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Abstract

This report is the most detailed report about the Finitedddfice Element Method (FDEM). FDEM has
been implemented in the FDEM program package. The develapofe¢he method and of the code are
closely interconnected.

FDEM is a black-box solver that solves by a finite differencetmod arbitrary non-linear systems of
PDEs (partial differential equations) on an unstructur&Mrgrid. The 2-D or 3-D PDEs must be of el-
liptic or parabolic type. The FEM grid serves only for theusturing of the space, i.e. the determination
of the neighboring nodes. In 2-D we use triangles, in 3-Dategdrons. For each node we generate with a
sophisticated algorithm by means of neighboring nodesdiffce formulas of consistency ordeoption-
ally ¢ = 2 orq = 4 or ¢ = 6. By the use of formulas of order+ 2 an estimate of the discretization error
is obtained. For parabolic equations we use in time diradfior stability reasons) fully implicit difference
formulas of consistency order< 6, with error estimate by formulas of ordgr- 1.

The knowledge of the error permits a selfadaptation of thetiem method. In time direction the ordgr
and the time step are always automatically optimized. Ireputrection the solution can be adapted to a
requested accuracy by grid refinement (bisection of triangketrahedron edges).

For many technical applications the solution domain is casep from subdomains in which hold dif-
ferent PDEs, e.g. a fluid structure coupling. It is not pdsdib differentiate the solution across boundaries
of the subdomains. Therefore we have introduced in FDEMiddéig lines” (which are in 3-D in effect
dividing areas). These dividing lines are internal bouiegarThe solutions on both sides of the dividing
lines are coupled by coupling conditions (CCs). Thus ong getr the whole domain (composed of several
subdomains) a global solution with global error estimatee Meshes on both sides of a dividing line have
not to coincide, one may have non-matching grids.

Because FDEM must solve arbitrary non-linear systems of Rtte linearization is executed by the
Newton-Raphson method. In order to make the method as rabysissible we check after each iteration
step if the defect has decreased. If this does not hold weithyanselfadapted relaxation factor to reduce the
defect. The Newton method is terminated if the Newton degsihaller than a corresponding discretization
error term, that no unnecessary digits are computed.

From the discretization of the PDEs result very large andsgpbnear systems of equations. These
are solved by the LINSOL program package that has also beesioped at the Computer Center of the
University of Karlsruhe. LINSOL comprises CG methods oftqulifferent types for the iterative solution,
and also contains a direct solver with optionally reducddrfithat can be used as preconditioner for the
iterative solvers.

FDEM and LINSOL have been developed from the beginning flicieht data structures on distributed
memory parallel computers. Here the distribution of theadatthe processors plays the decisive role. We
use a 1-D domain decomposition that can be executed autmihatind runs over dividing lines. For grid
refinement a new distribution of the data is executed afteln eefinement step. The exchange of the data
between the processors takes place by the quasi standard MRIFDEM is running efficiently on shared
and distributed memory computers.

FDEM is a program package for the solution of PDEs that Ungisue properties. To us no other
program package is known that unifies in a single code corhfpmoperties concerning the flexibility of
the solution method, of the solution domain, of the erroineste and of the parallelization.

As FDEM is a black-box solver, the user must enter the PDEs @Gundary conditions) and CCs as
Fortran code in given program frames. In Chapter 4 this isatestnated for the PDEs of Section 3.4.

In Chapter 3 three examples for the application of FDEM téedént technical problems are presented:
for the numerical simulation of the manufacturing of melldws, of the lubrication gap in a Diesel High
Pressure Injection Pump and of the oxygen diffusion in a PEM dell.
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Preface

1 Preface

On January 1, 2001 started the research project “FDEM: Végiteicklung und Anwendung des
Finite Difference Element Method (FDEM) Programmpaket@sldsung von partiellen Differen-
tialgleichungen” (the title of this report is the Englistaslation). It was a cooperative project
(Verbundprojekt) between the Computer Center of the Usitseof Karlsruhe (Rechenzentrum der
Universitat Karlsruhe), the Institute for Metal Formingchnology of the University of Stuttgart
(IFU=Institut fuir Umformtechnik) and three manufactuwef he IWKA-BKT (Stutensee near Karls-
ruhe), that were interested in the numerical simulatiomefrhanufacturing process of metal bellows
for which the IFU had to deliver the material equations, thighHPressure Diesel Injection Pump
branch of Bosch (Stuttgart), that were interested in thearigal simulation of certain aspects of
injection pumps at 2000 bar, and Freudenberg Forschunggdi@/\einheim) that were interested in
the numerical simulation of oxygen diffusion in the non-wo\Vliesstoff) layer of a fuel cell. The
two universities were supported by the BMBF (German Migistr Education and Research) under
grant 01 IRA 16A and 16B, the manufacturers financed thetrthamselves.

There were two main goals of the research project: a) theitwalof the FDEM program package
so that it could treat domains where different subdomaimksrwan-matching grids and could slide
relative to each other, and b) to demonstrate that FDEM csaliek difficult industrial problems for
which there is no standard software available on the comaienarket. The evolution according to
a) was needed to treat the problem of Bosch and will be neexddtire problems of IWKA-BKT
for multi-layered metal bellows.

We want to thank all institutions and people that coopertiadake this research project possible.
We hope that the result will help to develop in the future dretind more efficient technologies to
advance the German economy in the worldwide technical ctitigme

This research report is organized as follows: In Chaptere2RDEM is presented in all details.
Chapter 3 describes the application of FDEM to the threelprotareas of the industrial partners.
Chapter 4 is a type of User's guide for FDEM.
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The FDEM Program Package

2 The FDEM Program Package

2.1 Introduction

The basic purpose of FDEM is to deliver a robust and efficiéatlkbbox solver for the solution
of arbitrary nonlinear systems of elliptic and parabolicEaDunder arbitrary nonlinear boundary
conditions (BCs) on an arbitrary 2-D or 3-D domain. The danmmaiay be composed from differ-
ent subdomains with different PDEs and different non-matigrids. The subdomains may even
slide relative to each other. The solution method is the FIBMife Difference Method) with ar-
bitrary consistency order in time direction (for parabolic PDEs) and arbitrary cotesigy ordery

in space direction. The difference formulas are generateanounstructured FEM (Finite Element
Method) mesh, in 2-D triangles, in 3-D tetrahedrons, heheertame Finite Difference Element
Method (FDEM). It should be stressed that the FEM mesh (yngstherated by a commercial mesh
generator, e.g. I-DEAS, PATRAN) is only used for the struetaf the space, i.e. for the neighbor-
hood relations of the nodes. The solution method is purelylFD

The explicit character of the FDM (in contrast to the FEM)dthger with the fact that we can
generate difference formulas of arbitrary consistencyepadlows a simple and easy access to the
discretization error. The knowledge of the error in turoahl to adapt the solution by local mesh re-
finement to a prescribed relative tolerance, and it alloveség determine for each node the optimal
consistency order.

Itis evident that such a highly sophisticated algorithