic.

We check as mentioned above after each test step and again after each computation step, if a node is
elastic or plastic.

As long as all nodes are elastic, the plasticity parameterλ is zero. If a node is plastic we compute
a new value ofλ from the PDE [12](3.57) in cylindrical coordinates

∂λ

∂t
+

∂λ

∂r
νr +

∂λ

∂z
νz =

1

Kn(ε0 + λ)n−1

1

2σ
·

·

{

2σrr
∂σrr

∂t
+ 2σϕϕ

∂σϕϕ

∂t
+ 2σzz

∂σzz

∂t
+ 6σrz

∂σrz

∂t
−

−σrr
∂σϕϕ

∂t
− σϕϕ

∂σrr

∂t
− σrr

∂σzz

∂t
− σzz

∂σrr

∂t
− σϕϕ

∂σzz

∂t
− σzz

∂σϕϕ

∂t
+

+

[

2σrr
∂σrr

∂r
+ 2σϕϕ

∂σϕϕ

∂r
+ 2σzz

∂σzz

∂r
+ 6σrz

∂σrz

∂r
−

−σrr
∂σϕϕ

∂r
− σϕϕ

∂σrr

∂r
− σrr

∂σzz

∂r
− σzz

∂σrr

∂r
− (3.2.4.43)

−σϕϕ
∂σzz
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− σzz

∂σϕϕ

∂r

]
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2σrr
∂σrr

∂z
+ 2σϕϕ
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∂z
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∂σϕϕ
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− σzz

∂σrr

∂z
−

−σϕϕ
∂σzz

∂z
− σzz

∂σϕϕ

∂z

]

νz

}

.

Here time derivatives are discretized in the following way:

∂λ

∂t
=

λ − λold

∆t
,

∂σrr

∂t
=

σrr − σrr,old

∆t
(3.2.4.44)

and similarly the other time derivatives. The index “old” denotes the value of the previous time step.
In (3.2.4.46) the only unknown function isλ, theν ’s andσ’s are the result of the actual computation
step. This means that the new value ofλ is then used in the next time step. This is exactly the
procedure that has been applied in the simulation of the tensile test where the parameters for the
determination ofE undν have been determined as function ofε.
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So far everything was prepared for the computation and we implemented the corresponding equa-
tions into FDEM. For a certain number of time steps everything went well, the errors were small, e.g.
below1% for a certain grid, and they became smaller for finer grids. However, after a certain time
the errors started to grow continuously, the steel tube started to oscillate: bubble and hole alternating
in the middle of the tube, and the values of the stresses and displacement velocities got unreasonable.
We changed the BCs, changed the grid, changed the time step∆t: the situation became worse with
smaller time step. We limited theE-module to a lower limit of e.g.40000N/mm2, i.e. we made the
steel harder, and then we could compute until the right tool started to move and the errors were small
at that time. The steel tube had extended in the middle by roughly 0.4mm. We knew from the error
estimate that the solution was okay. However, when the tool started to move the metal tube buckled,
and it buckled inwards and not as we expected from the manufacturing process outwards to form a
wave of the bellow. Buckling means bifurcation of the solution, there is no longer a unique solu-
tion. Buckling inwards simply occured because it is energetically cheaper than buckling outwards.
So the harder steel is not the solution of the problem. As mentioned above we shift the grid by the
displacement after each time step. So the computed solutionis the solution for the old grid and not
for the new one. This is a type of explicit procedure and we assumed that this is the reason for the
oscillations. Therefore we introduced the grid iteration:

If k is the iteration index, we check if
∣
∣vk

r − vk−1
r

∣
∣

vk
r

< εgrid (3.2.4.45)

and if not, we make a next iteration, i.e. compute a new solution,
on the new gridk.

We also can prescribe a min. and max. number of iterations. Sofinally we have a solution on the
newgrid, which means also with respect to the grid we have a fullyimplicit procedure.

If we then repeated the computation everything was as before: same solution, same small error—
until a certain time step. Then at the next time step the grid iteration diverged: the tube started to
oscillate during the iteration, bubble, hole, bubble etc. until the solution became nonsense. Again
with a largerE-module we could compute with small error until the tool started, then occured buck-
ling as mentioned above.

After a long and painful time we had the enlightenment: When the grid iteration diverges, the steel
tube bursts. Until now everybody (IFU and IWKA) assumed that the formingof a wave of the bellow
is hydroforming under the internal pressure. However, it isexplosion forming. The metal tube does
not bend into the form, it explodes or flies into the form. If wetake harder steel, i.e. largerE-module,
the steel tube withstands to the internal pressure, and buckles if the tool starts to move, but this does
not simulate the bellow forming process.

Before we discuss further the simulation of the manufacturing we want to mention some points
that came up during the numerical attempts mentioned above.Besides the large oscillations there
developed small oscillations with high “frequencies”. We found similar oscillations at the Bosch
problem and there could cure them by a “parabola smoothing”,see the context of Fig. 3.3.5.1. For
the bellow forming process we at first smoothed the inner and outer surface and then all grid lines
parallel to these surfaces. By an appropriate choice of the smoothing parametersnsmooth (3.3.5.5)
and β, see (3.3.5.4), we could cure these high frequency oscillations, but this had practically no
influence on the large oscillations that destroyed the solution when the tube bursted.

82



3.2 Simulation of the manufacturing of metal bellows

Another, for us very frustrating point was the following: During the investigations we wanted
measured data of the tensile test that is very dense in the transition region from elastic to plastic
deformation. In the discussions with the IFU we got the information that the measurements of the
stress for the tensile test, e.g. of Fig. 3.2.3.6, were basedon the actual (reduced) cross section of
the probe and not, as we assumed, on the constant original cross section. The IFU could not clearly
explain, how the actual cross section was determined. It could not be cleared if this was originally
false information from the part of the IFU or a misunderstanding on our part.

So we started again to determine from the tensile test a function for E(εxx) of type (3.2.3.23) and
ν(εxx) of type (3.2.3.30), now based on the actual (reduced) cross section of the test piece. We again
adapted the set of coefficients and obtained similarly to (3.2.3.36), the coefficients not mentioned
here are those of (3.2.3.36):

δx(εxx) =







0 ≤ εxx ≤ 0.08 : δ = 0,
0.08 ≤ εxx ≤ 0.30 : δ = −100

70 εxx + 8
70 ,

εxx > 0.30 : δ = 30
70εxx − 31

70 ,
(3.2.4.46)

Kx,0 = 21000 N/mm2,

εx,0 = 1.02, ηx = 0.1,

and forνplastic(εxx) instead of (3.2.4.30)

νplastic(εxx) = −0.0175 ε3
xx + 0.007 ε2

xx + 0.001475 εxx + 0.4916. (3.2.4.47)

Fig. 3.2.4.10 shows the comparison of the measurement and ofthe simulation with the above given
coefficients for the tensile test. Now the stress is based on the actual cross section, see context of
Fig. 3.2.3.3.
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Figure 3.2.4.10:Measured and simulated tensile test based on the actual cross section. The line for the
measurements is composed from very dense dots.

In the test step we determine if a node is free or forced, but also if it is elastic or plastic. The
criterion is the comparison of the equivalent stressσ̄ (3.2.4.41) and the plasticity parameterλ that
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is computed from the PDE (3.2.4.43). The criterion is given in the context of equation (3.2.4.42).
This is a pointwise switchingfrom elastic to plastic, individually for each node. This means that
for two neighboring nodes one node may be elastic and the other node plastic. However, in the
steel there is no “switching”, there is always a continuous transition. As we attributed at first the
problems with the oscillations to the switching, we chose todescribe the transition from elastic to
plastic by a “transition function”that goes continuously from elastic to plastic by the choiceof an
appropriate functional approach. Our plasticE-module just describes the moving along the yield
surface of the metal sheet. There is also another open question in this context that the IFU could
not answer to us: The tensile test runs in several minutes, sothe crystalline structure of the steel has
time to adapt. However, the forming of a wave of the bellow runs in some milliseconds so that the
crystalline structure has less or no time to adapt which results presumably in another value for the
E-module: E = E(ε, ε̇), i.e. E may depend not only on the strain but also on the strain velocity.
As we do not have information on the dependence onε̇ we take forE the above mentioned function
E(ε) determined from the tensile test.

Now back to the transition function forE. We made at first an approach with a parabola, but got
no satisfactory results. From the graph ofE we concluded that an exponential approach would be
better. Forν we use a 3rd order parabola. Forε < εtrans1 we useEelastic andνelastic, for ε > εtrans2

we useEplastic andνplastic. Betweenεtrans1 andεtrans2 we use the transition functions

Etrans(ε) = 10a0+a1ε,

νtrans(ε) = b0 + b1ε + b2ε
2 + b3ε

3
(3.2.4.48)

with

εtrans1 = 0, εtrans2 = 0.00405,

a0 = 5.288, a1 = −208.214,

b0 = 0.4916, b1 = 0.1475 · 10−2, b2 = 0.7 · 10−2, b3 = −0.175 · 10−1.

In a time stepping procedure these values are determined forthe value ofε of the previous time
step. Fig. 3.2.4.11 showsEx(εxx) for the wholeεxx range of the tensile test, Fig. 3.2.4.12 shows the
value for very smallεxx. In the figures we can see how rapidlyEx drops, observe the logarithmic
scale forEx. As we have now a transition function with continuoustransition from elastic to plastic
we do no longer needto computeσ̄ andλ and “switch” from elastic to plastic. We use the same
“elastic” equations, only with an appropriate variableE-module. We now could call these equations
elastic/plastic. We now must extend this approach from the cartesian coordinate system to the rota-
tionally symmetric cylindrical coordinate system. In equations (3.2.4.31)–(3.2.4.33) we extendedE
and in (3.2.4.35)ν with the approachE(εxx), ν(εxx) from the tensile test to the cylindrical coordi-
nates. However, if the metal sheet is bent up into the form, see Fig. 3.2.4.2, what is then the meaning
of εzz, εrr, εϕϕ? At the beginning of the metal forming process we have the straight tube, the main
direction is thez-direction, see Fig. 3.2.4.4. However, if the sheet is bent up the main direction on
the side walls of a wave is ther-direction. For this reason we decided to quit for the elastic/plastic
equations in cylindrical coordinates the orthotropic model and to go back to an isotropic model with

E = E(εmax), εmax = max(|εzz|, |εrr |, |εϕϕ|),

ν = ν(εmax).
(3.2.4.49)

84



3.2 Simulation of the manufacturing of metal bellows

1000

10000

100000

1000000

0,0 0,1 0,2 0,3 0,4 0,5 0,6

εxx

E
x

Figure 3.2.4.11:Ex(εxx) with the transition function for the whole range ofεxx.
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Figure 3.2.4.12:Ex(εxx) with the transition function for smallεxx.

Again εmax is determined from the previous time step.Grz is replaced byE with the relation
[12](3.81).

Now we want to continue our considerations what to do when thegrid iteration diverges, i.e. the
steel tube bursts. The expansion of the steel sheet into the form, see Fig. 3.2.4.2, is far beyond
the elastic/plastic approach. As long as we use the elastic/plastic equations the metal has still a
“memory” of its past. However, if it expands far into the formit behaves like dough. For the
elastic/plastic approach we have stress proportional to strain, for dough we have stress proportional
to strain velocity. In [12](3.15)–(3.19) we have the expressions for the strain velocities in cylindrical
coordinates. For rotational symmetry,∂/∂ϕ = 0, uϕ = 0, vϕ = 0 and taking only the linear terms
we get

ε̇rr = ∂vr

∂r , ε̇ϕϕ = vr

r

{
−ur

r2

∂r
∂t

}
, ε̇zz = ∂vz

∂z ,

ε̇rz = 1
2

(
∂vr

∂z + ∂vz

∂r

)
.

(3.2.4.50)
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In ε̇ϕϕ we haveur in the braces which is the displacement from the original position. However,
dough has no memory and forgets the original position. Therefore we drop this term iṅεϕϕ. In
equation [12](3.44) we have the stress/strain relation (now isotropic):

εzz =
1

E
(σzz − νσϕϕ − νσrr) .

For the metal dough we now make a quite similar approach by

ε̇zz =
1

F
(σzz − νσϕϕ − νσrr) , (3.2.4.51)

with a proportionality factor between stress and strain velocity which we callF , whose dimension is
[F ] = Ns/mm2. Takingε̇zz from (3.2.4.50) we get the PDE, writing it with all terms to the l.h.s.:

1

F
(σzz − νσϕϕ − νσrr) −

∂vz

∂z
= 0. (3.2.4.52)

This is again a quasi-steady equation. We proceed in time steps in which the grid moves in dis-
placement increments∆u = ∆t · v. Therefore we use again the incremental form which is now for
(3.2.4.52), with the index “old” for the values of the previous time step:

1

F
[σzz − σzz,old − ν (σϕϕ − σϕϕ,old) − ν (σrr − σrr,old)] −

∂vz

∂z
+

∂vz,old

∂z
= 0. (3.2.4.53)

Here the derivatives ofvz andvz,old are taken on the same (actual) grid.
This is the stress-strain velocity relation obtained forε̇zz (3.2.4.50). In the same way we formulate

the corresponding equations forε̇rr, ε̇ϕϕ and ε̇rz. We do not write down these equations here.
Additionally hold the equilibrium equations (3.2.4.8) and(3.2.4.9). The BCs are the same as before
if we replace in the BCs the equations (3.2.4.4) to (3.2.4.7)by the corresponding equations for the
“dough”, e.g. equation (3.2.4.4) by (3.2.4.53).

Then we proceeded as follows: We computed with the elastic/plastic equations until the grid
iteration diverged. The last converged solution was storedand used as starting solution with the
equations for the “dough”. As we have no value forF , we did numerical experiments with different
values ofF : the solution showed the expected behaviour, the steel sheet was more soft for smallF
and harder for largeF . However, the basic behaviour was the same as for the elastic/plastic approach.
The steel tube bent a bit into the form, but the errors grew andafter some time steps the solution was
meaningless. So this approach failed for the computation ofthe bursting tube. What to do now?

The idea is, to use instead of the quasi-steady equations nowunsteady equations, but which ones?
If we form the partial derivative of the dough equations withrespect to time, e.g. of equation
(3.2.4.52) and then discretize the time derivatives by e.g.∂σ

∂t = (σ − σold) /∆t we get just equa-
tion (3.2.4.53), thus no new information. So, what to do now?

The next idea is to form the totalderivative of the equations, because the grid moves, and thegrid
moves rather strongly if the sheet bends into the form. For moving coordinates we have

σ = σ(t, z, r) = σ(t, z(t), r(t)).

Thus the totalderivative with respect to time is

dσ(t, z(t), r(t))

dt
=

∂σ

∂t
+

∂σ

∂z

∂z

∂t
+

∂σ

∂r

∂r

∂t
=

∂σ

∂t
+

∂σ

∂z
vz +

∂σ

∂r
vr, (3.2.4.54)

86



3.2 Simulation of the manufacturing of metal bellows

as we have∂z/∂t = vz, ∂r/∂t = vr. This relation holds forσzz, σrr, σϕϕ andσrz. In (3.2.4.52)
also appears∂vz/∂z. Thus we also need the total derivative of derivatives of displacement velocities,
e.g.

d

dt

(
∂vz(t, z(t), r(t))

∂z

)

=
∂2vz

∂z∂t
+

∂2vz

∂z2
vz +

∂2vz

∂z∂r
vr. (3.2.4.55)

Similarly we can formd(∂vz/∂r)/dt, d(∂vr/∂z)/dt andd(∂vr/∂r)/dt. For ε̇ϕϕ (3.2.4.50) there
also will be needed

d
dt

(
vr

r

)
= ∂

∂t

(
vr

r

)
+ ∂

∂z

(
vr

r

)
vz + ∂

∂r

(
vr

r

)
vr

=
r ∂vr

∂t
−v2

r

r2 + 1
r

∂vr

∂z vz +
r ∂vr

∂r
−vr

r2 vr

= 1
r

∂vr

∂t − 2v2
r

r2 + 1
r

∂vr

∂z vz + 1
r

∂vr

∂r vr.

(3.2.4.56)

We now can form the total derivatives of all 4 stress/strain velocity equations of which we have
presented the one foṙεzz as equation (3.2.4.52). If we do this, we immediately discretize the time
derivatives, e.g.

∂σzz

∂t =
σzz−σzz,old

∆t ,

∂2vz

∂z∂t = ∂
∂t

(
∂vz

∂z

)
=

∂vz
∂z

−(∂vz
∂z )

old

∆t .
(3.2.4.57)

Here the index “old” means the solution in the same node at theprevious time step and(∂vz/∂z)old

is computed on the actual (new) grid from the old solution. Ifwe use all these relations we get from
the 4 stress/strain velocity equations of type (3.3.4.52) the time-discretized total derivative equations:

1
F

[
σzz−σzz,old

∆t + ∂σzz

∂z vz + ∂σzz

∂r vr−

ν
(

σϕϕ−σϕϕ,old

∆t +
∂σϕϕ

∂z vz +
∂σϕϕ

∂r vr

)

−

ν
(

σrr−σrr,old

∆t + ∂σrr

∂z vz + ∂σrr

∂r vr

)]

−

(
∂vz
∂z

−( ∂vz
∂z )

old

∆t + ∂2vz

∂z2 vz + ∂2vz

∂z∂rvr

)

= 0,

(3.2.4.58)

1
F

[

−ν
(

σϕϕ−σϕϕ,old

∆t +
∂σϕϕ

∂z vz +
∂σϕϕ

∂r vr

)

−

ν
(

σzz−σzz,old

∆t + ∂σzz

∂z vz + ∂σzz

∂r vr

)

+

σrr−σrr,old

∆t + ∂σrr

∂z vz + ∂σrr

∂r vr

]

−

(
∂vr
∂r

−(∂vr
∂r )

old

∆t + ∂2vr

∂z∂rvz + ∂2vr

∂r2 vr

)

= 0,

(3.2.4.59)
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1
F

[

−ν
(

σzz−σzz,old

∆t + ∂σzz

∂z vz + ∂σzz

∂r vr

)

+

σϕϕ−σϕϕ,old

∆t +
∂σϕϕ

∂z vz +
∂σϕϕ

∂r vr−

ν
(

σrr−σrr,old

∆t + ∂σrr

∂z vz + ∂σrr

∂r vr

)]

−

(
1
r

vr−vr,old

∆t − 2v2
r

r2 + 1
r

∂vr

∂z vz + 1
r

∂vr

∂r vr

)

= 0,

(3.2.4.60)

1+ν
F

(
σrz−σrz,old

∆t + ∂σrz

∂z vz + ∂σrz

∂r vr

)

−

1
2

(
∂vr
∂z

−(∂vr
∂z )

old

∆t + ∂2vr

∂z2 vz + ∂2vr

∂z∂rvr

)

−

1
2

(
∂vz
∂r

−(∂vz
∂r )

old

∆t + ∂2vz

∂z∂rvz + ∂2vz

∂r2 vr

)

= 0.

(3.2.4.61)

These 4 equations are supplemented by the 2 equilibrium equations (3.2.4.8) and (3.2.4.9) that hold
also for the unsteady solution.

Now the first 4 of these 6 equations for the 6 variables are non-linear, e.g. by terms like∂σzz

∂z vz,

and they contain second order derivatives of the displacement velocities, e.g.∂2vz

∂z2 or ∂2vz

∂z∂r . This
changes completely the character of the PDEs compared to thelinear elastic/plastic equations.

In these equations is the unknownF -module. We had made the speculative approach (3.2.4.51)
for the stress/strain velocity relation, but we had no valuefor F . Our intention is to try to simulate
the manufacturing process by these equations with different values ofF until we find a value that
“fits” to the observed behaviour. The BCs for the elastic equations had been discussed in the context
of Fig. 3.2.4.6. Now hold the same BCs, but we must replace thePDEs (3.2.4.4)–(3.2.4.7) by the
PDEs (3.2.4.58)–(3.2.4.61).

The execution of the computation is as follows: we compute intime incremental form with time
step size∆t with the elastic/plastic equations until the quasi-steadygrid iteration diverges. The last
converged solution is stored and is the starting solution ofthe unsteady equations. We solve the
unsteady equations in time steps with step size∆t.

The simple explicit marching in time direction with the shifting of the grid by the equations
(3.2.4.2), (3.2.4.3) after the time step leads to an explicit time marching procedure where all deriva-
tives have been formed on the old grid, i.e. the grid of the previous time step. However, if the steel
sheet “explodes” into the form, we have large displacementsand the new grid is quite different from
the old grid. Therefore we introduced here also a grid iteration: After the computation of a solution
we recompute the solution repeatedly on the new grid until the grid comes to rest. Ifk is the iteration
index of the grid iteration, we check if

∥
∥vk

z − vk−1
z

∥
∥

‖vk
z‖

+

∥
∥vk

r − vk−1
r

∥
∥

‖vk
r ‖

< εgrid (3.2.4.62)
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and continue the iteration if (3.2.4.62) is not fulfilled. Wealso can prescribe a min. and max. number
of iterations. If we use a smoothing of the grid, we apply the smoothing after each grid iteration. So
finally we have at the end of the time step a solution on the newgrid. As the equations are non-linear
and the moving of the grid is also a non-linear process, we have in reality now an extremely non-
linear problem. The converged solution of a time step then isthe starting solution for the next time
step.

The experience has shown that such iteration processes likethe grid iteration at each time step can
be accelerated by a relaxation factorω or even can be made convergent at all by a small relaxation
factor. Therefore we introduce the possibility of a relaxation factor into the grid iteration by

displacement = ω · displacementmethod, (3.2.4.63)

wheredisplacementmethod is the displacement that the method delivers. For a small value of ω
the grid shifts slowly during the grid iteration. As the griditeration is stopped by the condition
(3.2.4.62) we should now useω · εgrid as stopping criterion because for smallω the change inv is
correspondingly smaller than forω = 1. The effect of a smallω is that the actual grid can follow
better the development of the solution.

When we implemented the equations (3.2.4.58)–(3.2.4.61) as usual (and as described in the first
part of this report) we at first tested them by a test polynomial solution of second order, i.e. we added
absolute terms that the exact solution is the prescribed polynomial. If we start with the exact solution,
the Newton residual should be in the range of10−10 − 10−12. However, for these equations the
residual was10−7 which indicates a problem. When we started with a disturbed solution, e.g.1.01 ×
exact solution (1% disturbance), the Newton iteration stopped at a residual of10−5 because this was
small in relation to the discretization error, and we did notget the prescribed solution but another one.
As such an extremely non-linear system may have many solutions, obviously the Newton iteration
drifted to another solution although we had started close tothe exact solution. From this behaviour
of the test problem we expected similar difficulties of the physical problem.

For the solution of the physical problem we started from the last grid-converged quasi-steady
solution, but we could not get a physically reasonable solution. We experimented with different
values of theF -module and of the time step size∆t, but no reasonable solution could be obtained.
So we concluded that the equations (3.2.4.58)–(3.2.4.61) are not suited for the computation of the
exploding steel sheet. But what to do now?

If we look at equation (3.2.4.54), we have replaced e.g.∂z/∂t by vz. This is correct if we are in a
completely continuous environment, but it may be inadequate if we proceed in incremental steps. For
an incremental procedure where the grid is shifted after each time step, the total time discretization
should better be formulated thus:

dσ(t, z(t), r(t))

dt
=

∂σ

∂t
+

∂σ

∂z

∂z

∂t
+

∂σ

∂r

∂r

∂t
=

σ − σold

∆t
+

∂σ

∂z

z − zold

∆t
+

∂σ

∂r

r − rold

∆t
,

(3.2.4.64)

where values with the index “old” are of the previous time step. This relation holds for allσ’s: σzz,
σrr, σϕϕ, σrz. Similarly we discretize instead of (3.2.4.55) now e.g.

d
dt

(
∂vz(t,z(t),r(t))

∂z

)

= ∂
∂t

(
∂vz

∂z

)
+ ∂2vz

∂z2

∂z
∂t + ∂2vz

∂z∂r
∂r
∂t

=
∂vz
∂z

−(∂vz
∂z )

old

∆t + ∂2vz

∂z2

z−zold

∆t + ∂2vz

∂z∂r
r−rold

∆t .

(3.2.4.65)
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Similar relations hold ford(∂vz/∂r)/dt, d(∂vr/∂z)/dt andd(∂vr/∂r)/dt. Instead of (3.2.4.56) we
have now

d
dt
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vr
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(3.2.4.66)

If we use all these relations we get from the 4 stress/strain velocity equations of type (3.3.4.52)
now the time discretized newtotal derivative equations (instead of (3.2.4.58)–(3.2.4.61)):
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These 4 equations are supplemented by the equilibrium equations (3.2.4.8) and (3.2.4.9).
In contrast to the extremely non-linear equations (3.2.4.58)–(3.2.4.61) these equations now are

linear. The linearity comes from the fact that time derivatives of the coordinates are expressed explic-
itly by difference quotients of the coordinates and the coordinates are not variables. If we expressed
these time derivatives by displacement velocities as we didin (3.2.4.58)–(3.2.4.61) the equations
would be non-linear. All the previous remarks hold concerning the BCs, if we replace the non-linear
equations by the above linear equations, concerning the algorithmic procedure with starting from the
last converged quasi-steady solution and concerning the grid iteration.

When we implemented the equations (3.2.4.67)–(3.2.4.70) the numerical behaviour for the test
polynomial was quite different from that of the non-linear equations: now the Newton residual for
the exact polynomial was10−12 and for a disturbed solution the disturbance was corrected in one
Newton step. This is the natural consequence of the linearity of the equations.

These equations now have the obvious property that we can continuously compute out of the
starting profile. If we use, as we do it, as initial guess for the Newton iteration at a certain time step
the old solution and we use for test purposes the old grid and apply the old BCs, the equations are
fulfilled, the Newton residual is zero and the old solution isreproduced. This did not hold for the
non-linear equations (3.2.4.58)–(3.2.4.61). For the new unsteady equations with time stepping the
pressure changes and we get other solutions.

Now we have a system of PDEs and BCs that should describe the explosion forming, i.e. how
the metal tube explodes into the tool. However, what is the value of theF -module, that replaces the
E-module of the elastic/plastic equations? The computational procedure is as follows: We compute
with the elastic/plastic equations with the quasi-steady equations in time steps∆t (moving grid) and
with full grid iteration, until the grid iteration shows “explosion”, i.e. instead to converge to a solution
the displacement velocity increases in the grid iteration until the solution becomes “nonsense”. The
last converged quasi-steady solution is the starting solution for the unsteady “dough” equations.

Before we discuss the choice of the value of theF -module we want to show in detail the last
converged quasi-steady solution. We computed with the grid201 × 39, with time stepping of∆t =
10 ms, stopping criterion (3.2.4.45)εgrid = 10−4. The last converged time step was step25, it
needed235 grid iterations which shows that we are close to the explosion limit. Here we must
mention, that we changed for these investigation the geometry. In Fig. 3.2.4.1 the inner diameter of
the tool is47 mm. We computed instead with46 mm so that the steel tube immediately touches the
tool, i.e. the upper left and right corner of the tube are fixed. The starting time of the computation is
40 ms because only at that moment the pressure starts to build up (before that time nothing happens).
So the time for step25 is 40 + 25 · 10 = 290 ms. We discuss the results of this last converging step
of the elastic/plastic equations before the steel tube “explodes”. Fig. 3.2.4.13 shows the form of the
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steel sheet. In the middle it has been bent up by0.1 mm, half the thickness of the steel sheet.

Steel sheet

22,80

22,85

22,90

22,95

23,00

23,05

23,10

23,15

23,20

0 2 4 6 8 10 12 14 16 18 20 22

z

r

Figure 3.2.4.13:Form of the steel tube in time step25. Observe the strongly increased scale forr. In the
upper left and right corners the tool can be seen.
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Figure 3.2.4.14:Blow-up of the upper surface of the steel sheet of step25 to show that it is smooth.

Fig. 3.2.4.14 shows a blow-up of the upper surface of the steel sheet betweenz = 2 andz = 4
that shows that the surface is smooth. Fig. 3.2.4.15 shows the displacement velocityvr at upper
and lower surface, both curves nearly coincide for this scale. Fig. 3.2.4.16 shows a blow-up ofvr

betweenz = 2 andz = 4. We can recognize in this scale thatvr is “wavy”. We can also clearly
recognize thatvr of the lower surface (squares) is a bit larger thanvr at the upper surface (stars)
which means that the steel sheet becomes thinner. Becausevr is “wavy” we applied also for test
purposes the smoothing of Section 3.3.5 for the grid of the steel sheet, see Fig. 3.3.5.1, with the
smoothing parametersnsmooth = 2 (3.3.5.5), i.e.2 smoothing steps, and the smoothing parameter
β = 0.5 (3.3.5.4), i.e. reduction of the curvature by a factor0.5. We smoothed on all grid lines
parallel to the surface that were originally horizontal lines. The result was that the “waves” ofvr
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vr
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Figure 3.2.4.15:Displacement velocityvr [mm/s] at upper and lower surface for step25, both curves
nearly coincide.
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Figure 3.2.4.16:Blow-up of vr betweenz = 2 andz = 4. The stars are at the upper, the squares at the
lower surface.

became larger and the error estimates increased by nearly one order of magnitude. So smoothing of
the surface does not cure the waves ofvr.

The following contour plots of the6 variables and their errors for time step25 are gray scale in a
black-and-white printout, but they are colored in the online version of the paper which gives much
more information. Therefore it is recommended to look at these figures at the screen.
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Figure 3.2.4.17:Displacement velocityvz [mm/s].
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Figure 3.2.4.18:Error estimate forvz.

Fig. 3.2.4.17 showsvz, i.e. the movement of the steel sheet inz-direction. The largest values are
in the lower corner region, left with positive and right withnegativevz, so we can see the creeping
direction of the sheet material. Fig. 3.2.4.18 shows the global relative error ofvz. The largest errors
are at the shoulders, the smallest in the middle and in the endregions. Fig. 3.2.4.19 showsvr, i.e. the
movement in ther-direction. The largest values are in the middle region, thesmallest values are at
the fixed end points.

The next figures show the stresses and their errors.σzz, Fig. 3.2.4.21, has large positive values

94



3.2 Simulation of the manufacturing of metal bellows

z

r

0 2 4 6 8 10 12 14 16 18 20 22
22.80

22.85

22.90

22.95

23.00

23.05

23.10
1.1E-03
9.5E-04
8.4E-04
7.4E-04
6.3E-04
5.3E-04
4.2E-04
3.1E-04
2.1E-04
1.0E-04

v-r

Figure 3.2.4.19:Displacement velocityvr [mm/s].
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Figure 3.2.4.20:Error estimate forvr.

at the lower left and right corner and large negative values at the upper left and right corners. The
errors, Fig. 3.2.4.22, are small nearly everywhere.σrr, Fig. 3.2.4.23, is small compared toσzz. The
global relative errors, Fig. 3.2.4.24, are seemingly large, but as the value ofσrr is much smaller than
that ofσzz, the absolute values of the errors are like those ofσzz. σϕϕ, Fig. 3.2.4.25, is positive in the
whole middle region and has negative values at the upper corners. The errors, Fig. 3.2.4.26, are small
except at the left and right edges, which is not visible at thescale of the plots.σrz, Fig. 3.2.4.27, has
the largest positive value in the middle of the left edge and the largest negative value in the middle
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Figure 3.2.4.21:Stress componentσzz [N/mm2].
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Figure 3.2.4.22:Error estimate forσzz .

of the right edge. There are also the largest relative errors, Fig. 3.2.4.28, which seem to be large, but
are in absolute value like those forσzz andσϕϕ.

Table 3.2.4.2 shows the maximal values of the variables, of their maximal global relative error
estimates and of the mean error estimates for step25. This table tells us that there where the mean
errors are much smaller than the max. errors these max. errors are confined to a narrow region. It
tells us also that the error seems to be large where the value of the variable is small relative to that
of the other variables of the same type, e.g. forvz which is two orders of magnitude smaller thanvr
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Figure 3.2.4.23:Stress componentσrr [N/mm2].
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Figure 3.2.4.24:Error estimate forσrr.

or for σrr that is much smaller thanσzz. This comes from the fact that we show relative errors. The
absolute values of the errors, that are decisive, are of the same size.

Fig. 3.2.4.29 shows theE-module for time step25. From the program output we get the values
Emax = 188781 N/mm2 and Emin = 3373 N/mm2. The distribution of the values ofE in
Fig. 3.2.4.29 shows that the low values are in the middle region and in the lower left and right
corners. From Fig. 3.2.4.11 and 3.2.4.12 we see thatE is small for large strainε. The large values
of E occur in a relatively small region close to the left and rightend, there the strain must be small.
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Figure 3.2.4.25:Stress componentσϕϕ [N/mm2].
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Figure 3.2.4.26:Error estimate forσϕϕ.

So the elastic/plastic equations comprise a wide region of theE-module, i.e. of hard and soft steel.
So far we have discussed the last converging step of the elastic/plastic equations before the tube

“explodes”. This solution is the starting solution for the unsteady “dough” equations (3.2.4.67)–
(3.2.4.70) and (3.2.4.8) and (3.2.4.9). In this system of PDEs theE-module[N/mm2] is replaced by
theF -module[Ns/mm2]. As our approach to simulate the bursting steel tube is a purely “academic”
attempt, we do not have values forF . Note that we are “numerical engineers” and not metallurgists
and we do not know if in the literature this approach is published. However, even if it has been
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Figure 3.2.4.27:Stress componentσrz [N/mm2].
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Figure 3.2.4.28:Error estimate forσrz.

published we could not find there the correct value ofF for our stainless steel. So our idea is to
“play” with F until we have found a value that reproduces the manufacturing process of the IWKA.
Thus the numerical simulation replaces the measurements.

Our goal is now to compute in time direction, starting from the values of the elastic/plastic step25,
see Table 3.2.4.2. As we want to have a fully implicit solution method that includes the displacement
of the computational grid, we also make a grid iteration at each time step, i.e. we recompute the
solution on the shifted grid until the stopping criterion (3.2.4.62) is fulfilled withεgrid = 10−3.
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Table 3.2.4.2:Maximal values of the variables, of the max. relative error estimates and of the mean
relative error estimates for time step25.

no. variable max. value max. relat. error mean error
1 vz 0.3006E-4 0.12 0.20E-1
2 vr 0.1167E-2 0.14E-1 0.42E-2
3 σzz 569.3 0.14E-1 0.46E-3
4 σrr 8.31 0.21 0.23E-2
5 σϕϕ 476.7 0.93E-2 0.43E-3
6 σrz 63.45 0.16E-1 0.28E-3
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Figure 3.2.4.29:E-module[N/mm2] for time step25.

Thus we have a solution on the newgrid within the prescribed stopping criterion. However, the grid
iteration diverges if we do not prescribe a sufficiently small time step size∆t. As a too large time
step∆t needs many grid iterations or even causes the grid iterationto diverge and a too small time
step proceeds very slowly in time direction, we programmed a

time step size control(∆t control): If the number of grid iterations exceeds
ngrid,max = 20, we set∆t ⇐ ∆t/2 and we restart this time step. After20
time steps we set∆t ⇐ 2 · ∆t. That∆t does not become too large we
limit ∆t ≤ ∆tmax = 0.05 ms.

These values resulted from many numerical experiments.
In Table 3.2.4.3 we can see the values and error estimates ofσϕϕ andvr for step26, computed

with ∆t = 0.01, i.e. for the first time step for the unsteady “dough” equations, for three different
values ofF . Clearlyvr is smaller for largerF (harder steel). Compare the results to Table 3.2.4.2.
From these results we decided to use for the unsteady explosion computation the valueF = 105.
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Table 3.2.4.3:F -test: variables and error estimates for different values of F for step26 with ∆t =
0.01 ms.

F σϕϕ errorσϕϕ vr errorvr

103 476.8 0.12E-1 0.1574E-2 4.32
104 476.8 0.12E-1 0.1207E-2 0.56E-1
105 476.8 0.12E-1 0.1171E-2 0.56E-1

For the following unsteady computation we selected the following parameters:

∆tstart = 0.01 ms, ∆tmax = 0.05 ms,

ngrid,max = 20,

F= 105 Ns/mm2.

Table 3.2.4.4:Values of the6 variables, of their maximal and of their mean global relative error estimates
for time step26.

no. variable max. value max. relat. error mean error
1 vz 0.3021E-4 0.31 0.48E-1
2 vr 0.1171E-2 0.56E-1 0.12E-1
3 σzz 569.3 0.18E-1 0.25E-3
4 σrr 8.31 0.18 0.24E-2
5 σϕϕ 476.8 0.12E-1 0.22E-3
6 σrz 63.45 0.22E-1 0.22E-3

Table 3.2.4.4 shows the values of the6 variables, of their maximal and of their mean global relative
error estimates for time step26, i.e. the first time step with the “dough” equations. If we compare the
values of the variables to those of Table 3.2.4.2, i.e. to thelast step of the elastic/plastic equations, we
see only minor changes that come from the increased time. This shows that the “dough” equations
give the expected results. However, the max. errors have increased by factors between4 (for vr)
and1.25 (for σzz andσϕϕ). So the transition from the quasisteady elastic/plastic equations to the
unsteady “dough” equations is satisfactory. Observe that the max. error ofvr is 5.6% and the
mean error is1.2%. This is explained by the “waves” of Fig. 3.2.4.16 that result already from the
elastic/plastic equations and thus are transferred to the “dough” equations.

We then started the computation in time direction for the “dough” equations, with∆tstart =
0.01 ms, F = 105 Ns/mm2. We hoped that the metal sheet is pressed into the form by the internal
pressure and then the tool closes to form the wave of the bellow. We needed one and a half year
of painful time to recognize that this is not possible with this system of equations. The reason is:
The system of “dough” PDEs is unstable in time. Unstable means that small disturbances increase
with time and destroy the solution. We attributed the failure at first to our program code, then to the
computational parameters and/or to the solution algorithm. Neither finer step sizes in space or time
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could change the basic behaviour, nor smaller tolerances for the grid iteration, nor other values of the
F -module. The algorithm is fully implicit in time, includingthe shifting of the grid, i.e. the solution
is that on the newgrid. Thus our numerical method proves the instability of the “dough” equations
empirically in time. A theoretician could make a linearizedFourier analysis in time, he would get
the same conclusion. From our initial experiments with the corresponding elastic/plastic equations
we can conclude that the total derivative in time of these equations leads also to unstable equations
in time.

Table 3.2.4.5:Function values and max. global relative errors ofσϕϕ andvr for time steps45 − 465
(every20th step) and∆t of that step. Some of the maximal values have negative sign.

time step σϕϕ max. errorσϕϕ vr max. errorvr ∆t

45 477.2 0.12E-1 0.1246E-2 0.53E-1 0.01
65 478.0 0.12E-1 0.1407E-2 0.47E-1 0.02
85 479.7 0.12E-1 0.1731E-2 0.38E-1 0.04
105 481.7 0.12E-1 0.2142E-2 0.31E-1 0.05
125 483.7 0.11E-1 0.2558E-2 0.28E-1 0.05
145 485.7 0.12E-1 0.2979E-2 0.52E-1 0.05
165 487.9 0.18E-1 0.3406E-2 0.10 0.05
185 489.5 0.63E-1 0.3794E-2 0.58 0.05
205 503.1 0.12 0.4166E-2 0.63 0.025
225 524.0 0.34 0.4415E-2 1.72 0.0125
245 546.5 0.49 0.7054E-2 2.47 0.16E-2
265 556.6 0.52 0.5603E-2 1.83 0.16E-2
285 599.6 0.90 0.7062E-2 2.52 0.31E-2
305 689.2 1.27 0.8418E-2 2.36 0.16E-2
325 661.1 1.29 0.8450E-2 2.42 0.78E-3
345 677.4 1.31 0.9966E-2 2.63 0.78E-3
365 716.3 3.33 0.1359E-1 19.7 0.39E-3
385 718.5 6.69 0.1599E-1 37.6 0.39E-3
405 736.6 11.8 -0.1611E-1 62.2 0.78E-3
425 799.8 16.1 -0.2005E-1 73.2 0.20E-3
445 837.4 19.0 -0.2143E-1 84.3 0.98E-4
465 871.1 22.3 -0.2227E-1 100.7 0.98E-4

Table 3.2.4.5 shows the max. function values and max. globalrelative error estimates ofσϕϕ and
vr for time steps45 − 465 every20th time step. There is also shown the actual time step size that is
controlled by the grid iteration as explained above and has an upper limit of0.05 ms. Up to step125
the max. relative error ofvr is below3%, this means that the mean error is below1%, compare to
Table 3.2.4.4. So we have still a “good” solution. However, beyond step125 the max. global relative
error estimate above forvr starts growing and has at step245 a value of247% which means the
solution is nonsense. In Figs. 3.2.4.30 to 3.2.4.36 are shown the values ofvr and a blow-up between
z = 2 andz = 4 for time steps125 − 245 every20th step. These figures show drastically how small
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3.2 Simulation of the manufacturing of metal bellows

disturbances ofvr that are already visible in Fig. 3.2.4.16 at first grow slowlyand then grow very
fast and destroy the solution. Even the most sophisticated solution method like ours cannot suppress
the growing of the disturbances because the system of PDEs isinherently unstable in time direction.
Only PDEs with damping terms could cure the situation.

vr  (125)

0,0E+00
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0 2 4 6 8 10 12 14 16 18 20 22

z

vr

Blow-up of v r  (125)
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2,0 2,4 2,8 3,2 3,6 4,0

z
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Figure 3.2.4.30:vr and a blow-up for time step125, stars: upper, squares: lower surface.

All attempts failed to damp the oscillations by smoothing the solution: We used the nodes of the
nearest neighbor ring, attributed to the value of the central node a weightα and to the values of the
remaining nodes a value(1−α), with different values ofα. However, this smoothing is an additional
disturbance of the solution, the errors increased and the solution became nonsense quite earlier than
without smoothing. Also repeated smoothing steps did not help. This demonstrates that one cannot
do better than to solve the equations without additional intervention.

What does this result mean? The real physical steel tube “explodes” into the form. This process
is surely described by model equations of “dough” type. We are “numerical engineers”, no metal-
lurgists. According to our assumption dissipative terms are missing in the equations. If we get from
whomsoever the correct unsteady PDEs that describe the explosion forming, we will solve them with
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vr  (145)
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Figure 3.2.4.31:vr and a blow-up for time step145, stars: upper, squares: lower surface.

error estimate. There is the physical phenomenon that the steel tube explodes into the form, thus
there must be a system of model equations that describe this process. Their numerical solution with
error estimate then gives the simulation of the manufacturing process in the computer and allows the
optimization of the process surely better than by trial and error.
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vr  (165)
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Figure 3.2.4.32:vr and a blow-up for time step165, stars: upper, squares: lower surface.
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vr  (185)
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Figure 3.2.4.33:vr and a blow-up for time step185, stars: upper, squares: lower surface.
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vr  (205)
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Figure 3.2.4.34:vr and a blow-up for time step205, stars: upper, squares: lower surface.
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vr  (225)
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Figure 3.2.4.35:vr and a blow-up for time step225, stars: upper, squares: lower surface.
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vr  (245)
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Figure 3.2.4.36:vr and a blow-up for time step245, stars: upper, squares: lower surface.

109



Applications

3.2.5 Concluding remarks to Section 3.2

The intention of the cooperation with the IWKA was the numerical simulation of the manufacturing
of metal bellows. The IFU of the University of Stuttgart should deliver the PDEs that describe this
process, empirical parameters in these equations should bedetermined by measurements at the IFU.
Our part was to solve these equations with FDEM with a reliable error estimate.

However, the IFU did not have the PDEs for elastic/plastic deformation. They themselves made
computations for metal forming processes, but they used commercial FEM codes where the equa-
tions that describe the forming process are hidden in a variational formulation. Therefore the IFU
developed a fundamental theory for the PDEs of plastic deformation. Unfortunately all attempts to
solve problems with this set of PDEs failed. These fruitlessattempts consumed a large part of the
project time. Then the IFU simplified the model PDEs until a “usable” system of PDEs for elas-
tic/plastic problems was developed. At that time the cooperative project time ended and we were left
alone without further support by the IFU. Up to that time IFU and IWKA believed that the forming
of the metal bellows was basically hydroforming until then finally the tool closed and there was final
force-forming. As mentioned above we tried one and a half years to simulate numerically this process
until we had to recognize that the metal tube exploded into the tool. As we are no metallurgists we
invented by phantasy model equations that could eventuallydescribe this explosion forming. How-
ever, we had now to recognize that these equations are unstable in time because they had no damping
terms.

At this point we had to give up because our financial and personal resources were exhausted. To
solve the original problem we needed a cooperation partner that can deliver the stable PDEs for this
explosion forming process.

Our part in the common research project with IFU and IWKA was to demonstrate that FDEM
can solve the PDEs that describe the numerical simulation ofmetal bellow manufacturing. We have
demonstrated that FDEM can solve all types of PDEs that we gotfrom the IFU. What nobody else
can do was possible by FDEM: to give for all these different types of solutions an error estimate. So
we are not happy that we could not simulate the manufacturingprocess, but we are quite satisfied by
the fact that FDEM can simulate all processes for which thereare the corresponding PDEs. If we
should simulate the manufacturing process of metal bellowssomebody must give us the PDEs and
we will solve them, —with error estimate.

3.3 Simulation of the lubrication gap of a Diesel High Pressu re Injection
Pump

3.3.1 The Piston and the Housing

In modern Diesel High Pressure Injection Pumps there is at the high pressure end a pressure of
2000 bar or 2 · 108 N/m2 = 200N/mm2. The width of the lubrication and caulking gap between
piston and housing is only a few micrometers. Under the high pressure the housing is widened and
the piston compressed so that the gap widens and changes its form. The housing is for simplicity
taken as a tube. So we have symbolically the configuration of Fig. 3.3.1.1.

If we look at the effect of the pressurep at the high pressure end we have the situation of
Fig. 3.3.1.2: by the effect of the pressure ofp = 200N/mm2 at the high pressure end the hous-
ing extends and the piston shrinks. Although we have a rotationally symmetric configuration so that
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3.3 Simulation of the lubrication gap of a Diesel High Pressure Injection Pump

Figure 3.3.1.1:Symbolic Configuration. In reality the gap is extremely thin.

we could use cylindrical coordinates we use cartesian coordinatesx, y, z that we can treat also un-
symmetric configurations, e.g. the piston not in the center of the tube or an arbitrary housing. We
have3 domains: the piston, the housing (which is in our case a tube)and the lubrication gap. We
will treat at first the3 domains separately to gain experience for the needed grid spacing, and where
there are problems we treat at first the 2-D case because 3-D with fine grid is very expensive w.r.t.
computation and memory. Then we will combine the3 domains to a single domain with two dividing
lines (that are in 3-D in reality dividing plains) between housing and lubrication gap and between
piston and lubrication gap. Then we will get a global solution over the whole domain although in the
different domains hold different PDEs.

Figure 3.3.1.2:Effect of the pressure of200 N/mm2 at the high pressure end.
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We now want to discuss the separate solution of the elasticity equation for the piston and the
housing. We denote the displacement inx, y, z-direction byu, v,w. The normal stresses are denoted
by σx, σy, σz (in Section 3.2.1 they were denoted byσxx, σyy, σzz), the shear stresses are denoted by
τxy, τyz, τxz with τxy = τyx etc. (in Section 3.2.1 they were denoted byσxy, σyz, σxz). The elasticity
equations for isotropic material that can be obtained from [12] in the same way as in Section 3.2.1
are with the elasticity moduleE and Poisson’s ratioν:

1

E
(σx − νσy − νσz) −

∂u

∂x
= 0, (3.3.1.1)

1

E
(−νσx + σy − νσz) −

∂v

∂y
= 0, (3.3.1.2)

1

E
(−νσx − νσy + σz) −

∂w

∂z
= 0, (3.3.1.3)

1 + ν

E
τxy −

1

2
(
∂u

∂y
+

∂v

∂x
) = 0, (3.3.1.4)

1 + ν

E
τyz −

1

2
(
∂v

∂z
+

∂w

∂y
) = 0, (3.3.1.5)

1 + ν

E
τxz −

1

2
(
∂u

∂z
+

∂w

∂x
) = 0. (3.3.1.6)

The equilibrium equations are

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0, (3.3.1.7)

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
= 0, (3.3.1.8)

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
= 0. (3.3.1.9)

We use the values

E = 2.1 · 1011 N/m2 = 210 000 N/mm2, ν = 0.3. (3.3.1.10)

In Table 3.3.1.1 we give the sequence of the variables and corresponding equations for the interior
nodes for the generation of the matrix.

Before we discuss the BCs we give the stress vector with its components

σ =





σxnx + τxyn
y + τxzn

z

τxyn
x + σyn

y + τyzn
z

τxzn
x + τyzn

y + σzn
z



 ·

x-component
y-component
z-component.

surface normal in x- y- z-direction

(3.3.1.11)

If we denote byn the normal and byt the tangential vector in thex, y-plane(nz = 0) we have
(see Fig. 3.2.1.3)

n =

(
nx

ny

)

, t =

(
tx

ty

)

=

(
−ny

nx

)

. (3.3.1.12)
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3.3 Simulation of the lubrication gap of a Diesel High Pressure Injection Pump

Table 3.3.1.1:Sequence of variables and equations.

no. variable equation
1 u (3.3.1.1)
2 v (3.3.1.2)
3 w (3.3.1.3)
4 σx (3.3.1.7)
5 σy (3.3.1.8)
6 σz (3.3.1.9)
7 τxy (3.3.1.4)
8 τyz (3.3.1.5)
9 τxz (3.3.1.6)

We get in this notation with the 2-D restriction ofσ the normal stressσn and tangential stressσt in
thex, y-plane.

σn = σT · n = σx(nx)2 + 2τxyn
xny + σy(n

y)2, (3.3.1.13)

σt = σT · t = − σxnxny + τxy((n
x)2 − (ny)2) + σyn

xny. (3.3.1.14)

Figure 3.3.1.3:Dimensions of housing, piston and lubrication gap inmm.
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Fig. 3.3.1.3 shows the dimensions of the computational domain in mm. The width of the lubrica-
tion gap is2.5 µm = 0.0025 mm. We want at first to discuss the BCs of the housing. Fig. 3.3.1.4
shows a view of the housing with the4 fixed nodes on the bottom. At these nodes we admit only
radial displacement: We have at node

1 + 2 : v = 0, w = 0, (3.3.1.15)

3 + 4 : u = 0, w = 0.

Figure 3.3.1.4:View of the housing with the4 fixed nodes, computational domain.

At the bottom we assume the pressurep = 200 N/mm2, i.e. the normal stress isσn = −p. The
normal vector of the bottom isnx = ny = 0, nz = −1, thus withσ from (3.3.1.11) we get

σn = σ · n = σz = −p.

The tangential stress inx- andy-direction is zero. The tangential vectors inx- andy-direction are

tx =





1
0
0



 , ty =





0
1
0



 ,

thus the stresses are

σtx = σ · tx = −τxz = 0, σty = σ · ty = −τyz = 0.
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For the other components we must use appropriate PDEs. So theBCs for the bottom are

u : PDE (3.3.1.6), ⌉special values (3.3.1.5) for

v : PDE (3.3.1.5), | nodes 1-4 of Fig. 3.3.1.4

w : PDE (3.3.1.3), ⌋
σx : PDE (3.3.1.1),
σy : PDE (3.3.1.2),
σz : σz = −p (p = 200N/mm2),
τxy : PDE (3.3.1.4),
τyz : τxz = 0,
τxz : τyz = 0.

(3.3.1.16)

As shown in Fig. 3.3.1.1 the housing and piston must be fixed bya continuation of the material that
take over the forces created by the200N/mm2 at the bottom. We restrict the computational domain
as shown in Fig. 3.3.1.3. Therefore the “lid” (upper boundary of the computational domain) is an
“artificial” boundary where no values are prescribed. Thus there hold the PDEs of Table 3.3.1.1, i.e.
the same equations like in the interior of the domain. The outer shell (without the nodes of bottom
and lid) is a free surface where the stressσ is zero. Because there we have the normal in thex, y-
plane, i.e.nz = 0, this means that we retain in (3.3.1.11) in each row the first two terms which then
are zero, e.g.σxnx +τxyn

y = 0. This can be used as equation forσx or τxy. However, wherenx = 0
we cannot use this equation forσx and whereny = 0 we cannot use it forτxy. Therefore we must
use different BCs depending onnx andny. So the BCs for the outer shell (without bottom and lid
nodes) are:

for |nx| ≥ |ny| |nx| < |ny|

u : PDE (3.3.1.1), PDE (3.3.1.4),
v : PDE (3.3.1.4), PDE (3.3.1.5),
w : PDE (3.3.1.6), PDE (3.3.1.6),
σx : σxnx + τyxny = 0, PDE (3.3.1.1),
σy : PDE (3.3.1.2), τxyn

x + σyn
y = 0,

σz : PDE (3.3.1.3), PDE (3.3.1.3),
τxy : τxyn

x + σyn
y = 0, σxnx + τxyn

y = 0,
τyz : PDE (3.3.1.5), τxzn

x + τyzn
y = 0,

τxz : τxzn
x + τyzn

y = 0, PDE (3.3.1.6).

(3.3.1.17)

At the inner shell we have the normal stress component equal to the negative hydrostatic pressurep
(opposite top of the fluid) which means with equ. (3.3.1.13)

σx(nx)2 + 2τxyn
xny + σy(n

y)2 + p = 0. (3.3.1.18)

There is no tangential stress because there is no circumferential force acting on the inner shell.
Therefore we put the tangential stress to zero which is with equ. (3.3.1.14)

−σxnxny + τxy((n
x)2 − (ny)2) + σyn

xny = 0. (3.3.1.19)
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In the z-direction we have the frictional force by the fluid in the lubrication gap. This force is
very small relative to the other forces so that we can neglectit. So we put the stress component in
z-direction to zero which is with (3.3.1.11) and withnz = 0 (shell is orthogonal to thez-axis)

τxzn
x + τyzn

y = 0. (3.3.1.20)

If we want to use these relations (3.3.1.18) to (3.3.1.20) asBCs we can e.g. not use (3.3.1.18) as
equation forσx or τxy if we havenx = 0 or (3.3.1.19) not forτxy if nx = ny. These restrictions are
shown in Fig. 3.3.1.5 Therefore we subdivide the “disk” in the x, y-plane in3 sectorsI, II, III as
shown in Fig. 3.3.1.6. We use in the sectors the equations in the following way

Sector I (3.3.1.18) for σx,
(3.3.1.19) for τxy,
(3.3.1.20) for τxz,

Sector II (3.3.1.18) for σx,
(3.3.1.19) for σy,
(3.3.1.20) for τyz,

Sector III (3.3.1.18) for σy,
(3.3.1.19) for τxy,
(3.3.1.20) for τyz.

(3.3.1.21)

Figure 3.3.1.5:Usage of equs.(3.3.1.18)–(3.3.1.20).
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Figure 3.3.1.6:Sectors I-III.

Therefore we have for the inner shell of the tube (without bottom and lid nodes) the following
BCs:

for Sector I Sector II Sector III

u : PDE (3.3.1.1), PDE (3.3.1.1), PDE (3.3.1.4),
v : PDE (3.3.1.4), PDE (3.3.1.2), PDE (3.3.1.2),
w : PDE (3.3.1.6), PDE (3.3.1.5), PDE (3.3.1.5),
σx : equ. (3.3.1.18), equ. (3.3.1.18), PDE (3.3.1.1),
σy : PDE (3.3.1.2), equ. (3.3.1.19), equ. (3.3.1.18),
σz : PDE (3.3.1.3), PDE (3.3.1.3), PDE (3.3.1.3),
τxy : equ. (3.3.1.19), PDE (3.3.1.4), equ. (3.3.1.19),
τyz : PDE (3.3.1.5), equ. (3.3.1.20), equ. (3.3.1.20),
τxz : equ. (3.3.1.20), PDE (3.3.1.6), PDE (3.3.1.6).

(3.3.1.22)

Fig. 3.3.1.7 shows the piston with the two fixed nodes. There we have at fixed nodes:

v = 0, w = 0. (3.3.1.23)

The BCs for the bottom are the same as for the tube (3.3.1.16),but now with the special values
(3.3.1.23) at the bottom. At the lid (artificial boundary) hold the equations of Table 3.3.1.1. The BCs
for the outer shell of the piston (without nodes of the bottomand lid) are the same as for the inner
shell of the tube (3.3.1.22).
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Figure 3.3.1.7:The piston with the two fixed nodes, computational domain.

For the numerical solution of the elasticity equations (3.3.1.1)–(3.3.1.6) we have the following
values of theE-moduleE and Poisson’s ratioν:

E = 210 000 N/mm2(= 2.1 · 1011 N/m2), ν = 0.3. (3.3.1.24)

Because 3-D is very expensive in computation and storage, wemade at first 2-D experiments with
a cross section orthogonal to thez-axis in Fig. 3.3.1.1 or 3.3.1.3. This is an annulus with inner radius
ri = 4.0025 mm and outer radiusra = 10 mm. It is exposed to an inner pressurepi = 200 N/mm2

and an outer pressure0, see Fig. 3.3.1.8. For this configuration the exact solutionis given in [13],
p. 60, equ. (46), which is in our notation, but with polar coordinatesr, ϕ:

σr =
r2
i · pi

r2
a − r2

i

(1 −
r2
a

r2
), (3.3.1.25)

σϕ =
r2
i · pi

r2
a − r2

i

(1 +
r2
a

r2
).

The value ofσrϕ = 0 because of the symmetry. The max. stressσϕ occurs at the inner ring,
r = ri. There we have for our configurationσϕ = 276.3039 N/mm2. We compute in cartesian
coordinates. Therefore at nodeA σϕ = σy, or similarly at nodeB σϕ = σx. Forr = ri we get from
(3.3.1.25)σr = 200 N/mm2, i.e. the BC of the inner pressure.

The 2-D model results from the PDEs and BCs forw = σz = τyz = τxz = 0 and ∂
∂z = 0. We have

made numerical experiments with different grids for the consistency orderq = 6. In Table 3.3.1.2
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we present for each grid the displacementu and the stressσy of nodeA of Fig. 3.3.1.8 together with
the estimated global relative error E.

These results are very instructive. As we know the exact value forσy = 276.3, we can compare the
numerical value to the exact value and see the correspondingestimated error. It should be mentioned
that this problem is a 1-D problem in polar coordinates, but we compute in cartesian coordinates that
we can treat arbitrary unsymmetric configurations. If we go in cartesian coordinates inϕ-direction
around the annulus,σx, σy change continuously so that we need a corresponding fine gridfor high
accuracy.

If we go down the first column in Table 3.3.1.2 we can see that weget the exact value forσy for
the grid159 × 21, but the error estimate is9% for u and20% for σy. This means that the grid is not
yet fine enough for the consistency orderq = 8 that is used for the error estimate, i.e. the orderq = 8
is still “overdrawn”. If we refine the grid further in circumferential direction, the solution becomes
worse and the error estimates are valueless. This shows the built-in self-control of the error estimate.
If we go from159 × 21 to 159 × 41 the error estimates increase, thus the finer grid in the thickness
direction of the annulus does not improve the solution. The error estimates for the grid319 × 41 are
better than those of its upper and left neighbor. Finally thegrid 319 × 81 gives error estimates for
u as0.24% and forσ as0.85% so that we can well trust the solution. However, if we want to go
from the 2-D annulus to the 3-D tube we cannot use such a fine grid because the storage becomes
prohibitively large for a full LU solution of the linear system. Therefore we will restrict to the grid
159 × 21, but we cannot expect a usable error estimate because for this coarse grid the orderq = 8
for the error estimate is overdrawn.

From Table 3.3.1.2 we can learn some interesting points. It is useless or even harmful to refine the
grid only in one direction. The grid must be “balanced” in both directions. The error estimates, even
if they are very large, indicate which grid is better. So the error estimate helps to select better grids.
Finally, if we have a small error estimate, we know that our solution is in the corresponding range of

Figure 3.3.1.8:2-D annulus.
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Table 3.3.1.2:Results for nodeA of Fig. 3.3.1.8 for different grids. The first value of the grid gives
the number of nodes in circumferential, the second in radialdirection,E is the estimated
global relative error. Consistency orderq = 6. The exact value isσy = 276.3.

Var. solution errorE solution error E solution errorE
grid 79 × 21

u 0.6413·10−2 0.31
σy 277.0 1.13

grid 159 × 21 159 × 41

u 0.6411·10−2 0.9·10−1 0.6412·10−2 0.33
σy 276.3 0.20 276.2 1.12

grid 319 × 21 319 × 41 319 × 81

u 0.6426·10−2 1.50 0.6410·10−2 0.9·10−1 0.6410·10−2 0.24·10−2

σy 277.0 6.27 276.3 0.17 276.3 0.85·10−2

grid 639 × 21

u 0.6710·10−2 1480
σy 5376.0 1794

accuracy. In almost all cases the error is overestimated.
The values of Table 3.3.1.2 are computed with the consistency orderq = 6. We made experiments

with the ordersq = 4 andq = 2, but the errors were considerably larger. To obtain solutions with
comparable accuracy the grid must be very fine. Before we further discuss the treatment of housing
and piston, we will discuss the equations for the flow in the lubrication gap.

3.3.2 The fluid flow in the lubrication gap

We solve in the lubrication gap, see Fig. 3.3.1.1, the incompressible Navier-Stokes equations with
the velocity componentsu, v, w, the pressurep and constant values for densityρ and dynamical
viscosityη, see e.g. [14]:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂p

∂x
−

−
η

ρ
(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) = 0, (3.3.2.1)

∂v

∂t
+ u
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∂x
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∂v

∂y
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∂v

∂z
+

1

ρ

∂p

∂y
−

−
η

ρ
(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
) = 0, (3.3.2.2)

∂w

∂t
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∂w

∂x
+ v

∂w

∂y
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∂w
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+

1

ρ

∂p

∂z
−

−
η
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(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
) = 0, (3.3.2.3)
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and the continuity equation
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (3.3.2.4)

For FDEM it would be no problem to include the energy equationfor the temperatureT for the heat
conduction or to solve the compressible equations withρ as unknown. There are4 equations for
the 4 variablesu, v, w, p. Which equation should be used for which variable in the discretization
process? For the configuration of Fig. 3.3.1.1 we selected the following sequence

no. variable equation
1 u (3.3.2.1)
2 v (3.3.2.2)
3 w (3.3.2.4)
4 p (3.3.2.3)

(3.3.2.5)

Fig. 3.3.2.1 shows the fluid region. At the inner and outer mantle, i.e. the border to the piston and
housing, we have for the velocities the no-slip condition:u = v = w = 0. For the pressure there is
no prescribed value, therefore we take forp equ. (3.3.2.3). The problem are the inlet with the high

Figure 3.3.2.1:Fluid region.

pressurep1 = 200 N/mm2 and the outlet withp2 = 0. These are “artificial” boundaries because
the computational domain of Fig. 3.3.2.1 has been cut out of the whole fluid flow. What we find at
the inlet atz = 0 is determined by the conditions from where the fluid comes, and what we get at the
outlet atz = ze depends in a certain sense also from the conditions that follow to the exit, although
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in a quite less degree than at the inlet. Therefore the conditions that we describe at inlet and outlet
are artificial ones. In this sense we prescribe at the inlet(z = 0):

u = 0,

v = 0,

w = parabola withwmax,

p = p1 = 200N/mm2,

(3.3.2.6)

wherew is a parabola of Fig. 3.3.2.2 with zero values atri, ra andwmax in the middle. We establish

Figure 3.3.2.2:Parabolic form ofw at the inlet.

w asw(r), but then expressr by x, y. At the outlet we want to let to the fluid as much freedom as
possible and thus we prescribe for

u : ∂u
∂z = 0,

v : ∂v
∂z = 0,

w : ∂w
∂z = 0,

p : equ.(3.3.2.3).

(3.3.2.7)

The last condition forp is unexpected. We would expect that we have at the exitp = p2 = 0 as
shown in Fig. 3.3.2.1. However, we have forp only first derivatives and we prescribep = p1 at the
inlet. Then from the inlet to the outlet there is a pressure drop which results from the solution of the
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Navier-Stokes equations, i.e. by the friction at the walls.How can we get the desired valuep = 0 at
the outlet?

The pressure drop is determined by the velocity componentw in the lubrication gap and this in
turn is determined bywmax, see Fig. 3.3.2.2. Ifwmax is too large, the pressure drop is too large and
the exit pressure is negative. Ifwmax is too small, the pressure drop is too small and the pressure
at the exit is too large. But what meansp = 0 at the exit? The exit is the lid of the computational
domain of Fig. 3.3.1.2, the velocity at the exit and thus the exit pressure depends on the location.
How to solve this problem? The method that we propose and thatwe call “wmax-iteration” is the
following: We select an initial valuewmax and solve the fluid equations. Then we select a control
node in the middle of the exit and take the pressure from this node. We know (without computation)
that for exit pressurep2 = p1, no pressure drop,wmax = 0. So we have two pairswmax, pexit and
can extrapolate a third value forwmax and compute itspexit by the solution of the PDEs with this
value ofwmax at the entry. From now on we have3 pairs ofwmax, pexit and can with a parabola
through these values start a Newton iteration to determinewmax for exit pressure to be zero. This
explanation means that we can fulfil the pressure conditionp2 = 0 at the exit (in a “mean” pressure
sense) only by an iterative procedure. The basic reason is that in the Navier-Stokes equations the
pressure has only first derivatives, thus is of an initial value problem type forp. For the numerical
solution of the Navier-Stokes equations the following constant parameters are prescribed:

dynamical viscosity η = 2 · 10−3 Pa · s,

density ρ = 800 kg/m3.

As we take the length scale inmm we have

η = 2 · 10−9 Ns/mm2,

ρ = 8 · 10−7 kg/mm3,
η
ρ = 2.5 · 10−3 mm2/s. See Erratum on page 151.

(3.3.2.8)

3.3.3 The combination of piston, housing and fluid flow

The problem that we want to solve is a fluid-structure interaction problem. As shown in Fig. 3.3.1.2
the pressure widens the lubrication gap (the fluid domain) atthe high pressure end. The compu-
tational domain is the whole domain combined of housing, gapand piston, see Fig. 3.3.1.1. In
the three domains hold different PDEs: in the housing and piston hold the elasticity equations with
9 variables, see Table 3.3.1.1, in the fluid gap hold the Navier-Stokes equations with4 variables, see
(3.3.2.5). As we must have in the whole domain the same numberof variables, we add in the fluid
domain5 dummy equations of type: variable= 0 (in the interior and at the boundary). So e.g. in the
domain of the housing and piston variale1 has the meaning of the displacementu and in the fluid
domain variable1 has the meaning of velocityu, variable4 has the meaningσx and fluid pressurep,
variable9 is τxz and0, respectively.

This seems to be strange, but the different domains are separated by dividing lines (DLs) which
are in 3-D in reality dividing areas as mentioned in the general part of FDEM. The DLs are internal
boundaries over which will not be differentiated. As we havealso sliding dividing lines (SDLs)
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which allow a sliding of the domains relative to each other, we may have non-matching grids at the
SDLs (at DLs the grids must match).

The solutions in the different domains are coupled across the DLs or SDLs by coupling conditions
(CCs). In our case of housing, gap and piston we have the following simple CC: at the inner boundary
of the housing and at the outer boundary of the piston the normal stress is given by the negative
fluid pressurep, see (3.3.1.18) and (3.3.1.22). Thus we have a “one-sided” coupling: the structure
couples to the fluid, but the fluid does (seemingly) not coupleto the structure, i.e. the fluid has no
explicit coupling with a structure variable. However, there is a much more complicated (hidden)
back-coupling of the fluid to the structure: The fluid pressure widens the housing and compresses the
piston. This widens the gap and thus changes the flow. The change in the flow on its part changes
the fluid pressure that changes the structure etc.

This results in a “grid iteration”: we iterate, starting with the grid for the constant gap, seeleft
part of Fig. 3.3.1.2, until we have obtained a final grid, see right part of Fig. 3.3.1.2. For each
intermediate grid we must iteratively determinewmax, as discussed in Section 3.3.2, thus we have
a nested iteration: the innermost iteration is the Newton iteration to solve the global equations for
the whole domain, the next outer iteration is thewmax-iteration to obtain the zero exit pressure and
the outermost iteration is the grid iteration until the structure has reached its final position. This last
iteration can also be controlled bywmax: If the relative change ofwmax from one grid to the other is
below a given limit, we stop.

The whole algorithm will be described in detail in Section 3.3.4 below for matching grid in cylin-
drical rotationally symmetric coordinates. The 3-D algorithm has not been implemented because our
available supercomputer has not sufficient memory for the 3-D case. Nevertheless we now want to
explain how the “breathing” of the fluid domain by the movement of housing and piston would be
implemented in 3-D for arbitrary non-matching grid. As it isnot possible to show the procedure by
figures for a 3-D tetrahedral grid, we explain it at first for 2-D and then expand it to 3-D.

Fig. 3.3.3.1 shows how the nodes at the boundary of the housing and piston move by the fluid
pressure and take thus the nodes of the fluid boundary with them. The shifted grid of housing and
piston is shown by dashed lines, the shifted grid of the fluid is not indicated to avoid confusion in the
figure.

Fig. 3.3.3.2 illustrates the situation if the piston moves.Then the computational domain of the
piston has fixed size, but moves. The computational domain ofthe fluid is the space between piston
and housing and changes with the movement of the piston. The left end position 1 is fixed, the
right end position oscillates with the piston between the positions 2 and 3. However, in the present
investigation we consider only fixed piston.

Now we want to explain the “breathing” of the fluid grid by the displacement of the boundaries
to housing and piston as illustrated schematically in Fig. 3.3.3.1. Fig. 3.3.3.3 shows our procedure.
The solid lines are the boundaries of piston and housing, they move by the displacement caused by
the pressure to the positions indicated by the dashed lines.For the displacementdA of a node on the
piston boundary we take the fixed pointA on the opposite housing boundary, for the displacementdB

of a node on the housing boundary, we take the opposite fixed point B on the piston boundary. For
nodes in the interior we take an intermediate displacement proportional to its distance from the fixed
point as illustrated in Fig. 3.3.3.4. This is made for the displacements of piston and housing and both
displacements are added, i.e. the two displacements are superposed. If the piston would move, the
grid of the fluid would move as shown in Fig. 3.3.3.2 which results in a similar axial displacement
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Figure 3.3.3.1:Shifting of the grid by the fluid pressure.

that would also be superposed.

Fig. 3.3.3.5 shows the situation for non-matching grid. Fora nodeC of the fluid grid orthogonal to
the axis the fixed pointB on the piston and the corresponding pointD on the housing are determined
as points of intersection between the orthogonal direction(orthogonal to axis of piston) and the

Figure 3.3.3.2:Situation if piston moves. The left end 1 of the fluid domain isfixed, the right end moves
with the minimal position 2 and maximal position 3 of the piston.
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Figure 3.3.3.3:Illustration for the change in the width of the fluid channel.

straight line between the neighboring contour nodes. Then the displacementdB is known and we
can proceed as shown in Figs. 3.3.3.3 and 3.3.3.4. In the samewaydA can be determined for nodeC
and the two local displacements inC are superposed.

As mentioned above the illustration for the 3-D case is much more difficult. Fig. 3.3.3.6 shows
the basic principle. It extends Fig. 3.3.3.5 to 3-D. Each node, in this case nodeC, must store the

Figure 3.3.3.4:Illustration for the computation of intermediate displacement.

126



3.3 Simulation of the lubrication gap of a Diesel High Pressure Injection Pump

Figure 3.3.3.5:Illustration for non-matching grid.

information for the two relevant boundary triangles on the boundaries of piston and housing. Here the
orthogonal line (radial from axis of piston) must be intersected with the triangles. Note that in 3-D
we use tetrahedrons, therefore the boundary is composed from triangles which are the “footprints” of

Figure 3.3.3.6:Illustration for 3-D case.

127



Applications

the tetrahedrons. If the pointsB and/orD drop out of the triangles that have been stored as relevant
neighbors, by a search process the suited triangles must be determined. The displacement, e.g.dB

is determined as the mean value of the interpolation polynomials from the3 corners of the triangle
extrapolated to the pointD and taking the mean value. As the extrapolation is computed with the
same consistency order as the difference formulas, the consistency order is maintained.

These 3-D algorithms have not (yet) been implemented because the memory of the presently for
us available supercomputers is not large enough for those 3-D problems. However, these algorithms
are closely related to the algorithms for the 3-D SDLs to determine if a node is a free surface node
or a SDL node. So the basic algorithmic building blocks are already available.

3.3.4 Solution in axisymmetric cylindrical coordinates

The investigations which grid is needed for 2-D simplifications of the housing in order to obtain an
accuracy below1% error showed that inx, y-coordinates in a planez = const, a grid of319× 81 in
circumferential and radial direction is needed only for thehousing, see Table 3.3.1.2. The extension
to 3-D in thez-direction resulted in a very large sparse matrix. However,the condition of the matrix
for this discretization (orderq = 6) is so bad, that even the most robust iterative CG solver ATPRES
in the LINSOL program package converged so slowly or failed completely that it could not be applied
for this type of matrices. Therefore only full LU preconditioning can be used for this type of linear
equations. However, this results in heavy fill-in between the outermost diagonals (which are reduced
by a “parallelized” bandwidth optimizer) and the factorsL andU do no longer fit in the memory.

In order to show that the fluid-stucture coupling problem forpiston, fluid gap and housing works
for FDEM with global solution and global error estimate, we decided to solve the given problem in
axisymmetric cylindrical coordinates, i.e. in 2-D, see Fig. 3.3.4.1. Here the final configuration is

Figure 3.3.4.1:Configuration of problem.

shown with the fluid gaps at the left entry widened by the influence of the pressure of200 N/mm2

or 2000 bar. The starting dimensions are those of Fig. 3.3.1.3.
Now we want to discuss the equations for the structural components housing and piston. As we do

not know if we can get directly the solution for the entry pressurep = 200 N/mm2, we design the
algorithm for incremental procedure: we assume we have computed the stresses and displacements
for an entry pressurep1, index “old”, and we want to compute the solution for a higherpressurep2,
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thus we use as in Section 3.2.4 incremental equations. The elasticity equations of Section 3.2.4 can
directly be used for the housing and piston with the following changes: we now use isotropic steel
with a singleE andν, we use directly thedisplacement = ∆t · displacement velocity as variable
(and not displacement velocity) and we use the notation:

coordinates: z, r,
displacements: w (z-direction), u (r-direction),

stresses: σz, σr, σϕ and shear stressτrz(= τzr).

Then we get from equations (3.2.4.4)–(3.2.4.9) the following equations with2G = E/(1 + ν), see
[12](3.81):

1

E
[σz − σz,old − ν(σϕ − σϕ,old) − ν(σr − σr,old)] −

∂w

∂z
= 0, (3.3.4.1)

1

E
[−ν(σϕ − σϕ,old) − ν(σz − σz,old) + σr − σr,old] −

∂u

∂r
= 0, (3.3.4.2)
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E
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u
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∂z
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∂z
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r
(σr − σϕ) = 0, (3.3.4.5)

∂τrz

∂r
+

∂σz

∂z
+

τrz

r
= 0, (3.3.4.6)

These are6 equations for the6 variablesw, u, σz, σr, σϕ, τrz. We use in the interior of the domain
the following equations for the variables:

no. variable equation
1 w (3.3.4.1)
2 u (3.3.4.2)
3 σz (3.3.4.6)
4 σr (3.3.4.5)
5 σϕ (3.3.4.3)
6 τr,z (3.3.4.4)

(3.3.4.7)

Before we discuss the boundary conditions we note like in Section 3.2.4 the stress vector

σ =

(
σzn

z + τrzn
r

τrzn
z + σrn

r

)
z-component,
r-component,

(3.3.4.8)

and normal and tangential stress

σn = σz(n
z)2 + 2τrzn

znr + σr(n
r)2, (3.3.4.9)

σt = −σzn
znr + τrz((n

z)2 − (nr)2) + σrn
znr, (3.3.4.10)
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Figure 3.3.4.2:Illustration to boundary conditions for the housing.

with nz, nr the components of the normal vectorn to the outside of the surface.
Fig. 3.3.4.2 shows the4 boundaries for the housing. At boundary① we assume the normal

pressureσn = −pleft, with pleft the given entry pressure. Boundary② is an “artificial” boundary, it
is the limit of the computational domain to the continuationof the housing. The condition∂u/∂z = 0
gives horizontal tangent of the grid at the boundary②. Here we assumew = 0, i.e. here the domain
is “fixed”. Boundary③ is the limit to the fluid domain, here the normal stress is given by the fluid
pressurepfluid. We neglect the tangential stress by the friction of the fluidbecause it is very small
relative to the other stresses. Boundary④ is a free boundary, it is assumed to be force-free. For all
variables for which no condition is prescribed we take a suited PDE.

Table 3.3.4.1 shows the assignment of variables and equations for the four boundaries, but exclud-
ing the corners. For the four corners we have the following conditions:

Upper left corner Upper right corner

w (3.3.4.1) w = 0
u (3.3.4.2) ∂u/∂z = 0
σz σn = −pleft, normal to left (3.3.4.1)
σr σn = 0, normal upwards σn = 0, normal upwards
σϕ (3.3.4.3) (3.3.4.3)
τr,z σt = 0, normal to left σt = 0, normal upwards.

(3.3.4.11)

One has to observe for the formulas forσn (3.3.4.9) undσt (3.3.4.10) which normal is to be used in
the corner.

Lower left corner Lower right corner

w (3.3.4.1) w = 0
u (3.3.4.2) ∂u/∂z = 0
σz σn = −pleft, normal to left (3.3.4.1)
σr σn = −pfluid, normal downwards σn = −pfluid, normal downwards
σϕ (3.3.4.3) (3.3.4.3)
τr,z σt = 0, normal to left σt = 0, normal downwards.

(3.3.4.12)
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Table 3.3.4.1:Assignment of variables and equations for the boundaries ofFig. 3.3.4.2, excluding the
corners.

no. var. Bd. ① Bd. ② Bd. ③ Bd. ④

1 w (3.3.4.1) w = 0 (3.3.4.4) (3.3.4.4)
2 u (3.3.4.4) ∂u/∂z = 0 (3.3.4.2) (3.3.4.2)
3 σz σn = −pleft (3.3.4.1) (3.3.4.1) (3.3.4.1)
4 σr (3.3.4.2) (3.3.4.2) σn = −pfluid σrzn

z + σrn
r = 0

5 σϕ (3.3.4.3) (3.3.4.3) (3.3.4.3) (3.3.4.3)
6 τrz σt = 0 (3.3.4.4) σt = 0 σzn

z + τrzn
r = 0

Fig. 3.3.4.3 shows similarly the boundaries for the piston.The boundary conditions without the
corners are shown in Table 3.3.4.2.

Figure 3.3.4.3:Illustration to boundary conditions for the piston.

At the axis we have at boundary③ the valuer = 0 which causes difficulties for the termu/r. We
expandu in a power series forr:

u

r
=

u(r) + ∂u
∂r r + 1

2
∂2u
∂r2 + . . .

r

∣
∣
∣
∣
∣
r=0

=
∂u

∂r
+

1

2

∂2u

∂r2
r + . . .

because forr = 0 u(r = 0) = 0. Thus we use in the equation (3.3.4.3)∗ in Table3.3.4.2

u

r

∣
∣
∣
r=0

=
∂u

∂r
. (3.3.4.13)

In (3.3.4.6) we haveτrz/r. This term must be regular on the axis, which only holds forτrz = 0 on
the axis.
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Table 3.3.4.2:Assignment of variables and equations for the boundaries ofFig. 3.3.4.3, excluding the
corners.

no. var. Bd. ① Bd. ② Bd. ③ Bd. ④

1 w (3.3.4.1) w = 0 (3.3.4.4) (3.3.4.4)
2 u (3.3.4.4) ∂u/∂z = 0 u = 0 (3.3.4.2)
3 σz σn = −pleft (3.3.4.1) (3.3.4.1) (3.3.4.1)
4 σr (3.3.4.2) (3.3.4.2) (3.3.4.2) σn = −pfluid

5 σϕ (3.3.4.3) (3.3.4.3) (3.3.4.3)∗ (3.3.4.3)
6 τrz σt = 0 (3.3.4.4) τrz = 0∗ σt = 0

*) see text

The boundary condition at the four corners for the piston are:

Upper left corner Upper right corner
w (3.3.4.1) w = 0
u (3.3.4.2) ∂u/∂z = 0
σz σn = −pleft, normal to left (3.3.4.1)
σr σn = −pfluid, normal upwards σn = −pfluid, normal upwards
σϕ (3.3.4.3) (3.3.4.3)
τr,z σt = 0, normal to left σt = 0, normal upwards

(3.3.4.14)

Lower left corner Lower right corner
w (3.3.4.1) w = 0
u u = 0 u = 0
σz σn = −pleft, normal to left (3.3.4.1)
σr (3.3.4.2) (3.3.4.2)
σϕ (3.3.4.3)∗ (3.3.4.3)∗

τr,z σt = 0, normal to left τrz = 0∗.

*) see text

(3.3.4.15)

With these boundary conditions the definition of the problemfor the structural parts housing and
piston is terminated. As we proceed incrementally, we increase the entry pressure at the left end by
an initial increment∆p1 and then in steps by an increment∆p2 until finally p = 200 N/mm2 or
a higher value has been reached. The displacements (3.3.4.1)–(3.3.4.4) are in reality∆w und ∆u
that must be added to the “old” coordinates. Therefore we must shift the nodes of the grid in the
following way after each pressure step:

z = zold + w,
r = rold + u.

(3.3.4.16)

Now we want to discuss the PDEs and boundary conditions for the fluid region, i.e. for the lubri-
cation gap. The Navier-Stokes equations in axisymmetric coordinates can be found in [14]. They
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are the transformed equations (3.3.2.1)–(3.3.2.4), reduced to 2-D. If we denote byw, u the velocity
components inz-direction (axial) andr-direction (radial), see Fig. 3.3.4.1, the steady equations are

u
∂u

∂r
+ w

∂u

∂z
= −

1

ρ

∂p

∂r
+

η

ρ
(
∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2
+

∂2u

∂z2
), (3.3.4.17)
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(
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∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2
), (3.3.4.18)

∂u

∂r
+

u

r
+

∂w

∂z
= 0. (3.3.4.19)

The values ofρ andη are given in (3.3.2.7).
Fig. 3.3.4.4 shows the computational domain for the fluid. Inthe interior we arrange the variables

Figure 3.3.4.4:Illustration to boundary conditions for the fluid.

and equations as follows:

no. variable equation
1 w (3.3.4.19)
2 u (3.3.4.17)
3 p (3.3.4.18)

(3.3.4.20)

As explained in Section 3.3.2 the boundaries① and② are artificial boundaries. At boundary① we
prescribe

w as parabola with max.valuewmax in the center of the gap,
u = 0,
p = pleft.

(3.3.4.21)

Herepleft denotes the actual prescribed pressure at the entry side, its final value in an incremental
pressure step procedure is200 N/mm2. At the exit, boundary②, we prescribe as explained in the
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context of equation (3.3.2.6)

for w : ∂w
∂z = 0,

for u : ∂u
∂z = 0,

for p : (3.3.4.18).

(3.3.4.22)

At the boundaries③ and④ we have for the velocity components the no-slip condition. As there is
no prescription forp, we take an appropriate PDE:

w : w = 0,

u : u = 0,

p : (3.3.4.18).

(3.3.4.23)

As explained in Section 3.3.2 the desired conditionpexit = 0 can be fulfilled only by an appro-
priate choice ofwmax at the entry. This leads to the “wmax-iteration”, that has been explained in
Section 3.3.2. We define as “exit pressure” the value of the pressure at the center of the gap of the
boundary② in Fig. 3.3.4.4.

The combination and coupling of the3 domains: piston, housing and fluid has been discussed for
the 3-D case in Section 3.3.3. In the 2-D case with axisymmetric cylindrical coordinates we use for
simplicity a matching grid as shown in Fig. 3.3.4.5 for the initial position for entry and exit pressure
zero. Such a grid can be generated easily “by hand” and allowsflexibility for accuracy tests with

Figure 3.3.4.5:Type of grid used for the solution. In reality the fluid gap is very thin, see Fig. 3.3.1.3.
The diagonals that make from quadrilaterals the triangles are not shown.

different grids. As this is a matching grid, we have between fluid and housing or piston a “normal”
dividing line (DL) and not a SDL which would be needed for non-matching grid.

As explained in Section 3.3.3 we have a direct coupling of housing and piston to the fluid only
by the normal stress which is equal to the fluid pressurepfluid, see boundary③ in Table 3.3.4.1
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and boundary④ in Table 3.3.4.2. There is no direct coupling of the fluid to the housing and piston,
however, the grid of the structure and thus the width of the fluid gap changes with (3.3.4.16). This
changes on its turn the fluid flow.

The displacement of the nodes of the fluid grid is determined by the displacement of the nodes of
the housing and piston at the boundary to the fluid, see Figs. 3.3.3.1–3.3.3.4 and the corresponding
context. As we now have matching 2-D grid, the boundary nodesof housing and piston are explicitly
known for each node of the fluid domain. Thus it is easy to compute ∆z and∆r for each node.
This results is the new fluid grid. Fig. 3.3.4.6 shows the nested structure of the solution process.

Figure 3.3.4.6:Illustration to nested character of the solution process.

For the computation of the global solution for housing, piston and fluid we must execute a Newton
iteration. Herewmax and grid are fixed. For this solution the “exit pressure” is checked andwmax

is corrected as explained at the end of Section 3.3.2 by a typeof Newton iteration. This defines the
wmax-iteration. Nowwmax is fixed for this grid and from the solution we know the displacements
for the boundaries③ and④ of Fig. 3.3.4.4 and we can compute the new fluid grid accordingto
Figs. 3.3.3.3 and 3.3.3.4.

Now we start for the new grid (housing, piston, fluid) the sameprocess with starting valuewmax

of the previous grid and we must again adaptwmax for exit pressure zero in awmax-iteration. Finally
we have a new solution for this grid that determines a new gridfor housing, piston and fluid. This
can be repeated and this defines the grid iteration in Fig. 3.3.4.6. If the grid is changed,wmax will
change. Therefore we usewmax to control the grid iteration and we stop the grid iteration if

wmax − wmax,old

wmax
≤ εgrid. (3.3.4.24)
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Now we have the solution and grid for the actual pressurepleft of Figs. 3.3.4.2–3.3.4.4. If we
increase the pressurepleft in an incremental procedure by∆p1 and∆p2 we start the whole procedure
for pleft = pleft,old + ∆p2 and repeat until we have reached the prescribed entry pressure pleft =
200 N/mm2 (2000 bar) or a requested higher value.

Here we have described the “fully coupled” solution. This means that in eachwmax-iteration
step the equations for housing, piston and fluid are solved. However, we do not make use of the
displacements of housing and piston during thewmax-iteration because the grid is fixed. Only after
the stopping of this iteration the displacements are applied to the old grid, giving the new grid. To
save computation time we therefore defined the “pseudo-uncoupled” solution: We solve separately
the PDEs for the 3 domains housing, piston and fluid. During the wmax-iteration only the fluid
equations are solved. After the stopping of thewmax-iteration the displacements are computed by
the solution for housing and piston, using the actual fluid pressure as BC. Then we get a new grid
and start a newwmax-iteration, if the stopping criterion (3.3.4.24) is not yetfulfilled. This pseudo-
uncoupled procedure gives the same result as the fully coupled solution, but it avoids the unnecessary
repeated solution of the structural equations and thus saves much computation time.

Here we want to discuss briefly how the algorithm would be executed if the piston moved/oscillated.
Then we have a sliding dividing line (SDL) instead of a simpleDL because the grid of the fluid do-
main changes, see Fig. 3.3.3.2. The changes of the grid and ofthe fluid pressure depend on the time
increment∆t. Basically we have the same nested algorithm like in Fig. 3.3.4.6. However, for small
∆t one could fix in the optimal case to one Newton iteration, onewmax-iteration and one grid itera-
tion, a pressure iteration in this case is not needed. The errors that are generated by this cutting of the
iterations areO(∆t) and one can see by numerical experiments with different values of∆t how the
solution changes with∆t. In the same way one could see how the solution changes if2 or 3 Newton
steps are prescribed. Eventually then a larger∆t is possible so that the overall computation time is
reduced. The same check can be made for more than onewmax-iteration or grid iteration. This is a
complicated optimization problem for the4 parameters∆t, n−itNewton, n−itwmax, n−itgrid, where
n−it denotes the number of iterations.

3.3.5 Results for the axisymmetrical cylindrical coordina tes

We have solved the fluid-structure interaction problem of housing, piston and fluid with the pseudo-
uncoupled method that gives the same result as the fully coupled method. However, we could get a
solution only up to1500 or 1600 bar. There are extreme differences in scale between housing and
piston that are in the range ofcm at the one side, and between the lubrication (fluid) gap that is in the
range of micrometer at the other side. We made numerical experiments with different length scales
betweenm andmm and looked at the errors for1500 bar. We could see that for the scale incm
we got the best results. Here the error estimate told us what is the best length scale for this problem
that includes also extreme coefficientsρ andη that vary in a wide range betweenm andmm. So
we solved the PDEs in the length scalecm. Therefore the displacements are incm, the velocities in
cm/s, the stresses inN/cm2 and the volume flow incm3/s.

The volume flow is determined from the prescribed entry parabola with wmax for the velocityw,
see Fig. 3.3.4.4:

vol = 2π

∫ ra

ri

w(r)r dr = 2πwmax

[a0

2

(
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i

)
+
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(
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i

)]

, (3.3.5.1)
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with a0, a1, a2 are the coefficients of the parabolaa0 + a1r + a2r
2 of the prescribed entry profile

and with ri, ra the inner and outer radius of the fluid gap. These values are known during the
computation.

But why could we not get results for entry pressurep > 1600 bar? We were really desperate. After
long investigations we finally could find the cause: during the grid iteration at the inner and outer
boundaries of the housing and at the outer boundary of the piston tiny waves in the size of a fraction
of a micrometer built up. This made the fluid channel “rough”,see Fig. 3.3.4.4. As a consequence
the Newton iteration for the fluid diverged. In the structural equation there are no damping terms,
thus the roughness could build up. This roughness is in the range of the discretization errors of the
structural equations. We at first tried to solve the problem by a finer grid which helped a little and
brought us up to1800 bar, but then the same effect occured. So what to do now?

The idea that solved the problem was to smooth the inner wall of the housing and outer wall of the
piston. The smoothing is made in the following way, see Fig. 3.3.5.1: We determine the parabola for
nodeB with the two neighbor nodesA andC.

Figure 3.3.5.1:Illustration for the smoothing of the surface.

This has the form

rpar(z) = a0 + a1z + a2z
2 , (3.3.5.2)

and its second derivative is

r′′par = 2a2 . (3.3.5.3)

Now we determine a new parabola with

r′′par, new = βr′′par = β · 2a2 , (3.3.5.4)
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i.e. a parabola that is for0 < β < 1 more “flat”, see dashed parabola in Fig. 3.3.5.1. Now we
determine the new “smoothed” nodeC as the intersection of the normal to the old parabola with the
new smoothed parabola. End points of the boundaries remain fixed. If we do this smoothing for all
nodes of a boundary we have executed one smoothing sweep. Nowwe can execute further sweeps.
We denote by

nsmooth the number of smoothing sweeps. (3.3.5.5)

With the smoothing parametersβ = 0.5 andnsmooth = 2 we could solve the coupled problem for
arbitrary entry pressurep without problems. We have computed with consistency orderq = 2 (higher
order caused problems for the used grid). The grid for the 3 domains was:

housing: 401 (z-direction)×80 r-direction),

piston: 401 × 40,

fluid: 401 × 81.

We have used our distributed memory supercomputer HP XC6000with Itanium 2 processors, 1.5 GHz,
2-processor nodes with Quadrics interconnect. We computedin parallel on 16 processors. If we
solved the pseudo-uncoupled problem directly for the entrypressure2000 bar, without writing the
information for the result pictures to disk, we needed 3354 sec. In this timing is the part for the
linear equation solver LINSOL 3296 sec, i.e. most of the timeis spent in LINSOL. We used full LU
preconditioning.

For the result table and result plots we computed with∆p1 = 1500 bar and∆p2 = 500 bar for the
values1500, 2000, 2500 and3000 bar for the geometry of Fig. 3.3.1.3. Additionally (for curiosity)
we solved the problem for2000 bar for the housing with twice the wall thickness, i.e.12 mm instead
of 6 mm, or 32 mm outer diameter instead of20 mm. Table 3.3.5.1 shows the maximum value, the
maximum relative error and the mean relative error for all solution components in the 3 domains
housing, piston and fluid, and the volume flow.

Table 3.3.5.1:Maximum value, max. relative error and mean relative error for the solution components
in the three domains, and the volume flow through the gap, for different entry pressures.

p = 1500 bar

Housing
max. solution max. error mean error

w cm 0.3101E-02 0.51E-04 0.80E-05
u cm 0.5685E-03 0.35E-03 0.84E-04
sigma-z N/cmˆ2 0.1677E+05 0.21E-02 0.79E-05
sigma-r N/cmˆ2 0.1500E+05 0.31E-02 0.20E-04
sigma-phi N/cmˆ2 0.2079E+05 0.69E-03 0.71E-04
tau-rz N/cmˆ2 0.6591E+03 0.29E-01 0.47E-04
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Piston
max. solution max. error mean error

w cm 0.1611E-02 0.27E-04 0.20E-05
u cm 0.1143E-03 0.63E-03 0.27E-05
sigma-z N/cmˆ2 0.1633E+05 0.27E-02 0.50E-05
sigma-r N/cmˆ2 0.1501E+05 0.32E-02 0.22E-05
sigma-phi N/cmˆ2 0.1501E+05 0.12E-02 0.23E-05
tau-rz N/cmˆ2 0.5803E+03 0.33E-01 0.40E-04

Fluid
max. solution max. error mean error Volume [cmˆ3/s]

w cm/s 0.1722E+04 0.69E+00 0.13E-01 1.05
u cm/s 0.1391E+00 0.16E+03 0.19E+01
p N/cmˆ2 0.1500E+05 0.62E-01 0.43E-02

p = 2000 bar

Housing
max. solution max. error mean error

w cm 0.4143E-02 0.10E-03 0.11E-04
u cm 0.7584E-03 0.32E-03 0.82E-04
sigma-z N/cmˆ2 0.2244E+05 0.30E-02 0.12E-04
sigma-r N/cmˆ2 0.2000E+05 0.28E-02 0.22E-04
sigma-phi N/cmˆ2 0.2772E+05 0.65E-03 0.67E-04
tau-rz N/cmˆ2 0.9837E+03 0.24E-01 0.87E-04

Piston
max. solution max. error mean error

w cm 0.2096E-02 0.19E-03 0.18E-04
u cm 0.1524E-03 0.97E-03 0.86E-05
sigma-z N/cmˆ2 0.2196E+05 0.37E-02 0.19E-04
sigma-r N/cmˆ2 0.2001E+05 0.33E-02 0.30E-05
sigma-phi N/cmˆ2 0.2001E+05 0.16E-02 0.32E-05
tau-rz N/cmˆ2 0.9253E+03 0.28E-01 0.43E-04

Fluid
max. solution max. error mean error Volume [cmˆ3/s]

w cm/s 0.3339E+04 0.87E+00 0.14E-01 2.40
u cm/s 0.3810E+00 0.96E+02 0.10E+01
p N/cmˆ2 0.2000E+05 0.94E-01 0.60E-02

p = 2500 bar

Housing
max. solution max. error mean error

w cm 0.1047E-02 0.12E-02 0.69E-04
u cm 0.1900E-03 0.39E-02 0.39E-03
sigma-z N/cmˆ2 0.2817E+05 0.10E-01 0.39E-04
sigma-r N/cmˆ2 0.2500E+05 0.24E-02 0.28E-04
sigma-phi N/cmˆ2 0.3467E+05 0.18E-02 0.63E-04
tau-rz N/cmˆ2 0.1393E+04 0.16E-01 0.29E-03
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Piston
max. solution max. error mean error

w cm 0.4589E-03 0.43E-02 0.40E-03
u cm 0.3818E-04 0.53E-02 0.16E-03
sigma-z N/cmˆ2 0.2771E+05 0.98E-02 0.74E-04
sigma-r N/cmˆ2 0.2502E+05 0.14E-02 0.58E-05
sigma-phi N/cmˆ2 0.2502E+05 0.36E-02 0.71E-05
tau-rz N/cmˆ2 0.1382E+04 0.15E-01 0.49E-04

Fluid
max. solution max. error mean error Volume [cmˆ3/s]

w cm/s 0.5255E+04 0.13E+01 0.17E-01 4.54
u cm/s 0.8386E+00 0.12E+03 0.91E+00
p N/cmˆ2 0.2500E+05 0.23E+00 0.17E-01

p = 3000 bar

Housing
max. solution max. error mean error

w cm 0.1052E-02 0.25E-02 0.13E-03
u cm 0.1905E-03 0.11E-01 0.67E-03
sigma-z N/cmˆ2 0.3391E+05 0.17E-01 0.80E-04
sigma-r N/cmˆ2 0.3000E+05 0.40E-02 0.37E-04
sigma-phi N/cmˆ2 0.4164E+05 0.37E-02 0.93E-04
tau-rz N/cmˆ2 0.1868E+04 0.27E-01 0.52E-03

Piston
max. solution max. error mean error

w cm 0.4323E-03 0.11E-01 0.11E-02
u cm 0.3824E-04 0.12E-01 0.39E-03
sigma-z N/cmˆ2 0.3355E+05 0.15E-01 0.15E-03
sigma-r N/cmˆ2 0.3004E+05 0.20E-02 0.13E-04
sigma-phi N/cmˆ2 0.3003E+05 0.59E-02 0.15E-04
tau-rz N/cmˆ2 0.1929E+04 0.23E-01 0.84E-04

Fluid
max. solution max. error mean error Volume [cmˆ3/s]

w cm/s 0.7042E+04 0.54E+01 0.45E-01 7.39
u cm/s 0.1547E+01 0.60E+03 0.23E+01
p N/cmˆ2 0.3000E+05 0.61E+00 0.40E-01

Housing with diameter 3,2 cm, p = 2000 bar

Housing
max. solution max. error mean error

w cm 0.3931E-02 0.10E-03 0.10E-04
u cm 0.6655E-03 0.11E-02 0.22E-03
sigma-z N/cmˆ2 0.2099E+05 0.90E-02 0.24E-04
sigma-r N/cmˆ2 0.2000E+05 0.37E-02 0.76E-04
sigma-phi N/cmˆ2 0.2286E+05 0.27E-02 0.15E-03
tau-rz N/cmˆ2 0.8061E+03 0.45E-01 0.15E-03
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Figure 3.3.5.2:Fluid domain with the computational grid for1500 bar, bold lines: original channel.

Piston
max. solution max. error mean error

w cm 0.2122E-02 0.89E-04 0.90E-05
u cm 0.1524E-03 0.83E-03 0.45E-05
sigma-z N/cmˆ2 0.2185E+05 0.31E-02 0.97E-05
sigma-r N/cmˆ2 0.2001E+05 0.32E-02 0.23E-05
sigma-phi N/cmˆ2 0.2001E+05 0.14E-02 0.24E-05
tau-rz N/cmˆ2 0.8511E+03 0.31E-01 0.39E-04

Fluid
max. solution max. error mean error Volume [cmˆ3/s]

w cm/s 0.2884E+04 0.43E+00 0.16E-01 1.95
u cm/s 0.2708E+00 0.68E+02 0.13E+01
p N/cmˆ2 0.2000E+05 0.10E+00 0.78E-02

The figures for the results, Fig. 3.3.5.2–3.3.5.19, are black-and-white plots in the printed version
and they are colored plots in the online version of the paper.For the entry pressures1500, 2000,
2500 and3000 bar are shown the fluid channel and its grid (omitting the diagonals that make from
the squares the triangles) and in bold lines the original size of the channel (for entry pressure zerobar)
and contour plots of the velocityw in z-direction. Then follow for housing and piston for2000 bar
contour plots for the stressesσz, σr, σϕ andτrz. Finally follow for 2000 bar the fluid channel and
contour plot of velocityw for housing with32 mm diameter, i.e. double thickness of the wall. The
scale forz andr is in cm.

Here we want to make some comments to the results. Fig. 3.3.5.2 shows drastically how the fluid
gap widens under the influence of the entry pressure of1500 bar. It is interesting to see the form of
the gap. It is clear that the housing widens at the entry, thisis the upper side of the fluid channel.
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However, at the exit we have the pressure≈ 0 and nevertheless the housing widens, here not by
the influence of the local fluid pressure but by the stresses that exert their influence from the high
pressure side: If the housing is widened at the left side, this causes also a widening at the right end,
independent of the fluid pressure at the exit. Clearly the piston is compressed and therefore shrinks
at the high pressure end. However it widens at the low pressure end. Why? This is a volume effect,
Material is pressed to the right, but there we have displacement w = 0 and pressure zero and thus
the material escapes into a larger diameter. Here it should be recalled that the right end of housing
and piston are “artificial boundaries”. Here ends the computational domain, but the housing and
piston do not end here but continue to the right in an unknown form. If we could include the right
continuation in the computation, the form at the right end ofthe gap may be (slightly) different.

If we then look at the fluid gap for2000 bar, Fig. 3.3.5.4, for2500 bar, Fig. 3.3.5.6, and3000 bar,
Fig. 3.3.5.8, we see how the gap with initially 2.5 micrometers (bold lines) is blown up. The man-
ufacturing tolerances may be in the range of a fraction of a micrometer, but then the pressure makes
these tolerances obsolete. This demonstrates drasticallythe problems which engineers must solve
under such high pressure conditions.

Just for curiosity we also solved for2000 bar the equations for the outer housing diameter of
32 mm which means doubling the thickness of the wall for the housing from 6 mm to 12 mm.
We expected a significant reduction of the widening of the fluid gap. However, if we compare
Fig. 3.3.5.4 (20 mm diameter) and Fig. 3.3.5.18 (32 mm diameter) we recognize that there is not
much difference in the form of the gap. From Table 3.3.5.1 we have the volume flow for2000 bar
for 20 mm diameter2.40 cm3/s and for32 mm diameter1.95 cm3/s which is not much difference
for doubling the wall thickness. This shows that the severity of the problem cannot be reduced just
by simply doubling the wall thickness.
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Figure 3.3.5.3:Contour plot of the velocityw in z-direction for1500 bar.
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Figure 3.3.5.4:Fluid domain with the computational grid for2000 bar, bold lines: original channel.

Here are some concluding remarks to this example of a fluid/structure interaction. Seemingly the
problem for high entry pressure above1500 bar were the fluid equations (Navier-Stokes equations),
because the Newton iteration diverged for the fluid domain. However, the reason were the equations
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Figure 3.3.5.5:Contour plot of the velocityw in z-direction for2000 bar.
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Figure 3.3.5.6:Fluid domain with the computational grid for2500 bar, bold lines: original channel.

for the structural components housing and piston. The structural equations, i.e. the elasticity equa-
tions, do not have damping terms. This property leads in the frame of our solution algorithm, i.e. by
the grid iteration, to “tiny” oscillations of the displacementsw, u at the surface. This does no harm
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Figure 3.3.5.7:Contour plot of the velocityw in z-direction for2500 bar.
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Figure 3.3.5.8:Fluid domain with the computational grid for3000 bar, bold lines: original channel.

to the solution of the structural components. However, the scale of the fluid domain is by a factor
1/1000 smaller, thus these “tiny” oscillations of the structural components (outer surface of piston,
inner surface of housing) are “large” oscillations of the fluid domain: the wall becomes “rough” in a
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Figure 3.3.5.9:Contour plot of the velocityw in z-direction for3000 bar.
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Figure 3.3.5.10:Contour plot for the stress componentσz for the housing for2000 bar.

very bad manner. In the appropriate scale the fluid surface which is in the discretized form a poly-
gon, looks like a sawtooth curve and causes the Newton iteration for the fluid to diverge. We needed
a rather long and frustrating time to recognize these interrelations. We investigated many different
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Figure 3.3.5.11:Contour plot for the stress componentσr for the housing for2000 bar.
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methods to cure this situation: finer grids, more iterationsetc., but nothing helped. Finally, as ex-
plained above, smoothing of the surface cured the problem. This is a typical example how problems
with quite different scales like housing and piston at the one side and fluid domain at the other side
cause completely unexpected difficulties. Again our error estimate showed us merciless the quality
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Figure 3.3.5.12:Contour plot for the stress componentσϕ for the housing for2000 bar.
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Figure 3.3.5.13:Contour plot for the stress componentτrz for the housing for2000 bar.
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of the solution. When the oscillations occured the errors ofthe fluid domain became large. The nat-
ural action in such a situation is to refine the grid for the fluid domain, but this did not help because
the errors were caused by the oscillations of the elasticityequations. This shows also drastically how
“dirty” computational mathematics may be.
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Figure 3.3.5.14:Contour plot for the stress componentσz for the piston for2000 bar.
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Figure 3.3.5.15:Contour plot for the stress componentσr for the piston for2000 bar.
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Figure 3.3.5.16:Contour plot for the stress componentσϕ for the piston for2000 bar.
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Figure 3.3.5.17:Contour plot for the stress componentτrz for the piston for2000 bar.
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Figure 3.3.5.18:Fluid domain with the computational grid for2000 bar for housing diameter32 mm,
bold lines: original channel.
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Figure 3.3.5.19:Contour plot of the velocityw in z-direction for2000 bar for housing diameter32 mm.
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Erratum

In (3.3.2.8) we gave the valueη/ρ = 2.5 · 10−3 mm2/s. Dr. Martin Petry of Bosch told us that this
value is wrong! In the transformation ofN andkg we did an error. The correct value is

η
ρ = 2.5 mm2/s.

So the value in (3.3.2.8) is by a factor103 too small. However, we computed incm (not in mm)
as explained above, because for this scale the errors were the smallest. We used in thecm scale the
valueη/ρ = 2.5·10−2 mm2/s = 2.5·10−4 cm2/s which is by a factor of100 too small. The correct
value isη/ρ = 2.5 ·10−2 cm2/s. So the computations for the results of Section 3.3.5 were computed
with η/ρ that is by a factor100 too small. Then we repeated forp = 2000 bar the calculations with
the correct value ofη/ρ. The values corresponding to Table 3.3.5.1 are

p = 2000 bar, corrected values
Housing

max. solution max. error mean error
w cm 0.4140E-02 0.57E-04 0.20E-05
u cm 0.7583E-03 0.46E-03 0.23E-04
sigma-z N/cmˆ2 0.2238E+05 0.22E-02 0.29E-05
sigma-r N/cmˆ2 0.2000E+05 0.41E-02 0.55E-05
sigma-phi N/cmˆ2 0.2771E+05 0.93E-03 0.20E-04
tau-rz N/cmˆ2 0.9259E+03 0.36E-01 0.21E-04

Piston
max. solution max. error mean error

w cm 0.2116E-02 0.12E-03 0.28E-05
u cm 0.1524E-03 0.70E-03 0.18E-05
sigma-z N/cmˆ2 0.2186E+05 0.32E-02 0.37E-05
sigma-r N/cmˆ2 0.2001E+05 0.41E-02 0.81E-06
sigma-phi N/cmˆ2 0.2001E+05 0.13E-02 0.87E-06
tau-rz N/cmˆ2 0.8619E+03 0.39E-01 0.12E-04

Fluid
max. solution max. error mean error Volume [cmˆ3/s]

w cm/s 0.3767E+04 0.14E-01 0.39E-02 2.63
u cm/s 0.4028E+00 0.32E+02 0.21E+01
p N/cmˆ2 0.2000E+05 0.10E+00 0.94E-02

The values of Table 3.3.5.1 were computed with81 nodes in radial direction in the fluid. However,
for this grid we got rather large errors for the correct valueof η/ρ. In order to get a maximal error
in the 1% range, see the table above, we needed641 nodes in radial direction in the fluid, i.e. we
computed with401 × 641 nodes in the fluid domain.

The volume flow for the wrongη/ρ was2.40 cm3/s, the value for the correctη/ρ is 2.63 cm3/s.
This means that the increase ofη/ρ by a factor100 changes the volume flow by9.6% relative to
the old (wrong) value and by8.7% relative to the new (correct) value. This unvoluntary experiment
shows that the volume flow depends only marginally on the value ofη/ρ. Therefore we did not repeat
all the examples of Section 3.3.5. The volume flows given there should be increased by roughly10%
to get a better value.

The Figs. 3.3.5.4 for the fluid domain and 3.3.5.5 forw are basically the same for the correct value
of η/ρ.
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3.4 The simulation of the oxygen diffusion in a PEM fuel cell

The PEM (proton exchange membrane) fuel cell is a “cold” cell, in contrast to the “hot” SOFC (solid
oxyde fuel cell). In its simple form it uses hydrogen and oxygen (air) as propellant. The manufacturer
Freudenberg (Weinheim, Germany) produces non-woven (fleece) material that is used as GDL (gas
diffusion layer) in PEM fuel cells. As mentioned in Section 3.1 Freudenberg was primarily interested
in the gas diffusion properties of the GDL. Therefore the problem was reduced to the simulation of
the oxygen diffusion in the GDL of a test fuel cell.

In the Addendum A1 there are 19 slides (in German) that describe the problem and give the PDEs
and BCs. In the Addendum A2 there is again a summary of the problem and above all there are given
the values of the material coefficients for the simulation. The values are given in the standard units
kg, m, s, K and in grey background ing, mm, s, K. We use the latter scale for the computation.

Figure 3.4.1:Definition of the GDL, which is the computational domain. Observe the strongly exagger-
ated opening I to the channel and of the GDL withdGDL = 150 µm = 0.15 mm.

Fig. 3.4.1 shows the computational domain which combines the figures A1, Folie 1+3. On Folie 4
the used model is described. The unknown functions are (see A1, Folie 10):

ux, uy: velocity components inx- andy-direction,
p: pressure,
̺: total density,
T : temperature,

CO2
: mass concentration of oxygen.

On A1, Folie 3–8 the 6 equations for the 6 unknowns are derivedand compiled on Folie 9, with the
definition of the used symbols on Folie 10–11. On A1, Folie 12–17 the BCs for the boundaries I-IV,
see Fig. 3.4.1, are compiled, with the used additional symbols on Folie 18.

The sequence of the 6 variables and equations in the interiorof the computational domain is as
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follows

Variable equation
(A1, Folie9)

ux x-momentum (Impuls),
uy y-momentum (Impuls),
p constitutive equation,
̺ mass conservation

(products differentiated),
T energy equation,

CO2
O2 transport equation.

The BCs for boundary I, see Fig. 3.4.1, the opening to a gas channel, are given in A1, Folie 13.
However, as there are given only 3 BCs, we must take additionally 3 of the PDEs. The setting is as
follows:

ux: x-momentum, fromp = pK = const.,
see below, follows∂p/∂x = 0, thusux = 0,

uy: y-momentum equation,
p: p = pK , channel pressure,
̺: constitutive equation,
T : thermal condition,

see 2. on Folie 13,
CO2

: diffusive O2 transport iny-direction,
see 3. on Folie 13.

The BCs for boundary II, the upper wall, are given in A1, Folie14. Again we need additionally
3 PDEs:

ux: x-momentum equation,
uy: uy = 0, impermeability condition,
p: from they-momentum equation

follows with uy = 0 the BC∂p/∂y = 0,
̺: constitutive equation,
T: heat conduction equation,

see 2. on Folie 14,
CO2

: impermeability forO2 gives∂CO2
/∂y = 0,

see 3. on Folie 14.

The BCs for boundary III, side walls, are given in A1, Folie 15. Again we need additionally
3 PDEs:
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ux: ux = 0, impermeability condition,
uy: y-momentum equation,
p: from x-momentum equation follows

with ux = 0 the BC∂p/∂x = 0,
̺: constitutive equation,
T isolated wall,∂T/∂x = 0,

see 2. on Folie 15,
CO2

impermeability∂CO2
/∂x = 0,

see 3. on Folie 15.

The BCs for boundary IV, membrane with catalytic layer are given in A1, Folie 16 and 17. Here
we also need additionally 3 PDEs:

ux: x-momentum equation,
uy: equation of point 1. on Folie 16,

balancing of species density transport
in y-direction of water vapor and oxygen,

p: y-momentum equation,
̺: constitutive equation,
T : equation of point 2. on Folie 17,

heat conduction caused by the exothermal catalytic reaction,
CO2

: equation of point 3. on Folie 17,
instantaneous irreversible reaction
at catalytic layer.

All the necessary coefficients of the PDEs and BCs are given inthe Addendum A2. We use the
values in the unitsg, mm, s, K.

Of principal interest is also the mass concentration of water vaporCH2O. As we have 3 species,
O2, H2O andN2, we have

CO2
+ CH2O + CN2

= 1.

We haveCN2
= γ = const. = 0.7, see last line on A2, Folie 5, so we have

CH2O = 1 − CO2
− γ,

thusCH2O can be easily computed ifCO2
is known.

Fig. 3.4.1 shows the computational domain. We used for the first test computations a triangular
grid of 101 × 21 nodes inx- andy-diretion and consistency orderq = 2. The error estimates for the
velocitiesux, uy were in the range of30%, those of the other variables below0.01%. More nodes
in the y-direction did not significantly change the results. More nodes in thex-direction changed
significantly the values ofux, uy but did not improve the error estimates. The other values remained
unchanged. This is a clear indication for a singularity in the velocities. The large errors occured at
the left and right end of boundary I, see Fig. 3.4.1, i.e. where the BC of boundary II, the channel
opening, changes to the upper wall, see Fig. 3.4.2.
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Figure 3.4.2: Illustration to BCs.

At nodes 1, 2, 6, 7 we have the BCs of boumdary II, at nodes 3, 4, 5those of boundary I. At nodes 2
and 6 we haveuy = 0 (impermeability), at the neighboring nodes 3 and 5 we have they-momentum
equation, i.e.uy = −(Ky/η)∂p/∂y 6= 0 which causes the fluid flow through the opening. The
basic reason for this incompatibility is Darcy’s law, see A1, Folie 5, for the momentum equations
that allows such a jump.

If we look at Fig. 3.4.2. we see that the nodes 2 and 3 or 5 and 6 come closer together if we refine
the grid in thex-direction. This means that the “length” of the opening where we apply the BCs
of boundary I, changes with the grid spacing. The solution ofthis problem would be to “collapse”
nodes 2 and 3 or 5 and 6 and to apply at the same geometrical nodethe conditions of the channel for
the inside of the channel and the conditions of the wall at theoutside. This possibility is included in
FDEM by the concept of the dividing lines. In Fig. 3.4.3 the situation is depicted.

Here the geometrical nodes 2 and 6 are split up into two logical nodes each, where for2′ and
6′′ the BCs of the wall and for2′′ and6′ the BCs of the channel are applied. In the interior of the
computational domain we need coupling conditions for the two logical nodes that result from one
geometrical node, e.g.8′, 8′′ and9′, 9′′ in Fig. 3.4.3. Because in the interior the solution goes in the
x-direction continuously through the dividing line we use the coupling conditions:

Figure 3.4.3: Illustration with dividing line.

variableleft = variableright,
(

∂variable
∂x

)

left

=

(
∂variable

∂x

)

right

.
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Table 3.4.1:Results for 6 different grids. Error denotes the max. estimated global relative error of the
solution component. Solution is the max. absolute value.

Var. solution error solution error solution error
grid 101 × 21 201 × 21 401 × 21

ux 0.776 0.256 0.852 0.238 0.999 0.270
uy 15.7 8.54E-2 8.83 0.189 5.45 0.242
p 1.40E5 3.78E-5 1.40E5 2.33E-5 1.40E5 1.28E-5
̺ 1.22E-6 1.04E-4 1.22E-6 5.22E-5 1.22E-6 2.91E-5
T 348 3.15E-8 348 1.48E-8 348 1.90E-8

CO2
8.73E-2 1.43E-3 8.74E-2 6.51E-4 8.74E-2 3.87E-4

grid 101 × 41 201 × 41 401 × 41

ux 0.778 0.274 0.860 0.241 1.02 0.266
uy 31.3 0.114 17.5 0.180 10.7 0.226
p 1.40E5 3.83E-5 1.40E5 2.32E-5 1.40E5 1.28E-5
̺ 1.22E-6 7.07E-4 1.22E-6 2.29E-4 1.22E-6 7.09E-5
T 348 9.84E-7 348 3.03E-7 348 8.45E-8

CO2
8.73E-2 1.34E-2 8.74E-2 4.33E-3 8.74E-2 1.23E-3

In Table 3.4.1 we present the results for 6 different grids: the max. absolute function values and
the max. estimated global relative errors. We solve with consistency orderq = 2 and expect from
half the grid size an error reduction by a factor(1/2)2 = 1/4. If we go in Table 3.4.1 to the right we
have a doubling of the meshes, i.e. a halving of the mesh size,in thex-direction, if we go down we
have a halving in they-direction, in the diagonal we have halving in both directions. However, if we
look at Table 3.4.1 we cannot find a convergent sequence of function values forux anduy and the
estimated errors are relatively large and do not decrease with finer grid. For the other variables the
function values are practically the same for all grids and the error estimates are very small, but do
not decrease in the expected way. This behaviour is a clear indication that there is a singularity for
the velocities in the problem.

If we look in Fig. 3.4.3 at nodes2′ and2′′, we have at2′ for uy the impermeability condition
uy = 0 and at2′′ Darcy’s lawuy = −(Ky/η)∂p/∂y. Similarly we have forux at 2′ Darcy’s law
ux = −(Kx/η)∂p/∂x and at2′′ we have from Darcy’s law and constantp in the opening thatux = 0.
So we have a jump inux anduy between2′ and2′′. The same holds for6′ und6′′.

This inherent singularity cannot be removed by any measure of the numerical method. If for the
momentum equations a Navier-Stokes model with zero velocities at walls had been used, there were
no singularities.

In order to attenuate the singularities we have changed the BCs at2′ und6′′ for p from ∂p/∂y = 0
to ∂p/∂x = 0 so that from Darcy’s law followsux = 0 which fits to the channel condition, and at2′′

and6′ we similarly change fromp = pK to ∂p/∂y = 0 which gives from Darcy’s lawuy = 0. Note
that these measures do not remove the singularity caused by Darcy’s law, they can only attenuate it.
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Table 3.4.2:Results with modified BCs for 6 different grids. Error denotes the max. estimated global
relative error of the solution component. Solution is the max. absolute value.

Var. solution error solution error solution error
grid 101 × 21 201 × 21 401 × 21

ux 0.715 0.352 0.673 0.388 0.598 0.462
uy 0.170 0.698 0.285 0.651 0.435 0.541
p 1.40E5 3.78E-5 1.40E5 2.33E-5 1.40E5 1.28E-5
̺ 1.22E-6 1.04E-4 1.22E-6 5.22E-5 1.22E-6 2.91E-5
T 348 3.15E-8 348 1.48E-8 348 1.90E-8

CO2
8.73E-2 1.43E-3 8.74E-2 6.51E-4 8.74E-2 3.87E-4

grid 101 × 41 201 × 41 401 × 41

ux 0.715 0.358 0.673 0.396 0.598 0.473
uy 0.170 0.710 0.285 0.654 0.436 0.542
p 1.40E5 3.87E-5 1.40E5 2.36E-5 1.40E5 1.27E-5
̺ 1.22E-6 7.07E-4 1.22E-6 2.29E-4 1.22E-6 7.15E-5
T 348 9.83E-7 348 3.02E-7 348 8.39E-8

CO2
8.73E-2 1.33E-2 8.74E-2 4.31E-3 8.74E-2 1.22E-3

Table 3.4.2 shows the results for these modified BCs in the same form as Table 3.4.1. The function
values and error estimates for the last 4 variables are practically the same in both tables, obviously
these variables are not affected by the singularity of the velocities at the ends of the channel. For
the velocitiesux anduy the situation is quite different from that of Table 3.4.1. InTable 3.4.2 the
function values ofux unduy and even the error estimates do not change with they-grid, the function
values are quite different of those of Table 3.4.1 and they change in a different way with thex-grid.
The error estimates tell us again that the values are not accurate. Note that we discuss here only the
maxima.

The results of Table 3.4.2 show that also with the modified BCsat the end nodes of the channel
opening the basic singular behaviour (caused by Darcy’s law) is still present. The solution method
with the error estimate merciless shows the consequence: the inaccuracy of the velocitiesux and
uy. At the same time the error estimates show the accuracy of theother 4 variables in spite of the
inaccuracy of the velocities. So the error estimates tell usthat we must look for a better, singularity-
free model for the velocities, but this was not the task for us.

Here we must discuss the results of Table 3.4.1 and 3.4.2 in more detail. What we see in the tables
is not the whole information: these are the maximal absolutevalues of the solution components and
of the global relative error components (max. error component over the domain divided by max.
solution component over the domain). The velocities have a singularity at nodes 2 und 6 of Fig. 3.4.2
or nodes2′, 2′′ and 6′, 6′′ of Fig. 3.4.3. There, at these singular nodes, the function values are
“arbitrary” (at a singularity there is no unique value), andquite naturally there are also the maxima
of the errors. If we look at nodes that are some grid spacings away from the singularity, the function
values do no longer change with the grid, and the errors are correspondingly smaller. Obviously,
by the internal structure of the PDEs, the values of the velocity components at the singularities do
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not affect the solution ofux anduy in the interior of the domain which is visible by the smaller
errors there. As the maximal values of the other variables and the maximal values of their errors
occur away from the singularity in the interior, these values are not affected by the values ofux,
uy at the singularity. So only the “whole” information about the solution and the errors reveals the
ultimate behaviour of the solution. Without the knowledge of the error estimate the explanation of
Tables 3.4.1 and 3.4.2 would be difficult.

In order to give an information about the computation time on8 processors of our IBM SP with
Power3 processors of 375 MHz we have executed the grid201 × 41 of Table 3.4.2 in batch mode
(the other results have been computed in interactive mode that gives a little larger timings). The CPU
time of the master processor 1 is88.3 sec. In this timing the part of the linear solver LINSOL for the
computation of 2 Newton corrections and of the error estimate for201× 41× 6 = 49446 unknowns
is 86.5 sec. So most of the solution time is used for the linear solver which is in this case our CG
solver PRES20 with full LU preconditioning.

Tables 3.4.1 and 3.4.2 have been computed with consistency orderq = 2. We know from our ex-
perience that higher order gives worse results if there are singularities in the solution because higher
orders are much more sensitive with respect to singularities. Therefore we did not expect better re-
sults for higher order. We solved the PDEs of Table 3.4.2 for the grid401 × 41 with consistency
orderq = 4 andq = 6. Forq = 4 we gotux = 0.670, uy = 0.543, but the error estimates were 56.9
and 18.2. The values of the other variables were the same as for q = 2, but the error estimates were
roughly by a factor of 10 larger. Forq = 6 the result was nonsense and the error estimates of the
velocities were 1500. This confirms our experience that higher order is not useful in the presence of
singularities.

For the illustration of the solution we show the results for each variable and alsoCH2O in two
figures: at first as a greyscale plot and then as contour plot for the grid201 × 41 of Table 3.4.2.
Observe the differenty-scale.

In conclusion to this problem of oxygen diffusion at the cathode side of the test configuration of
a PEM fuel cell we can say that FDEM worked immediately without any problem of the numerical
method. The built-in error estimate revealed merciless thesingularity of the used model for the
velocities. It showed the inaccuracy of the velocities and the accuracy of the remaining 4 variables.
Better results for the velocities can be obtained only by a better singularity-free model.

Originally it was intended to simulate a whole PEM fuel cell,but Freudenberg had not the corre-
sponding model equations with the values of the necessary coefficients available. We had discussed
such a model. The problem here is the modeling of the catalytic membrane between anode and
cathode. There are two possibilities: either to model the membrane as an infinitely thin layer and to
model this by a single dividing line with a jump in some variable, or to resolve the membrane by a
grid of a certain thickness and to separate it by two dividinglines from the two gas diffusion layers
on both sides. For both models of equations there would be no problem for FDEM to compute a
global error estimate over the gas diffusion layers and the membrane.

As PEM fuel cells are combined in a stack to deliver correspondingly more power, FDEM could
compute the global solution over a whole stack, with global error estimate. With such a model one
could “play” with different configurations and optimize thewhole stack. The error estimate tells us
if we can trust our numerical results and shows eventual weakpoints in the model as we have seen it
above. In this sense FDEM is a unique tool for the simulation of PEM fuel cells. Quite naturally the
same arguments hold for SOFC, the “hot” fuel cells.
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Figure 3.4.4:Grayscale result forux.

Figure 3.4.5:Contour plot result forux.
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Figure 3.4.6:Grayscale result foruy.

Figure 3.4.7:Contour plot result foruy.
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Figure 3.4.8:Grayscale result forp.

Figure 3.4.9:Contour plot result forp.
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Figure 3.4.10:Grayscale result for̺.

Figure 3.4.11:Contour plot result for̺ .
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Figure 3.4.12:Grayscale result forT .

Figure 3.4.13:Contour plot result forT .
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Figure 3.4.14:Grayscale result forCO2
.

Figure 3.4.15:Contour plot result forCO2
.
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3.4 The simulation of the oxygen diffusion in a PEM fuel cell

Figure 3.4.16:Grayscale result forCH2O.

Figure 3.4.17:Contour plot result forCH2O.
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4 Remarks to a User’s Guide

When we started this research project we had a “black-box” solver FDEM with which we could solve
arbitrary non-linear systems of elliptic and parabolic PDEs with error estimate on an arbitrary 2-D or
3-D domain for which a discretization by triangles or tetrahedrons was available. Then we got from
the IWKA the problem to simulate the manufacturing of metal bellows, from Bosch a problem from
the area of high pressure Diesel injection pumps and from Freudenberg the fuel cell problem.

For the IWKA problem we had to design a program that describedin the tiniest details the manu-
facturing process in its different stages. The grid moves with the deformation, the equations change
between elastic and plastic and a moving tool forces the metal sheet into the form. The algorithm,
that simulates this process, is closely interleaved with the FDEM code. Nobody else than the devel-
oper of the FDEM code could generate this code. However, FDEMitself is such a complicated code,
that it would not be “suitable” to explain the code in the necessary details to a general user of FDEM.
In this case an interested user must be personally instructed by the developer how to use the code for
different parameters of different problems of the same type.

The Bosch problem is only a cutout of the larger problem, namely the simulation of a whole
injection pump. It could be seen in the early talks with Bosch, that on the available supercomputers
this problem could not be solved with satisfying accuracy. The partial problem for which we finally
agreed is a fluid-structure interaction problem for which weoffered a global solution with global
error estimate. However, in the detailed analysis of the problem it turned out that the solution of
the seemingly simple problem needed a4-fold nested iteration (Fig. 3.3.4.6) where FDEM was the
innermost core iteration. Again it would not be “suitable” to explain this code to a general user of
FDEM so that for an interested user only a personal instruction is useful.

The Freudenberg problem of the solution for the oxygen diffusion in a fuel cell, see Chapter 3.4,
could be solved basically with the standard version of FDEM.So for this problem we will describe
in detail in the form of a user’s guide how to use FDEM. This is a2-D problem.

4.1 Structure of the grid files

One of the key parameters for the solution of PDEs with FDEM isthe structured or unstructured FEM
grid. In 2-D we use linear triangles, in 3-D linear tetrahedrons. As explained above in the general
part this grid serves only for the structure of the 2-D or 3-D space, i.e. by the grid the neighboring
nodes are known. We generate from the nodes difference formulas (we do notuse a FEM for the
solution).

For the simple geometries that we use in our examples we generate the grid explicitly “by hand”,
i.e. by an own explicit grid generator. However, we could—and we did it also in some examples—
use a commercial grid generator. As at the time of the early development of FDEM at our computer
center an I-DEAS grid generator was available, we structured our data according to the rules of that
(older) I-DEAS grid generator (we do not know if actual versions still accept the data in this form).
As the computer center later changed to the PATRAN grid generator, we wrote also a program that
translated PATRAN data to I-DEAS data. With the hand-generated I-DEAS data we can flexibly
change the number of nodes for accuracy tests which would notbe possible with a commercial mesh
generator. In the following we describe the used data structure.

All lists with the grid data are stored inp parts on thep processors of a parallel computer. The
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data have on the processor a local number and they have also their global number. For the nodes we
have two lists:nnr (global node number) andcoord (coordinates),nl is the local number of the last
(local) node (i is local node number):

i nnr(i)

1 216
2 312
3 24
...

...
nl 754

7→ 3-D

i coord(i, 1) coord(i, 2) coord(i, 3)

1 first second third
2 coord. coord. coord.
3
...

...
...

...
nl

For the elements we have also two lists:nenr (global element number) andnek (global node num-
ber),nel is the local element number of the last (local) element (i is local element number):

i nenr(i)

1 25
2 101
3 37
...

...
nel 871

7→ 3-D

i nek(i, 1) nek(i, 2) nek(i, 3) nek(i, 4)

1 238 240 261 231
2 global node number of
3 first second third forth
... node

nel
...

...
...

...
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4.1 Structure of the grid files

We have three types of boundaries:

1. external boundaries,

2. internal boundaries of DL (dividing line) type,

3. internal boundaries of SDL (sliding dividing line) type.

A boundary may be a single node if there are given special BCs,e.g. at a corner of the domain.
It is important to know that later a list can be supplied that determines which boundary overwrites
which other boundary, e.g. at a corner where two boundaries meet, see below.

For each of the three types of boundaries there is a list. These lists are of the same structure and
they are named

• bnod for type 1,

• tnod for type 2,

• snod for type 3.

As example we show thebnod list, nbl is the local number of the last boundary node of type 1 (i is
local node number):

i bnod(i, 1) bnod(i, 2)

1 238 1
2 240 1
3 321 2
... global node

...
nbl number nexb

bnod(i, 2) is the number of the boundary,nexb is the max. boundary number. The arrays fortnod
(type 2) andsnod (type 3) have the same structure.

If we have a coupled domain that consists ofnsect (sub)domains, there is a listnod that tells
which node belongs to which domain (i is local node number):

i nod(i, 1) nod(i, 2)

1 256 1
2 312 3
... global node number of

number domain
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Because nodes of internal boundaries belong to two or more domains, there are more thannl rows in
this list.

In the same way we have a listel that tells which element belongs to which domain (i is local
element number):

i el(i, 1) el(i, 2)

1 25 1
2 250 2
... global element number of

number domain

The data set for the entering of the grid data has in the style of the I-DEAS structure the following
shape:

-1 start of a list
2411 identifier for nodes
{a1} 1st row of nnr list, here 216
{b1} 1st row of coord list (2 or 3 values)
{a2} 2nd row of nnr list
{b2} 2nd row of coord list

.

.

.
-1 end of a list
-1 start of a list

2412 identifier for elements
{c1} 1st row of nenr list
{d1} 1st row of nek list (3 or 4 values)
{c2}
{d2}

.

.

.
-1 end of a list

[Now follows data for the boundaries. Each boundary has an own list between−1 and−1, bound-
aries have a number and a name. Below are given the rules for the names of boundaries.]
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4.1 Structure of the grid files

-1 start of a list
791 identifier for boundaries

{number of the boundary} usually1, 2, 3, ...
{name of the boundary} rules for names for FDEM see below,

characterizes type of boundary
{e1} 1st element of1st row of bound list,

i.e. the node number
{f1} 3 values⌉These values (forces etc.) are not

{g1} 3 values| needed for FDEM, we store zeros

{h1} 6 values⌋in the required format

{e2} 1st element of2nd row of bnod-list
{f2}
{g2}
{h2}

.

.

.
-1 end of list
-1 start of list

{next boundary}
-1 end of list

.

.

.
-1 end of list

{until all boundaries are listed}

[Now follows data for the (sub)domains. At first there is the information for the nodes of the
(sub)domains. A (sub)domain has a number and a name. Below are given the rules for the names of
domains.]

-1 start of a list
2417 identifier for domains
{number of the domain}{number of nodes in the domain}
{name of the domain} starts withNO for nodes, see rules below.
7 256 7 268 7 243 7 212 [row with 4 node numbers, with a 7 before each node number]
{further rows with 4 node numbers}
.
.
.
{last row, eventually with zeros as node numbers if there is only a remainder}

{same type of node lists for further domains, starting with{number of the domain}, until all nodes
of all domains are listed}
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[Now follows in the same style the information for the elements of the (sub)domains. A (sub)domain
has a number and a name, see rules below for names.]

{number of the domain}{number of nodes in the domain}
{name of the domain} starts with EL for elements, see rules below
8 21 8 43 8 24 8 31 [row with 4 element numbers, with an 8 before each element number]
{further the rows with 4 element numbers for this domain}
.
.
.
{last row, eventually with zeros as element numbers if there is only a remainder}
{same type of element lists for further domains, starting with {number of the domain}, until all ele-
ments of all domains are listed}
-1 identifier to denote the end of the domain list

For FDEM there are rules for the names of boundary and domain names. We have, as mentioned
above,3 types of boundaries: external, DLs and SDLs. Correspondingly there are3 types of names:

EXname for external boundaries, i.e. the first 2 letters of anexternal boundary name are EX.

INname for DLs, internal boundaries, i.e. the first 2 lettersof a DL boundary name are IN.

SLname for SDLs, sliding DLs, i.e. the first 2 letters of a SDL boundary name are SL.

For domains we have2 types of lists: lists for nodes and lists for elements. Correspondingly there
are2 types of names:

NOname for lists with node numbers, i.e. the first2 letters of a domain list with node
numbers are NO.

ELname for lists with element numbers, i.e. the first2 letters of a domain list with
element numbers are EL.

At the corner e.g. of a rectangular domain we have the intersection of2 boundaries. So the corner
belongs to2 boundaries. When we generate the matrix and r.h.s. of the large sparse linear system
for the computation of the Newton correction, the values forthe corner depend on the sequence
which boundary is treated as last one, because the last one overwrites the values of the first one
at the corner. As we treat boundaries according to their number, boundaries with higher boundary
number overwrite those with lower boundary number. Note that a “boundary” may be a single node,
e.g. a corner, if there are given special BCs. In order to get more flexibility we have introduced the
possibility to change this standard rule by a bdorder list so that we can prescribe which boundary
overwrites which other one. The number of rows in this list isthe number of external boundaries
plus2 times the number of DLs (a DL is doubled by the program, each copy belongs uniquely to one
of the domains that are separated by the DL) plus the number ofSDLs. The structure of the bdorder
list is the following one:
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4.2 Entering the PDEs into the program frame

i bd order(i, 1) bd order(i, 2)

1 boundary boundary
2 number type
...

boundary type has the value1 for external boundaries,2 for DLs, 3 for SDLs. The boundaries with
lower position in the list (largeri) overwrite boundaries with higher position (smalleri). The bdorder
list belongs to the list of entry parameters that control theexecution of FDEM. If there is no bdorder
list, the standard rule holds that boundaries with larger boundary number overwrite boundaries with
lower boundary number.

As we want to use the grid file on parallel computers, for the parallel reading of the file there must
be done some preparation. The file is generated and stored sequentially by a single processor. The
preparation program reads the file sequentially but stores it back as a direct access file. Before the
file is stored back a header is generated that contains the detailed information which data are stored
where in the direct access file. When the file is used on a parallel computer, processor 1 reads the
header and broadcasts it to the other processors. Then in parallel all p processors read their part of
the lists, i.e. processor1 the firstpth part, processor2 the secondpth part etc.

4.2 Entering the PDEs into the program frame

As mentioned above we want to take as example the PDEs of Section 3.4, the oxygen diffusion in a
fuel cell.

The PDEs must be entered in the program frame of the subroutine FDEMU1. The PDEs and
variables for a system ofm PDEs are

Pu =









P1u
P2u

.

.
Pmu









= 0, u =









u1

u2

.

.
um









,

i.e. we arrange the PDEs so that the r.h.s. is zero. In Table4.2.1 the variables and equations as
prescribed in Section3.4 are compiled. In the Addendum A3all the subroutines for the entering
of the PDEs, BCs and the corresponding Jacobian matrices areprinted. For the PDEs we look at
the subroutine FDEMU1. All the constants that appear in the equations are defined in a module
“probconst” that is accessed by the USE statement. At “startof calculation” there is a part that is
active only if ljac is true. This is used for the Jacobi test that is described in alater section. The
entering of the PDEs starts with the loop

do i = 1, mv

wheremv is the maximal local node number. “local” means here on the actual processor of a (dis-
tributed memory) parallel computer. As mentioned in the main part of this report the data are dis-
tributed (with their overlap data) onto the processors so that each processor can compute its part of
the r.h.s. of the discretized system, which is justPu, completely independent of the other processors.
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Table 4.2.1:Numbering of variables and equations.

no var name equation on A1, Folie 9 name
1 u1 ux x-momentum P1u
2 u2 uy y-momentum P2u
3 u3 p constitutive equation P3u
4 u4 ρ mass conservation P4u
5 u5 T energy equation P5u
6 u6 CO2

O2 transport equation P6u

The first PDE,x-momentum on Addendum A1, Folie 9 is

P1u = ux +
Kx

η
·
∂p

∂x
= 0.

This is entered in our notation as

p(i, 1) = u(i, 1) + K x ∗ ux(i, 3)/ns.

Herei denotes the (local) node number, inp(i, 1) the “1” denotes the first equation of thei-block
and inu(i, 1) the “1” denotes the first solution componentu1, see Table4.2.1. Similarly ∂p/∂x is
denoted byux(i, 3), which means thex-derivative of the solution componentu3. Below the row for
p(i, 1) (and similarly below all other entering rows) is a row that ismarked by “!” as comment and
containsf , f2, fx, f2x, etc. These rows are used for the test problem that is explained below. The
second equation is entered asp(i, 2) in a quite similar way. The third equation is the constitutive
equation, see Table4.2.1. It is

p − ρT (RH2O(1 − γ − CO2
) + RN2

γ + RO2
CO2

) = 0

which is entered as

p(i, 3) = u(i, 3) − u(i, 4) ∗ u(i, 5) ∗ (RR H2O ∗ (1 − gamma − u(i, 6)) +

+RR N2 ∗ gamma + RR O2 ∗ u(i, 6)).

Now it should be clear, at least with the printout of FDEMU1, how the PDEs are entered in FDEM.

4.3 Entering the BCs into the program frame

In Fig. 3.4.1 are depicted the four boundaries of the computational domain. The BCs are entered
into the program frame of the subroutine FDEMU2. Which equations are used for which variable
at which boundary has been reported in Section 3.4. In FDEMU2after “start of calculation” at first
there is the part for the Jacobi tester which is used only ifljac = true. The proper calculation
starts with the computation of20 auxiliary variablesp1(i) to p20(i) that cover all the functions of
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the variables that appear in the BCs. These are computed in the first do-loop after the Jacobi tester.
The do-loop runs fromi = 1 to nb, wherenb is the (local) number of boundary points for the actual
call of FDEMU2. If we have4 boundaries (nexb = 4) FDEMU2 is called4 times. At the first call
the variableirand that denotes the boundary, has the valueirand = 1, i.e. it is for boundary 1 or
boundary I in Fig. 3.4.1. For the second call for boundary II the variableirand = 2 and similarly for
boundaries3 and4 resp. III and IV. The valuenb is usually different for each call.

The computation of all the auxiliary functions for all boundaries as it is programmed in FDEMU2
by our student programmer is not an economic way because for acertain boundary values are com-
puted that are not needed for that boundary. This procedure is only justified by the fact that this
demonstration program was executed only a few times. If it would be used many times, e.g. for
parameter variations, one should compute only those valuesthat are needed for the actual boundary.
The auxiliary variables again are accompanied by the expressions inf , fx, f2, f2x etc. for the test
PDE and they are marked as comment by a “!”.

The proper part of delivering the BCs now is quite simple and it starts with

! zum Kanal (to the channel)

if (irand == 1) then
do i = 1, nb

p(i, 1) = p14(i)
p(i, 2) = p2(i)
...

Because of(irand == 1) these are the BCs for boundary1 or I. In p(i, 1) the“i” is the number of
theith block of equation, the “1” denotes the first equation in this block of m equations for a system
of m PDEs. Similarlyp(i, 2) denotes the second equation in theith block etc., see the print-out of
the code in A3.

The BCs for boundary2 or II in Fig. 3.4.1 start with

! neben dem Kanal (oben) (besides the channel(at the top))

if (irand == 2) then
do i = 1, nb

p(i, 1) = p1(i)
p(i, 2) = p10(i)
...

Thus the BCs for boundary2 are entered into the program frame of FDEMU2. After the statements

if (irand == 3) then
if (irand == 4) then

the BCs for the boundaries3 and4 are entered in the same way.
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4.4 Entering the Jacobians for the PDEs into the program fram e

The next problem that we will discuss is the entering of the Jacobian matrices for the PDEs in the
interior of the domain which is done by the subroutine FDEMU3. The Jacobian matrix∂Pu/∂ux is
shown in equ. (2.4.6). If we havem × m elements in each Jacobian matrix for nodei, e.g.

(
∂Pu

∂u

)

i

=

(
∂Pi,iequ

∂ui,icom

)

= pu(i),

whereiequ denotes the number of the equation in the block ofm equations, e.g.iequ = 2 denotes
the second equation, andicom denotes the solution component, e.g.icom = 3 denotes the variable
u(i, 3) in our notation.pu(i) denotes the corresponding component in the terminology of FDEMU3.
FDEMU3 is called foriequ = 1 to m and for eachiequ for icom = 1 to m, thusm2 times. At each
call thepu(i) is stored by FDEMU3 in the right position of a corresponding array. In the same way
the other Jacobians are treated:

(
∂Pu

∂ux

)

i

=

(
∂Pi,iequ

∂ux,i,com

)

= pux(i),

(
∂Pu

∂uxx

)

i

=

(
∂Pi,iequ

∂uxx,i,com

)

= puxx(i),

and similarlypuy(i), puyy(i) etc.
In the printout Addendum A3 in FDEMU3 at

!*** start of calculation
do i = 1,mv

auxiliary variables for the Jacobians are computed. At
if (iequ == 1) then
are computed all Jacobians for the first equation (of the block of m equations). At
if (icom == 1) then

do i = 1,mv
pu(i) = p1 1(i)

enddo
endif

are computed for all nodesi the ∂Pi,1/∂ui,1, wherep1 1(i) is one of the precomputed auxiliary
variables. Here it should be repeated that all the arrays forthe Jacobians are pre-assigned with zeros
and only nonzero elements must be entered. In a later part of the printout we have

if (iequ == 4) then
if (icom == 1) then

do i = 1,mv
pux(i) = p4 1x(i)
pu(i) = p4 1(i)

enddo
endif

...
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Here are entered∂Pi,4/∂ux,i,1 and∂Pi,4/∂ui,1. So by them2 repeated calls of FDEMU3 by the main
program of FDEM all the nonzero elements of the Jacobian matrices for the PDEs in the interior of
the domain are stored in a corresponding array of FDEM.

4.5 Entering the Jacobians for the BCs into the program frame

The Jacobians for the BCs are entered by the subroutine FDEMU4. If we havenexb exterior bound-
aries, FDEMU4 is callednexb ·m ·m times, namely for all boundariesirand, all equationsiequ and
all solution componentsicom. In the printout Addendum A3 in FDEMU4 at “start of calculation”
again auxiliary variables are computed. The computation ofthe elements of the Jacobian matrices
starts at the comment lines.

!*******
!Rand 1 (boundary 1)
!*******
!Zum Kanal (to the channel)

if (irand == 1) then
if (iequ == 1) then

do i = 1, nb
pu(i) = p14 1(i)

enddo
endif

endif

This gives for boundary1 ∂Pi,1/∂ui,1. The meaning of the remaining text of the program code of
FDEMU4 should now be clear. At

if (irand == 2) then

the Jacobians for boundary2 are entered etc.

4.6 Entering the coupling conditions (CCs) at dividing line s (DLs) into the
program frame

The CCs for the DLs are entered by the subroutine FDEMU5. We assume that we haveninb (n inner
boundaries) DLs. For FDEMU5 we do not include a printout for an example, therefore we explain
the entering here. In the list of formal parameters there isib for the number of the actual DL,iequ
andicom for equation and component as in the other subroutines described above,nk the number
of components in the system (that we usually denote bym for a system ofm PDEs),nt the number
of nodes on the actualDL, andmlt that is equal tont if there is no crossing of DLs, but has vector
information if there are crossing DLs that e.g. generate quadruple nodes, this parametermlt is not
explained here. Like for the exterior boundaries FDEMU5 is called for each DLib. However, in
contrast to the exterior boundaries each node is “doubled”,see Fig. 2.6.1, so that we need two CCs
in each node. A DL separates two domains and the two domains (left and right, or upper and lower)
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are denoted by “1” and “2”. If we have e.g. for a DL that is parallel to they-axis the conditions
uleft = uright, ux,left = ux,right, we have for DL with number1 (first DL) the code

if (ib == 1) then (for first DL)
do j = 1, nk (for all components)

do i = 1, nt (for all nodes of DL)
p(i, j, 1) = u(i, j, 1) − u(i, j, 2)
p(i, j, 2) = ux(i, j, 1) − ux(i, j, 2)

enddo
enddo

else if (ib == 2) then (for second DL)
...

In the parentheses of the assignments the “1” and “2” in the last position denote the two sides of the
DL.

The Jacobian matrices for the DLs are entered in the program frame of the subroutine FDEMU6.
For the Jacobians we have nowninb · m2 calls for ninb DLs and a system ofm PDEs. Which
equation is called and to which component is derived is the same type of information as for the
Jacobians for exterior boundaries. For the example of CCs that is given above thej in p(i, j, 1)
denotes the equationiequ and thej in u(i, j, 1) denotes the componenticom, so we have in this
example entries only foriequ = icom. Therefore the code for the Jacobians is

if (ib == 1) then
if (iequ == icom) then

do i = 1, nt
pu(i, 1, 1) = 1.d0
pu(i, 2, 1) = −1.d0
pux(i, 1, 2) = 1.d0
pux(i, 2, 2) = −1.d0

enddo
endif

else if (ib == 2) then
...

Here in the index parentheses ofpu the second position denotes the “left” (1) or “right” (2) variable,
the third position denotes the first (1) or second (2) coupling condition.

This completes the explanation how the PDEs, BCs, and CCs andtheir Jacobian matrices must be
entered in FDEM by writing the corresponding Fortran code into prescribed program frames of the
subroutines FDEMUi.

4.7 Test problem

In Section 2.10 we have discussed how we generate from our problem Pu = 0 a test problem
Pu − Pū = 0, equ. (2.10.2), and we have explained this in more detail in the equs. (2.10.3) to
(2.10.11).
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4.8 The Jacobi tester

In this example of fuel cell simulation we have the6 variablesu1 to u6, see Table 4.2.1. Foru1 we
use the test functionf , for u2 we usef2, for u3 we usef3 etc. The derivatives of the test functions
are denotedfx, f2x, f3x, . . ., fy, f2y, f3y, . . ., fxx, f2xx, f3xx, etc. For this 2-D case they
are functions ofxi, yi for nodei, and because such test functions might be used also for unsteady
problems, they depend also ont (although the fuel cell problem is steady). In the print-outof the
subroutine FDEMU1 for entering the PDEs of interior nodes wehave the code segment

do i = 1,mv
p(i, 1) = u(i, 1) + K x ∗ ux(i, 3)/ns

− (f(x(i), y(i), t) + K x ∗ f3x(x(i), y(i), t)/ns

Here we have in the first assignment row theP1u and in the second row theP1ū, which is in this
case changed to comment by the indicator “!”, so we would solve the physical problem. If we want
to solve the test problem, we only have to erase the “!”. It is easy to see how one gets fromPu the
Pū. This can be seen also in the subroutine FDEMU2 for the BCs. There thePū terms are already
included in the auxiliary variables so that at the assignments forPu there is not visible if the physical
or the test problem is solved. It should be recalled that the Jacobian matrices are not changed byPū,
because this is an explicit function ofx, y.

The choice of the test functionsf , f2, f3, . . . is made by the choice of the corresponding subrou-
tines at the binding of the problem. Usually we select for thef ’s polynomials of order2, 4, 6, 8 or
the sugar-loaf function as presented in the examples of Section 2.10.

We recommend never to use FDEM without at first testing the PDEs by a test problem. The test
problem not only tests if the PDEs are entered correctly, butit also shows you the basic properties
of the solution. Often for technical problems it is difficultto see what are the correct BCs so that the
problem is well-posed. Then the test PDE shows immediately when there is no solution.

4.8 The Jacobi tester

The basic idea to check the Jacobi matrices by a difference quotient has been explained in the context
of equ. (2.10.12). In FDEM there is an entry parameterljac. If ljac = true the Jacobi tester is
switched on, ifljac = false it is switched off. If it is switched on the testing of the Jacobi matrices
is running integrated in the solution process which is stopped if there is detected an assumed error
in the Jacobis. Here we recall that the Jacobi tester gives the exact value of the derivative only for
linear functions ofu, else it gives the derivative only up to an errorO(ε).

We want to explain how the Jacobi tester works. The PDEs for a system ofm PDEs are:

P =
















P1






u1 u1,x u1,y u1,yy
... ,

... ,
... , . . .

...
um um,x um,y um,yy






...

Pm






u1 u1,x u1,y u1,yy
... ,

... ,
... , . . .

...
um um,x um,y um,yy





















. (4.8.1)
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We have e.g. the following Jacobis:

∂P

∂u
=






∂P1

∂u1
, . . . , ∂P1

∂um

...
∂Pm

∂u1
, . . . , ∂Pm

∂um




 , (4.8.2)

∂P

∂ux
=







∂P1

∂u1,x
, . . . , ∂P1

∂um,x

...
∂Pm

∂u1,x
, . . . , ∂Pm

∂um,x







(4.8.3)

and similarly∂P/∂uy, . . . , ∂P/∂uyy . If we change according to (2.10.12) in (4.8.1)u1 → u1 + ε
we check the first column of (4.8.2), if we changeum → um+ε, we check the last column of (4.8.2).
Similarly, if we changeu1,x → u1,x + ε we check the first column of (4.8.3) etc.

In the printout of the subroutine FDEMU1 in the Addendum A3 wehave after “! ∗ ∗ ∗ ∗ start of
calculation” a code segment withfex(. . .). The elements of the vectorfex are theε’s for the checking
of the corresponding Jacobians as described above. In this code “it” is the number of components in
the system ofm PDEs which is in this case also equal to the value ofnk in thej-loop. If ljac = true
the Jacobi tester calls6×m times FDEMU1 with the appropriate component offex(. . .) = ε and the
other components zero. The basic call of FDEMU1 for the solution of the PDEs is executed with all
components offex(. . .) equal to zero. So forljac = true the Jacobi tester acts as control program
that is integrated into the regular solution algorithm.

In Section 4.3 we have presented how the BCs are entered by thesubroutine FDEMU2 and in
Section 4.6 how the CCs, the internal BCs, are entered. The code of these subroutines starts like
FDEMU1 with thefex(. . .) assignments and thus the Jacobians for the BCs and the CCs arechecked
in the same way as for the PDEs in FDEMU1. Thus the Jacobi tester is a very sophisticated program
part that is elegantly interleaved with the solution of the PDEs itself.

4.9 Remarks to LINSOL

The linear solver LINSOL [7] has been developed initially together with the FIDISOL program
package, see [2], and since that time has been continuously improved and extended, see the references
given in [7]. LINSOL was originally a pure iterative solver with several generalized CG (conjugate
gradient) methods. The essential improvement was the implementation of an (I)LU (incomplete LU
factorization) preconditioner, together with (effectively) two bandwidth optimizers. All these codes
were optimized for sparse matrices on distributed memory parallel computers. Unfortunately, it
turned out that all the hard industrial problems that are mentioned in this report have for the needed
large number of unknowns so badly conditioned matrices thatall CG solvers, even the most robust
ones, do not converge. These problems need full LU, all attempts with ILU with different types of
dropping strategies failed. However, full LU for sparse matrices means fill-in between the outermost
diagonals for our algorithm, therefore a bandwidth optimizer is essential. Full LU increases for large
problems, above all in 3-D, considerably the needed storageand computation time. In 3-D problems
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the storage for the factorsL andU ultimately limit the size of a problem that can be solved on a
given computer.

FDEM is a black-box solver. In the PDE operator (2.4.1) therefore appear all possible derivatives,
e.g.uxy. However, if in the actual system ofm PDEsuxy does not occur, the corresponding Jacobian
m × m matrix ∂P/∂uxy has only zero elements. In the process of the generation of the matrixQd

of the linear system for the computation of the Newton correction, see (2.4.10), the elements of
the difference formulas foruxy in this case are multiplied by zeros and added to the corresponding
position inQd. If there is no contribution of other terms of the PDEs to thisposition, there remains a
zero. These zeros are denoted as “computed zeros”. The matrix Qd is handed to LINSOL (in reality
each processor hands its part of the matrix to LINSOL by its call of LINSOL) with the computed
zeros and in a first step LINSOL takes out of the matrix these zeros.

For the full LU preconditioning a “Gauss factor” tells LINSOL, that the user expects a storage
space forL + U that is “Gauss factor” times the storage ofQd (including the computed zeros). If
the selected “Gauss factor” is too small, theLU factorization stops when the storage limit is attained
and tells to which row ofQd it has proceeded up to then. We usually needed several iterations to find
out the appropriate “Gauss factor” for a new problem. Below in the list of parameters of FDEM are
also mentioned the parameters for the call of LINSOL. There they are explained only very shortly.
For a detailed understanding the user must consult the documentation of LINSOL [7]. It should
be mentioned that in our examples of industrial problems LINSOL needed80 to 95% of the total
computation time so that the efficiency of LINSOL is decisivefor the solution of the PDEs.

4.10 Computational parameters

As FDEM is not “frozen” but still in continuous development,the list of entry parameters may still
change. Therefore it is advisable to check the actual situation. Above all the parameters for the
selection of the nodes for the difference formulas may change because some internal parameters may
become external parameters and thus become directly accessible to the user. The situation that is
described below is that of September2004.

The computational parameters are entered by at least two mandatory and6 optional files. The
mandatory files are the basic parameters of FDEM and the parameters for the use of LINSOL.

Fig. 4.10.1 shows the structure of the basic input filefdem input with example parameter values.
Here we explain only those parameters whose meaning is not directly visible from the comment in
Fig. 4.10.1. The first3 parameters (in the text of nbmax “bound.” means “boundary”) are used for
the declaration of the corresponding arrays if grid refinement is used, “load” is.true. if a computation
is continued from a previous computation, “store” is.true. if at the end of a computation all data
are saved so that the computation can be continued. “mnls” gives the number of simultaneously
solved systemsM · A = I (2.2.6) for the computation of the polynomial coefficientsaj,i in (2.2.4)
for the difference formulas. Each system is small and recursive so that vectorization is inefficient.
If mnls systems (in the examplemnls = 100) are solved simultaneously, the computation is fully
vectorizable, see Section 13.3 in [4].

“idoku” is a mixture of FDEM and LINSOL parameters:
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for FDEM: idoku≥ 0: only processor 1 prints information,
idoku < 0: all processors print information.

for LINSOL: idoku= 500 means that in LINSOL every 500th iteration step the LINSOL
defect is printed.

13000 * i * n_max -> max. number of grid points on one processor
26000 * i * ne_max -> max. number of elements on one processor
1000 * i * nb_max -> max. number of bound. points on one processor
14 * i * nexb -> number of external boundaries
2 * i * ninb -> number of internal boundaries
0 * i * nslb -> number of sliding boundaries
10 * i * lv_max -> max. number of refinements per element
.false. * l * load -> load an old computation
.false. * l * store -> save computation at the end
2 * i * dim -> dimension of the problem
6 * i * nk -> number of equations and sol. components
100 * i * mnls -> number of simultaneous solved small systems MA=I
500 * i * idoku -> output control parameter
5 * i * initsol -> initial solution parameter
0.1 * dp * is_fac -> error of initial solution (only if initsol = 3)
0 * i * maxit -> max. number of Newton iteration steps
.false. * l * mref -> mesh refinement on/off
.false. * l * ordctr -> order control on/off
2 * i * pd -> consistency order
2 * i * pd2a2 -> order surplus for order 2
2 * i * pd2a4 -> order surplus for order 4
2 * i * pd2a6 -> order surplus for order 6
226 * i * isort -> kind of sorting nodes and pivot search
300 * i * nle_3 -> max. number of nodes to collect for central node
1.0d-2 * dp * tol -> requested tolerance
1.d0 * dp * s_grid -> safety factor for mesh refinement
1.d0 * dp * s_24 -> safety factor for order control
0.01d0 * dp * s_46 -> safety factor for order control
1.d-1 * dp * eps_piv -> reference pivot element for pivot search
1.d-1 * dp * alpha -> reference pivot element for pivot search
1 * i * cycle -> number of cycles for mesh ref. and order control
1.d+6 * dp * ten -> ten-factor for Newton iteration
.true. * l * ell -> elliptic/parabolic problem?
.true. * l * inso -> initial solution given?
.false. * l * gridsave -> save refinement meshes?
4.d0 * dp * s_o -> safety factor for overlap
0.1d0 * dp * redfac -> reduce factor for Newton it. (only lean version)
.false. * l * llean -> compute solution with lean version?
.false. * l * ljac -> test Jacobian matrices?
.false. * l * ltest -> only statistics for difference/error formulas
.true. * l * lphys -> physical problem?
.false. * l * lrefg -> refine whole subdomain?
ideas * c * interf -> mesh generator (not used)
fdem * c * collect -> way to collect points (not used)
stdout * c * output file name

Figure 4.10.1:Example for the use of the entry parameter filefdem input.
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“initsol” determines the initial (starting) solution. Thevalue has the following meaning:

1: start with solution1.0 for all nodes and all components,
2: start with the exact solution for test PDE,
3: start with the disturbed solution for test PDE, the disturbance factor isis fac, e.g.

is fac = 0.1 for 10% disturbance,
4: start with zero solution,
5: special value.

“maxit” is the maximal number of Newton iteration steps. Thespecial value0 means that there is
no limit.

“pd2a2”: pd2a = △q − 2, where△q is explained in Section 2.2. If we have consistency order
q = 2 we usually have△q = 4 which means that we selected nodes that are sufficient for theorder
2 + 4 = 6. Because for the order2 we need error formulas of orderq + 2 = 2 + 2 = 4 and we
want to have sufficient nodes of two orders higher= 6, we havepd2a = 2. So△q gives the surplus
to q, pd2a the surplus to the error formula orderq + 2. Therefore we havepd2a = △q − 2. In the
parameter list we can give different surplus values for the orders2, 4, 6 by pd2a2, pd2a4, pd2a6.

“isort” is a key parameter that contains three keys in the three positions. These keys determine for
the selection of the nodes the arrangement, the sorting and the search as described in the text after
equ. (2.2.16).
For the arrangement we have the3 possibilities:

arrangement: 1. 2. 3.
key value: 1 2 3

for the sorting we have the3 possibilities

sorting: a. b. c.
key value: 1 3 2

for the search we have the2 possibilities

search: 1. 2.
key value: 6 7

Therefore the value226 for isort in Fig. 4.10.1 means arrangement2., sorting c., search 1.
“nle 3” is a guess for the declaration of some arrays for this computation of the difference formu-

las. If the value is too small the arrays are deallocated and reallocated with a larger value. “tol” is
the requested relative global tolerance in (2.5.12). “sgrid” is the safety factor for mesh refinement in
(2.5.18). “s24” and “s 46” are the safety factors for order control that are used in (2.5.16), (2.5.17)
and there are namedf2↔4, f4↔6.

“eps piv” is the valueεpivot used in (2.2.11) and (2.2.16) for the generation of the difference
formulas, and likewise “alpha” is the value used in (2.2.16). “cycle” is the max. number of cycles for
mesh refinement and order control if the accuracy requirement by tol is not attained in less cycles.
“ten” is a parameter that controls the stopping of the Newtoniteration. In (2.5.4) there is the safety
factor0.1. This value now has been generalized to1/ten. If we haveten = 10, the safety factor is
0.1, if we haveten = 106, the safety factor is10−6.
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If “ell” is .true. the problem is elliptic, if it is.false. it is parabolic. If “inso” is.true. an initial
solution is selected by an interpolation from the boundary values.

“s o” is the safety factor for overlap that is namedaoverlap in (2.8.1). “redfac” is the reduction
factor for the residual control in the Newton iteration for the lean version, because there we do not
compute error estimates that are used in (2.5.4) to stop the Newton iteration. In the lean version the
Newton iteration is stopped if||(Pu)d|| < redfac||(Pu)d||0, where||(Pu)d||0 is the initial residual
norm. If “lean” is .true. the solution is computed with the lean version, without error estimate, else
the standard version is used.

If “ljac” is .true. the Jacobi tester is switched on, see Section 4.8, else it is switched off. If “ltest”
is .true. then for the test polynomial the maximal difference betweenthe exact and the numerical
derivative is computed which is the exact error for linear term in u andO(ε) for non-linear term and
compared to the estimated error. The result is delivered in the form of a table. Further a table is
printed with the information about the size of the cofficients of the difference and error formulas.

If “lphys” is .true. the physical problem is solved, if it is.false. the test PDEs are solved. “lrefg”
.true. means for the mesh refinement process: if in a sudomain at least one node is refinement node,
the whole subdomain is refined. If “lrefg” is.false. individual refinement is made. This closes the
explanation of the mandatory parameter filefdem input.

The other mandatory file is thelsol input file that is shown for an example in Fig. 4.10.2. This
file controls the use of LINSOL and consequently most of the parameters correspond to the param-

7 * i * ms -> method selection
75 * i * msprec -> method of preconditioning
1 * i * msnorm -> normalization method
100000 * i * maxmvm -> max. number of matrix-vector-multiplications
0 * i * misc
11001 * i * optim
1 * i * bwoalg -> bandwidth optimizer algorithm
.true. * l * lilu -> Newton iteration with (I)LU?
0.d0 * dp * threshold1
0.d0 * dp * threshold2
0.d0 * dp * ldrop
-300.d0 * dp * gaussfac
0.d0 * dp * memfac
0.d0 * dp * epsmat
1.d0 * dp * pivot_threshold
1 * i * m for GPBiCG(m,l)
4 * i * l for GPBiCG(m,l)
1.d0 * dp * LINSOL_MATRIX_FACTOR
1.d0 * dp * LINSOL_INDEX_FACTOR
1.d0 * dp * LINSOL_INFO_FACTOR

Figure 4.10.2:Example for the use of the entry parameter filelsol input.

eters that are presented in the User’s guide of LINSOL, see Section 4.9 and above all the section
“Parameters” in the User’s Guide. “memfac” is not used. “epsmat” exists only from Version 1.1 of
LINSOL on and has the following meaning: before the treatment of the matrix all elements with ab-
solute value less or equal toepsmat are eliminated. This serves above all to eliminate the “computed
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zeros”. “pivot threshold” (also from Version 1.1 on) has the following meaning:

pivot threshold= 1.0: takes max. absol. value of a row as pivot,
= 0.0: no pivoting,
= 0.5: accepts pivot if it is≤ 0.5 times max. pivot (analoguously other

values0 < value< 1).

The last three parameters inlsol input, LINSOL MATRIX FACTOR, LINSOL INDEX FACTOR
and LINSOLINFO FACTOR, correspond to the parameters MATRIXFACTOR etc. described in
the User’s guide of LINSOL and are needed for parallel computation for the program that calls LIN-
SOL.

Finally there is the parameter “lilu”. This is a FDEM parameter. If it is .true. the solution of the
linear system in the Newton iteration takes place with (I)LU, if it is .false. without (I)LU. This ends
the discussion of the mandatory input filelsol input.

There are further optional parameter input files. The filebd order gives the rules for the overwrit-
ing of boundaries, e.g. in corners, as described at the end ofSection 4.1. An example input is

2 2
4 2
1 1
2 2
3 1
...

...

This list must be read from below: boundary3 of type1 overwrites bd.2 of type2 that overwrites
bd.1 of type1 that overwrites bd.4 of type2 that overwrites bd.2 of type2. Note that the numbering
for each of the3 types of boundaries (external, DLs, SDLs) is from1 to max. number of boundaries
of that type. If this file does not exist the standard rule holds that boundaries with higher number
overwrite boundaries with lower number.

With the input filefdem epsp for a domain withnd subdomains, for each subdomain different val-
ues forεpivot for the generation of the difference formulas and also separately for the error formulas
and different values ofα can be selected, whereεpivot andα are the parameters in (2.2.16). An
example file fornd = 3 domains would look like this:

1.E-2 ** epspiv formula domain 1
1.E-2 ** epspiv error domain 1
1.E-2 ** epspiv formula domain 2
1.E-2 ** epspiv error domain 2
1.E-2 ** epspiv formula domain 3
1.E-2 ** epspiv error domain 3
3.E-2 ** alpha domain 1
3.E-2 ** alpha domain 2
3.E-2 ** alpha domain 3
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If this file does not exist, the values offdem input are used everywhere.

The input filecouple domain is needed if there are dividing lines. The solutions of the different
subdomains are coupled by CCs (coupling conditions). For a dividing line in 2-D there result from
one geometrical node two logical nodes that belong each uniquely to one of the coupled domains.
Consequently there must be two equations (CCs) for each node. Such CCs have two sides: side
“one” and side “two”. In the filecouple domain is determined, which domain is side “one” and side
“two” in the first equation and in the second equation. This type of distinguishing information results
from the fact that FDEM is a black-box solver with flexible general properties. Below is an example
of couple domain:

2 0 0 0 0 0 0 0 0 0 0 0
1 2 ** domain 1 is “one”, domain 2 is “two”
2 1 ** domain 2 is “one”, domain 1 is “two”
3 2 ** domain 3 is “one”, domain 2 is “two”
2 3 ** domain 2 is “one”, domain 3 is “two”

Figure 4.10.3:Domain with3 subdomains and14 external boundaries (one node may be a boundary).

Because in the first place of the first row is a “2” follow2 double rows for2 dividing lines with
domain numbers “one” and “two” for equation1 and equation2. If e.g. in the second position of the
first row, where triple nodes or lines are noted, would be1 (instead of 0) for one triple node, then
there could be e.g. the triple row:
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1 2 ** domain 1 is “one”, domain 2 is “two”
2 3 ** domain 2 is “one”, domain 3 is “two”
3 1 ** domain 3 is “one”, domain 1 is “two”

for the3 CCs of the triple node. In the third position of the first row isnoted the number of quadruple
nodes with4 CCs etc. This is a very sophisticated allocation of domains to equations in the CCs.

Fig. 4.10.3 shows a domain with3 subdomains and14 external boundaries, note that a single node,
e.g. a corner, may have its own BC and so it is an own “boundary”. There are two internal boundaries,
i.e. DLs. Because the right end nodes of these DLs are not defined as separate boundaries, they
belong by definition to the DLs. In the fileextbound is defined which boundary belongs to which
domain. For the example of Fig. 4.10.3 the fileextbound looks like this:

3 ** pos.1, i.e. bd1, belongs to domain 3
3 ** pos.2, i.e. bd2, belongs to domain 3
3 ** pos.3, i.e. bd3, belongs to domain 3
2 ** pos.4, i.e. bd4, belongs to domain 2
1 ** pos.5, i.e. bd5, belongs to domain 1
1 ** pos.6, i.e. bd6, belongs to domain 1
1 ** pos.7, i.e. bd7, belongs to domain 1
2 ** pos.8, i.e. bd8, belongs to domain 2
3 ** pos.9, i.e. bd9, belongs to domain 3
3 ** pos.10, i.e. bd10, belongs to domain 3
3 ** pos.11, i.e. bd11, belongs to domain 3
1 ** pos.12, i.e. bd12, belongs to domain 1
1 ** pos.13, i.e. bd13, belongs to domain 1
1 ** pos.14, i.e. bd14, belongs to domain 1

A special remark must be made to boundaries11 and12. These are single geometrical nodes that
lie on a DL. Therefore from node11 result two logical nodes, one belongs to domain3 and one to
domain2. The notation inextbound thatbd11 belongs to domain3 means that there are given BCs
for the upper logical node and thus the lower logical node belongs tobd8 and has the BCs ofbd8.
Similarly the resulting upper logical node ofbd12 belongs tobd8 and for the lower logical node of
bd12 there are given BCs because inextbound is noted thatbd12 belongs to domain1. Quite naturally
the file extbound is needed only if there are DLs. Without DLs all boundaries belong to the single
domain.

If there are SDLs (sliding DLs) there are two further input filessdl assoc andslibound that are not
explained here.

4.11 Licensing conditions

At the time of writing this report the future of the FDEM program package (60 000 lines of Fortran
code) is not finally fixed. The University of Karlsruhe does not intend to maintain the program
package for a long time. Therefore we will install the code atthe “Institut für Wissenschaftliches
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Rechnen” (IWR, Institute for Scientific Computing) at the Forschungszentrum Karlsruhe where it
will be maintained.

Presently we are looking for partners who have problems thatcannot be (efficiently) solved by
their standard software. In common research projects we apply FDEM to these problems. Some
examples have been presented in this report. FDEM is a general purpose black-box solver. In such
a cooperation we design from this base code a special code forthe problem of our research partner.
Basically the partner then can install the code on his computer, but this needs a corresponding training
for his staff. Predominantly we solve the problem for the partner on the computers that are available
to us. When the partner himself cannot deliver the PDEs a third partner will be needed that cares for
the PDEs that we then solve.

It should be mentioned that the numerical solution of hard technical problems needs often excep-
tional numerical experience that cannot be replaced by the pure application of even the best code.
Therefore we consider it to be the most efficient way that we solve the problems for our partners that
then can profit directly from our experience.

188



References

References

[1] W. Schönauer, K. Raith, G. Glotz, The SLDGL program package for the selfadaptive solution
of nonlinear systems of elliptic and parabolic PDEs, in Advances in Computer Methods for
Partial Differential Equation-IV, edited by R. Vichnevetsky and R. S. Stepleman, IMACS, New
Brunswick, 1981, pp. 117-125.

[2] W. Schönauer, Scientific Computing on Vector Computers, North-Holland, Amsterdam, 1987.

[3] M. Schmauder, W. Schönauer, CADSOL-A fully vectorizedblack box solver for 2-D and 3-D
partial differential equations, in R. Vichnevetsky, D. Knight, G. Richter (Eds.), Advances in
Computer Methods for Partial Differential Equations-VII,IMACS, New Brunswick, 1992,
pp. 639-645.

[4] W. Schönauer, Scientific Supercomputing: Architecture and Use of Shared and Dis-
tributed Memory Parallel Computers, selfedition Willi Schönauer, Karlsruhe, Germany, 2000,
ISBN 3-00-005484-7, see
http://www.rz.uni-karlsruhe.de/∼ rx03/book/

[5] W. Schönauer, T.Adolph, How We solve PDEs, J. of Computational and Applied Mathemat-
ics 131, 2001, pp. 473-492.

[6] W. Schönauer, T. Adolph, FDEM: How we make the FDM more flexible than the FEM, J. of
Computational and Applied Mathematics 158, Issue 1, 2003, pp. 157-167.

[7] LINSOL, see http://www.rz.uni-karlsruhe.de/rd/linsol.php
or enter LINSOL in the search windows of the University of Karlsruhe (http://www.uni-
karlsruhe.de/).
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subroutine FDEMU1(isect,t,x,y,u,ut,ux,uy,uxx,uxy,uyy ,
& p,mt,mv,nk,it,ljac,fex)

!** ***
!************************************************** ********************
!** ***
!** F D E M U 1 subroutine ***
!** in which the pde system at inner grid points is described. ***
!** ***
!************************************************** ********************
!** ***
!** formal parameters : ***
!** ------------------- ***
!** ***

USE probconst

implicit none
!***

integer, intent(in) :: mt, mv, nk, it, isect
double precision,intent(in) :: t,x(mv),y(mv),fex(nk*it )
double precision,intent(inout) :: u(mv,nk),ut(mt,nk),u x(mv,nk),

& uy(mv,nk),uxx(mv,nk),
& uxy(mv,nk),uyy(mv,nk)

double precision, intent(out) :: p(mv,nk)
logical, intent(in) :: ljac

!** ***
!**------------------------------------------------ -----------------***
!** ***
!** list of formal parameters : ***
!** --------------------------- ***
!** ***
!--------i------i-----i---------------------------- --------------------
! name i type i i/o i meaning
!--------i------i-----i---------------------------- --------------------
!--------i------i-----i---------------------------- --------------------
!** ***
!** ***
!** ***
!** local parameters : (please define all the appearing ***
!** ------------------ local parameters) ***
!** ***

integer i,j
double precision f,fx,fy,fz,fxy,fyz,fxz,fxx,fyy,fzz
double precision f2,f2x,f2y,f2z,f2xy,f2yz,f2xz,f2xx,f 2yy,f2zz
double precision f3,f3x,f3y
double precision f4,f4x,f4y,f4z,f4xy,f4yz,f4xz,f4xx,f 4yy,f4zz
double precision f5,f5x,f5y,f5z,f5xy,f5yz,f5xz,f5xx,f 5yy,f5zz
double precision f6,f6x,f6y,f6z,f6xy,f6yz,f6xz,f6xx,f 6yy,f6zz

!** ***
!** ***
!**** start of calculation :
!** ---------------------
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if (ljac) then
do j = 1,nk

do i = 1,mv
u(i,j) = u(i,j) + fex((j-1)*it+1)
ux(i,j) = ux(i,j) + fex((j-1)*it+2)
uy(i,j) = uy(i,j) + fex((j-1)*it+3)
uxx(i,j) = uxx(i,j) + fex((j-1)*it+4)
uxy(i,j) = uxy(i,j) + fex((j-1)*it+5)
uyy(i,j) = uyy(i,j) + fex((j-1)*it+6)

enddo
enddo
do j = 1,nk

do i = 1,mt
ut(i,j) = ut(i,j) + fex(j*it)

enddo
enddo

endif

do i = 1,mv

p(i,1) = u(i,1)+K_x*ux(i,3)/ns

! & -(f(x(i),y(i),t)+K_x*f3x(x(i),y(i),t)/ns)

p(i,2) = u(i,2)+K_y*uy(i,3)/ns

! & -(f2(x(i),y(i),t)+K_y*f3y(x(i),y(i),t)/ns)

p(i,3) = u(i,3)-u(i,4)*u(i,5)*
& (RR_H2O*(1-gamma-u(i,6))+RR_N2*gamma+RR_O2*u(i,6))

! & -(f3(x(i),y(i),t)-f4(x(i),y(i),t)*f5(x(i),y(i),t) *
! & (RR_H2O*(1-gamma-f6(x(i),y(i),t))
! & +RR_N2*gamma+RR_O2*f6(x(i),y(i),t)))

p(i,4) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i ,4)*u(i,2)

! & -(f4x(x(i),y(i),t)*f(x(i),y(i),t)+f4(x(i),y(i),t) *(
! & fx(x(i),y(i),t)+f2y(x(i),y(i),t))+f4y(x(i),y(i),t )*
! & f2(x(i),y(i),t))

p(i,5) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
& lambda_x*uxx(i,5)-lambda_y*uyy(i,5)

! & -(f4(x(i),y(i),t)*CC_p*(f(x(i),y(i),t)*
! & f5x(x(i),y(i),t)+f2(x(i),y(i),t)*f5y(x(i),y(i),t) )-
! & lambda_x*f5xx(x(i),y(i),t)-lambda_y*f5yy(x(i),y(i ),t))

p(i,6) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
& DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
& DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))

! & -(f4(x(i),y(i),t)*(f(x(i),y(i),t)*f6x(x(i),y(i),t )+
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! & f2(x(i),y(i),t)*f6y(x(i),y(i),t))-
! & DD_x*(f4x(x(i),y(i),t)*f6x(x(i),y(i),t)+
! & f4(x(i),y(i),t)*f6xx(x(i),y(i),t))-
! & DD_y*(f4y(x(i),y(i),t)*f6y(x(i),y(i),t)+
! & f4(x(i),y(i),t)*f6yy(x(i),y(i),t)))

enddo

!**** end of calculation
! ------------------
!

r e t u r n
!-----end of FDEMU1---------------------------------- ------------------

e n d

subroutine FDEMU2(irand,t,x,y,u,ut,ux,uy,uxx,uxy,
& uyy,p,nb,nk,it,ljac,fex)

!** ***
!************************************************** ********************
!** ***
!** F D E M U 2 subroutine ***
!** in which the boundary conditions for the 6 boundary areas ***
!** are described. ***
!** example e1 ***
!** ***
!************************************************** ********************
!** ***
!** formal parameters : ***
!** ------------------- ***
!** ***

USE probconst

implicit none
!***

integer, intent(in) :: irand, nk, nb, it
double precision, intent(in) :: t,x(nb),y(nb),fex(nk*it )
double precision, intent(inout) :: u(nb,nk),ut(nb,nk),u x(nb,nk),

& uy(nb,nk),uxx(nb,nk),
& uxy(nb,nk),uyy(nb,nk)

double precision, intent(out) :: p(nb,nk)
logical, intent(in) :: ljac

!** ***
!**------------------------------------------------ -----------------***
!** ***
!** list of formal parameters : ***
!** --------------------------- ***
!** ***
!--------i------i-----i---------------------------- --------------------
! name i type i i/o i meaning
!--------i------i-----i---------------------------- --------------------
!--------i------i-----i---------------------------- --------------------
!** ***
!** ***
!** ***
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!** local parameters : (please define all the appearing ***
!** ------------------ local parameters) ***
!** ***

integer i,j
double precision f,fx,fy,fz,fxy,fyz,fxz,fxx,fyy,fzz
double precision f2,f2x,f2y,f2z,f2xy,f2yz,f2xz,f2xx,f 2yy,f2zz
double precision f3,f3x,f3y
double precision f4,f4x,f4y,f4z,f4xy,f4yz,f4xz,f4xx,f 4yy,f4zz
double precision f5,f5x,f5y,f5z,f5xy,f5yz,f5xz,f5xx,f 5yy,f5zz
double precision f6,f6x,f6y,f6z,f6xy,f6yz,f6xz,f6xx,f 6yy,f6zz

double precision p1(nb),p2(nb),p3(nb),p4(nb),p5(nb),p 6(nb),p7(nb)
double precision p8(nb),p9(nb),p10(nb),p11(nb),p12(nb ),p13(nb)
double precision p14(nb),p15(nb),p16(nb),p17(nb),p18( nb),p19(nb)
double precision p20(nb)

!** ***
!** ***
!**** start of calculation :
!** ---------------------

if (ljac) then
do j = 1,nk

do i = 1,nb
u(i,j) = u(i,j) + fex((j-1)*it+1)
ux(i,j) = ux(i,j) + fex((j-1)*it+2)
uy(i,j) = uy(i,j) + fex((j-1)*it+3)
uxx(i,j) = uxx(i,j) + fex((j-1)*it+4)
uxy(i,j) = uxy(i,j) + fex((j-1)*it+5)
uyy(i,j) = uyy(i,j) + fex((j-1)*it+6)
ut(i,j) = ut(i,j) + fex(j*it)

enddo
enddo

endif

do i = 1,nb

p1(i) = u(i,1)+K_x*ux(i,3)/ns

! & -(f(x(i),y(i),t)+K_x*f3x(x(i),y(i),t)/ns)

p2(i) = u(i,2)+K_y*uy(i,3)/ns

! & -(f2(x(i),y(i),t)+K_y*f3y(x(i),y(i),t)/ns)

p3(i) = u(i,3)-u(i,4)*u(i,5)*
& (RR_H2O*(1-gamma-u(i,6))+RR_N2*gamma+RR_O2*u(i,6))
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! & -(f3(x(i),y(i),t)-f4(x(i),y(i),t)*f5(x(i),y(i),t) *
! & (RR_H2O*(1-gamma-f6(x(i),y(i),t))
! & +RR_N2*gamma+RR_O2*f6(x(i),y(i),t)))

p4(i) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i, 4)*u(i,2)

! & -(f4x(x(i),y(i),t)*f(x(i),y(i),t)+f4(x(i),y(i),t) *(
! & fx(x(i),y(i),t)+f2y(x(i),y(i),t))+f4y(x(i),y(i),t )*
! & f2(x(i),y(i),t))

p5(i) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
& lambda_x*uxx(i,5)-lambda_y*uyy(i,5)

! & -(f4(x(i),y(i),t)*CC_p*(f(x(i),y(i),t)*
! & f5x(x(i),y(i),t)+f2(x(i),y(i),t)*f5y(x(i),y(i),t) )-
! & lambda_x*f5xx(x(i),y(i),t)-lambda_y*f5yy(x(i),y(i ),t))

p6(i) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
& DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
& DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))

! & -(f4(x(i),y(i),t)*(f(x(i),y(i),t)*f6x(x(i),y(i),t )+
! & f2(x(i),y(i),t)*f6y(x(i),y(i),t))-
! & DD_x*(f4x(x(i),y(i),t)*f6x(x(i),y(i),t)+
! & f4(x(i),y(i),t)*f6xx(x(i),y(i),t))-
! & DD_y*(f4y(x(i),y(i),t)*f6y(x(i),y(i),t)+
! & f4(x(i),y(i),t)*f6yy(x(i),y(i),t)))

!Speziell fuer den Rand 1:
p7(i) = u(i,3)-PP_k

! & -(f3(x(i),y(i),t)-PP_k)

p8(i) = lambda_y*uy(i,5)+Alpha_k*(u(i,5)-TT_k)

! & -(lambda_y*f5y(x(i),y(i),t)
! & +Alpha_k*(f5(x(i),y(i),t)-TT_k))

p9(i) = DD_y*uy(i,6)+Beta_k*(u(i,6)-CC_o2k)

! & -(DD_y*f6y(x(i),y(i),t)
! & +Beta_k*(f6(x(i),y(i),t)-CC_o2k))

!Speziell fuer den Rand 2:
p10(i) = u(i,2)

! & -f2(x(i),y(i),t)

p11(i) = lambda_y*uy(i,5)+Alpha_w*(u(i,5)-TT_c)

! & -(lambda_y*f5y(x(i),y(i),t)
! & +Alpha_w*(f5(x(i),y(i),t)-TT_c))

216



p12(i) = uy(i,6)

! & -f6y(x(i),y(i),t)

p13(i) = uy(i,3)

! & -f3y(x(i),y(i),t)

!Speziell fuer den Rand 3:
p14(i) = u(i,1)

! & -f(x(i),y(i),t)

p15(i) = ux(i,5)

! & -f5x(x(i),y(i),t)

p16(i) = ux(i,6)

! & -f6x(x(i),y(i),t)

p17(i) = ux(i,3)

! & -f3x(x(i),y(i),t)

!Speziell fuer den Rand 4:
p18(i) = (u(i,2)*u(i,6)-DD_y*uy(i,6))*(1.-(RR_H2O/(2. *RR_O2)))+

& (RR_H2O/(2.*RR_O2))*(1.-gamma)*u(i,2)

! & -((f2(x(i),y(i),t)*f6(x(i),y(i),t)
! & -DD_y*f6y(x(i),y(i),t))*(1.-(RR_H2O/(2.*RR_O2)))+
! & (RR_H2O/(2.*RR_O2))*(1.-gamma)*f2(x(i),y(i),t))

p19(i) = lambda_y*uy(i,5)+QQ*Beta_r*u(i,4)*u(i,6)

! & -(lambda_y*f5y(x(i),y(i),t)
! & +QQ*Beta_r*f4(x(i),y(i),t)*f6(x(i),y(i),t))

p20(i) = DD_y*uy(i,6)-Beta_r*(u(i,6)-CC_O2)

! & -(DD_y*f6y(x(i),y(i),t)-Beta_r*(f6(x(i),y(i),t)-C C_O2))

enddo

! zum kanal:
if (irand == 1) then

do i=1,nb

p(i,1) = p14(i)

p(i,2) = p2(i)

p(i,3) = p7(i)
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p(i,4) = p3(i)

p(i,5) = p8(i)

p(i,6) = p9(i)

enddo
endif

! neben dem Kanal (oben):
if (irand == 2) then

do i=1,nb

p(i,1) = p1(i)

p(i,2) = p10(i)

p(i,3) = p13(i)

p(i,4) = p3(i)

p(i,5) = p11(i)

p(i,6) = p12(i)

enddo
endif

! rechts/links:
if (irand == 3) then

do i=1,nb

p(i,1) = p14(i)

p(i,2) = p2(i)

p(i,3) = p17(i)

p(i,4) = p3(i)

p(i,5) = p15(i)

p(i,6) = p16(i)

enddo
endif

! unten:
if (irand == 4) then

do i=1,nb

p(i,1) = p1(i)

p(i,2) = p18(i)

p(i,3) = p2(i)
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p(i,4) = p3(i)

p(i,5) = p19(i)

p(i,6) = p20(i)

enddo
endif

!**** end of calculation
! ------------------
!

r e t u r n
!-----end of FDEMU2---------------------------------- -------------------

e n d

subroutine FDEMU3(isect,iequ,icom,t,x,y,u,ut,ux,uy,u xx,uxy,
& uyy,pu,put,pux,puy,puxx,puxy,
& puyy,mt,mv,nk)

!** ***
!************************************************** ********************
!** ***
!** F D E M U 3 subroutine ***
!** in which the jacobian matrices at inner grid points are ** *
!** described. only nonzero elements must be defined. ***
!** ***
!************************************************** ********************
!** ***
!** formal parameters : ***
!** ------------------- ***
!** ***

USE probconst

implicit none
!***

integer, intent(in) :: iequ, icom, mt, mv, nk, isect
double precision, intent(in) :: t,x(mv),y(mv),u(mv,nk),

& ut(mt,nk),ux(mv,nk),uy(mv,nk),
& uxx(mv,nk),uxy(mv,nk),
& uyy(mv,nk)

double precision, intent(out) :: pu(mv),put(mt),pux(mv) ,puy(mv),
& puxx(mv),puxy(mv),
& puyy(mv)

!** ***
!**------------------------------------------------ -----------------***
!** ***
!** list of formal parameters : ***
!** --------------------------- ***
!** ***
!--------i------i-----i---------------------------- --------------------
! name i type i i/o i meaning
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!--------i------i-----i---------------------------- --------------------
!** ***
!** ***
!** ***
!** local parameters : (please define all the appearing ***
!** ------------------ local parameters) ***
!** ***

integer i

double precision p1_1(mv),p1_3x(mv)
double precision p2_2(mv),p2_3y(mv)
double precision p3_3(mv),p3_4(mv),p3_5(mv),p3_6(mv)
double precision p4_1x(mv),p4_2y(mv),p4_4x(mv),p4_4y( mv)
double precision p4_1(mv),p4_2(mv),p4_4(mv)
double precision p5_1(mv),p5_2(mv),p5_4(mv),p5_5x(mv)
double precision p5_5y(mv),p5_5xx(mv),p5_5yy(mv)
double precision p6_1(mv),p6_2(mv),p6_6x(mv),p6_6y(mv )
double precision p6_6xx(mv),p6_6yy(mv)
double precision p6_4(mv),p6_4x(mv),p6_4y(mv)

!** ***
!** ***
!**** start of calculation :
!** ---------------------

do i=1,mv
! p1(i) = u(i,1)+K_x*ux(i,3)/ns

p1_1(i)= 1.
p1_3x(i)= K_x/ns

! p2(i) = u(i,2)+K_y*uy(i,3)/ns
p2_2(i) = 1.
p2_3y(i) = K_y/ns

! p3(i) = u(i,3)-u(i,4)*u(i,5)*
! & (RR_H2O*(1-gamma-u(i,6))+RR_N2*gamma+RR_O2*u(i,6) )

p3_3(i) = 1.
p3_4(i) = -u(i,5)*(RR_H2O*(1-gamma-u(i,6))

& +RR_N2*gamma+RR_O2*u(i,6))
p3_5(i) = -u(i,4)*(RR_H2O*(1-gamma-u(i,6))

& +RR_N2*gamma+RR_O2*u(i,6))
p3_6(i) = u(i,4)*u(i,5)*(RR_H2O-RR_O2)

! p4(i) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i ,4)*u(i,2)
p4_1x(i)= u(i,4)
p4_2y(i)= u(i,4)
p4_4x(i)= u(i,1)
p4_4y(i)= u(i,2)
p4_1(i) = ux(i,4)
p4_2(i) = uy(i,4)
p4_4(i) = ux(i,1)+uy(i,2)

! p5(i) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
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! & lambda_x*uxx(i,5)-lambda_y*uyy(i,5)
p5_1(i) = u(i,4)*CC_p*ux(i,5)
p5_2(i) = u(i,4)*CC_p*uy(i,5)
p5_4(i) = CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))
p5_5x(i)= u(i,4)*CC_p*u(i,1)
p5_5y(i)= u(i,4)*CC_p*u(i,2)
p5_5xx(i)= -lambda_x
p5_5yy(i)= -lambda_y

! p6(i) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
! & DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
! & DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))

p6_1(i)= u(i,4)*ux(i,6)
p6_2(i)= u(i,4)*uy(i,6)
p6_4(i)= u(i,1)*ux(i,6)+u(i,2)*uy(i,6)-

& DD_x*uxx(i,6)-DD_y*uyy(i,6)
p6_4x(i)= -DD_x*ux(i,6)
p6_4y(i)= -DD_y*uy(i,6)
p6_6x(i)= u(i,4)*u(i,1)-DD_x*ux(i,4)
p6_6y(i)= u(i,4)*u(i,2)-DD_y*uy(i,4)
p6_6xx(i)=-DD_x*u(i,4)
p6_6yy(i)=-DD_y*u(i,4)

enddo

if (iequ == 1) then
if (icom == 1) then

do i=1,mv
pu(i)= p1_1(i)

enddo
endif

if (icom == 3) then
do i=1,mv

pux(i)= p1_3x(i)
enddo

endif
endif

if ( iequ == 2 ) then
if (icom == 2) then

do i=1,mv
pu(i)= p2_2(i)

enddo
endif
if (icom == 3) then

do i=1,mv
puy(i)= p2_3y(i)

enddo
endif

endif

if (iequ == 3) then
if (icom == 3) then

do i=1,mv
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pu(i)= p3_3(i)
enddo

endif
if (icom == 4) then

do i=1,mv
pu(i)= p3_4(i)

enddo
endif
if (icom == 5) then

do i=1,mv
pu(i)= p3_5(i)

enddo
endif
if (icom == 6) then

do i=1,mv
pu(i)= p3_6(i)

enddo
endif

endif

if (iequ == 4) then
if (icom == 1) then

do i=1,mv
pux(i)= p4_1x(i)
pu(i) = p4_1(i)

enddo
endif
if (icom == 2) then

do i=1,mv
pu(i) = p4_2(i)
puy(i)= p4_2y(i)

enddo
endif
if (icom == 4) then

do i=1,mv
pux(i)= p4_4x(i)
puy(i)= p4_4y(i)
pu(i) = p4_4(i)

enddo
endif

endif

if (iequ == 5) then
if (icom == 1) then

do i=1,mv
pu(i)= p5_1(i)

enddo
endif
if (icom == 2) then

do i=1,mv
pu(i)= p5_2(i)

enddo
endif
if (icom == 4) then
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do i=1,mv
pu(i)= p5_4(i)

enddo
endif
if (icom == 5) then

do i=1,mv
pux(i)= p5_5x(i)
puy(i)= p5_5y(i)
puxx(i)= p5_5xx(i)
puyy(i)= p5_5yy(i)

enddo
endif

endif

if (iequ == 6) then
if (icom == 1) then

do i=1,mv
pu(i)= p6_1(i)

enddo
endif
if (icom == 2) then

do i=1,mv
pu(i)= p6_2(i)

enddo
endif
if (icom == 4) then

do i=1,mv
pu(i)= p6_4(i)
pux(i)= p6_4x(i)
puy(i)= p6_4y(i)

enddo
endif
if (icom == 6) then

do i=1,mv
pux(i)= p6_6x(i)
puy(i)= p6_6y(i)
puxx(i)= p6_6xx(i)
puyy(i)= p6_6yy(i)

enddo
endif

endif

!**** end of calculation
! ------------------
!

r e t u r n
!-----end of FDEMU3---------------------------------- -------------------

e n d

subroutine FDEMU4(irand,iequ,icom,t,x,y,u,ut,ux,uy,u xx,
& uxy,uyy,pu,put,pux,puy,puxx,
& puxy,puyy,nb,nk)
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!** ***
!************************************************** ********************
!** ***
!** F D E M U 4 subroutine ***
!** in which the jacobian matrices at the 4 boundary lines ***
!** are described. only nonzero elements must be defined. ** *
!** example e1 ***
!** ***
!************************************************** ********************
!** ***
!** formal parameters : ***
!** ------------------- ***
!** ***

USE probconst

implicit none
!** ***

integer, intent(in) :: irand, iequ, icom, nk, nb
double precision, intent(in) :: t,x(nb),y(nb),u(nb,nk),

& ut(nb,nk),ux(nb,nk),uy(nb,nk),
& uxx(nb,nk),uxy(nb,nk),
& uyy(nb,nk)

double precision, intent(out) :: pu(nb),put(nb),pux(nb) ,puy(nb),
& puxx(nb),puxy(nb),
& puyy(nb)

!** ***
!**------------------------------------------------ -----------------***
!** ***
!** list of formal parameters : ***
!** --------------------------- ***
!** ***
!--------i------i-----i---------------------------- --------------------
! name i type i i/o i meaning
!--------i------i-----i---------------------------- --------------------
!--------i------i-----i---------------------------- --------------------
!** ***
!** ***
!** ***
!** local parameters : (please define all the appearing ***
!** ------------------ local parameters) ***
!** ***

integer i
double precision f,fx,fy,fz,fxy,fyz,fxz,fxx,fyy,fzz

double precision p1_1(nb),p1_3x(nb)
double precision p2_2(nb),p2_3y(nb)
double precision p3_3(nb),p3_4(nb),p3_5(nb),p3_6(nb)
double precision p4_1x(nb),p4_2y(nb),p4_4x(nb),p4_4y( nb)
double precision p4_1(nb),p4_2(nb),p4_4(nb)
double precision p5_1(nb),p5_2(nb),p5_4(nb),p5_5x(nb)
double precision p5_5y(nb),p5_5xx(nb),p5_5yy(nb)
double precision p6_1(nb),p6_2(nb),p6_6x(nb),p6_6y(nb )
double precision p6_6xx(nb),p6_6yy(nb),p6_4(nb)
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double precision p6_4x(nb),p6_4y(nb)

double precision p7_3(nb),p8_5(nb),p8_5y(nb),p9_6(nb) ,p9_6y(nb)
double precision p10_2(nb),p11_5(nb),p11_5y(nb),p12_6 y(nb)
double precision p13_3y(nb),p14_1(nb),p15_5x(nb),p16_ 6x(nb)
double precision p17_3x(nb),p18_2(nb),p18_6(nb),p18_6 y(nb)
double precision p19_4(nb),p19_5y(nb),p19_6(nb)
double precision p20_6(nb),p20_6y(nb),p12_5y(nb)

!** ***
!** ***
!**** start of calculation :
!** ---------------------

do i=1,nb

! p1(i) = u(i,1)+K_x*ux(i,3)/ns
p1_1(i)= 1.
p1_3x(i)= K_x/ns

! p2(i) = u(i,2)+K_y*uy(i,3)/ns
p2_2(i) = 1.
p2_3y(i) = K_y/ns

! p3(i) = u(i,3)-u(i,4)*u(i,5)*
! & (RR_H2O*(1-gamma-u(i,6))+RR_N2*gamma+RR_O2*u(i,6) )

p3_3(i) = 1.
p3_4(i) = -u(i,5)*(RR_H2O*(1-gamma-u(i,6))

& +RR_N2*gamma+RR_O2*u(i,6))
p3_5(i) = -u(i,4)*(RR_H2O*(1-gamma-u(i,6))

& +RR_N2*gamma+RR_O2*u(i,6))
p3_6(i) = u(i,4)*u(i,5)*(RR_H2O-RR_O2)

! p4(i) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i ,4)*u(i,2)
p4_1x(i)= u(i,4)
p4_2y(i)= u(i,4)
p4_4x(i)= u(i,1)
p4_4y(i)= u(i,2)
p4_1(i) = ux(i,4)
p4_2(i) = uy(i,4)
p4_4(i) = ux(i,1)+uy(i,2)

! p5(i) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
! & lambda_x*uxx(i,5)-lambda_y*uyy(i,5)

p5_1(i) = u(i,4)*CC_p*ux(i,5)
p5_2(i) = u(i,4)*CC_p*uy(i,5)
p5_4(i) = CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))
p5_5x(i)= u(i,4)*CC_p*u(i,1)
p5_5y(i)= u(i,4)*CC_p*u(i,2)
p5_5xx(i)= -lambda_x
p5_5yy(i)= -lambda_y

! p6(i) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
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! & DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
! & DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))

p6_1(i)= u(i,4)*ux(i,6)
p6_2(i)= u(i,4)*uy(i,6)
p6_4(i)= u(i,1)*ux(i,6)+u(i,2)*uy(i,2)-

& DD_x*uxx(i,6)-DD_y*uyy(i,6)
p6_4x(i)= -DD_x*ux(i,6)
p6_4y(i)= -DD_y*uy(i,6)
p6_6x(i)= u(i,4)*u(i,1)-DD_x*ux(i,4)
p6_6y(i)= u(i,4)*u(i,2)-DD_y*uy(i,4)
p6_6xx(i)=-DD_x*u(i,4)
p6_6yy(i)=-DD_y*u(i,4)

!Speziell fuer den Rand 1:
! p7(i) = u(i,3)-PP_k

p7_3(i)= 1.

! p8(i) = lambda_y*uy(i,5)+Alpha_k*(u(i,6)-TT_k)
p8_5(i)= Alpha_k
p8_5y(i)= lambda_y

! p9(i) = DD_y*uy(i,6)+Beta_k*(u(i,6)-CC_o2k)
p9_6(i)= Beta_k
p9_6y(i)= DD_y

!Speziell fuer den Rand 2:
! p10(i) = u(i,2)

p10_2(i)= 1.

! p11(i) = lambda_y*uy(i,5)+Alpha_w*(u(i,5)-TT_c)
p11_5(i)= Alpha_w
p11_5y(i)= lambda_y

! p12(i) = uy(i,6)
p12_6y(i)= 1.

! p13(i) = uy(i,3)
p13_3y(i)= 1.

!Speziell fuer den Rand 3:
! p14(i) = u(i,1)

p14_1(i)= 1.

! p15(i) = ux(i,5)
p15_5x(i)= 1.

! p16(i) = ux(i,6)
p16_6x(i)= 1.

! p17(i) = ux(i,3)
p17_3x(i)= 1.

!Speziell fuer den Rand 4:
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! p18(i) = (u(i,2)*u(i,6)-DD_y*uy(i,6))*(1.-(RR_H2O/(2 .*RR_O2)))+
! & (RR_H2O/(2.*RR_O2))*(1.-gamma)*u(i,2)

p18_2(i)= u(i,6)*(1.-(RR_H2O/(2.*RR_O2)))
& +RR_H2O/(2.*RR_O2)*(1.-gamma)

p18_6(i)= u(i,2)*(1.-(RR_H2O/(2.*RR_O2)))
p18_6y(i)= -DD_y*(1.-(RR_H2O/(2.*RR_O2)))

! p19(i) = lambda_y*uy(i,5)+QQ*Beta_r*u(i,4)*u(i,6)
p19_4(i)= QQ*Beta_r*u(i,6)
p19_5y(i)= lambda_y
p19_6(i)= QQ*Beta_r*u(i,4)

! p20(i) = DD_y*uy(i,6)-Beta_r*(u(i,6)-CC_O2)
p20_6(i)= -Beta_r
p20_6y(i)= DD_y

enddo

!************************************************** ******************
! RAND 1 ****
!************************************************** ******************
! Zum Kanal:

if (irand == 1) then

if (iequ == 1) then
if (icom == 1) then

do i=1,nb
pu(i)= p14_1(i)

enddo
endif

endif

if (iequ == 2) then
if (icom == 2) then

do i=1,nb
pu(i)= p2_2(i)

enddo
endif
if (icom == 3) then

do i=1,nb
puy(i)= p2_3y(i)

enddo
endif

endif

if (iequ == 3) then
if (icom == 3) then

do i=1,nb
pu(i)= p7_3(i)

enddo
endif

endif
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if (iequ == 4) then
if (icom == 3) then

do i=1,nb
pu(i)= p3_3(i)

enddo
endif
if (icom == 4) then

do i=1,nb
pu(i)= p3_4(i)

enddo
endif
if (icom == 5) then

do i=1,nb
pu(i)= p3_5(i)

enddo
endif
if (icom == 6) then

do i=1,nb
pu(i)= p3_6(i)

enddo
endif

endif

if (iequ == 5) then
if (icom == 5) then

do i=1,nb
pu(i)= p8_5(i)
puy(i)= p8_5y(i)

enddo
endif

endif

if (iequ == 6) then
if (icom == 6) then

do i=1,nb
pu(i) = p9_6(i)
puy(i)= p9_6y(i)

enddo
endif

endif

endif

!************************************************** ******************
! RAND 2 ****
!************************************************** ******************
! oberer rand (neben Kanal):

if (irand == 2) then

if (iequ == 1) then
if (icom == 1) then

do i=1,nb
pu(i)= p1_1(i)
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enddo
endif
if (icom == 3) then

do i=1,nb
pux(i)= p1_3x(i)

enddo
endif

endif

if (iequ == 2) then
if (icom == 2) then

do i=1,nb
pu(i)= p10_2(i)

enddo
endif

endif

if (iequ == 3) then
if (icom == 3) then

do i=1,nb
puy(i)= p13_3y(i)

enddo
endif

endif

if (iequ == 4) then
if (icom == 3) then

do i=1,nb
pu(i)= p3_3(i)

enddo
endif
if (icom == 4) then

do i=1,nb
pu(i)= p3_4(i)

enddo
endif
if (icom == 5) then

do i=1,nb
pu(i)= p3_5(i)

enddo
endif
if (icom == 6) then

do i=1,nb
pu(i)= p3_6(i)

enddo
endif

endif

if (iequ == 5) then
if (icom == 5) then

do i=1,nb
pu(i)= p11_5(i)
puy(i)= p11_5y(i)

enddo
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endif
endif

if (iequ == 6) then
if (icom == 6) then

do i=1,nb
puy(i)= p12_6y(i)

enddo
endif

endif

endif

!************************************************** ******************
! RAND 3 ****
!************************************************** ******************
! rechter & linker rand:

if (irand == 3) then

if (iequ == 1) then
if (icom == 1) then

do i=1,nb
pu(i)= p14_1(i)

enddo
endif

endif

if (iequ == 2) then
if (icom == 2) then

do i=1,nb
pu(i)= p2_2(i)

enddo
endif
if (icom == 3) then

do i=1,nb
puy(i)= p2_3y(i)

enddo
endif

endif

if (iequ == 3) then
if (icom == 3) then

do i=1,nb
pux(i)= p17_3x(i)

enddo
endif

endif

if (iequ == 4) then
if (icom == 3) then

do i=1,nb
pu(i)= p3_3(i)
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enddo
endif
if (icom == 4) then

do i=1,nb
pu(i)= p3_4(i)

enddo
endif
if (icom == 5) then

do i=1,nb
pu(i)= p3_5(i)

enddo
endif
if (icom == 6) then

do i=1,nb
pu(i)= p3_6(i)

enddo
endif

endif

if (iequ == 5) then
if (icom == 5) then

do i=1,nb
pux(i)= p15_5x(i)

enddo
endif

endif

if (iequ == 6) then
if (icom == 6) then

do i=1,nb
pux(i)= p16_6x(i)

enddo
endif

endif

endif

!************************************************** ******************
! RAND 4 ****
!************************************************** ******************
! unterer rand:

if (irand == 4) then

if (iequ == 1) then
if (icom == 1) then

do i=1,nb
pu(i)= p1_1(i)

enddo
endif
if (icom == 3) then

do i=1,nb
pux(i)= p1_3x(i)

enddo
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endif
endif

if (iequ == 2) then
if (icom == 2) then

do i=1,nb
pu(i)= p18_2(i)

enddo
endif
if (icom == 6) then

do i=1,nb
pu(i)= p18_6(i)
puy(i)= p18_6y(i)

enddo
endif

endif

if (iequ == 3) then
if (icom == 2) then

do i=1,nb
pu(i)= p2_2(i)

enddo
endif
if (icom == 3) then

do i=1,nb
puy(i)= p2_3y(i)

enddo
endif

endif

if (iequ == 4) then
if (icom == 3) then

do i=1,nb
pu(i)= p3_3(i)

enddo
endif
if (icom == 4) then

do i=1,nb
pu(i)= p3_4(i)

enddo
endif
if (icom == 5) then

do i=1,nb
pu(i)= p3_5(i)

enddo
endif
if (icom == 6) then

do i=1,nb
pu(i)= p3_6(i)

enddo
endif

endif

if (iequ == 5) then
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if (icom == 4) then
do i=1,nb

pu(i)= p19_4(i)
enddo

endif
if (icom == 5) then

do i=1,nb
puy(i)= p19_5y(i)

enddo
endif
if (icom == 6) then

do i=1,nb
pu(i)= p19_6(i)

enddo
endif

endif

if (iequ == 6) then
if (icom == 6) then

do i=1,nb
pu(i)= p20_6(i)
puy(i)= p20_6y(i)

enddo
endif

endif

endif
!
!**** end of calculation
! ------------------
!

r e t u r n
!-----end of FDEMU4---------------------------------- -------------------

e n d
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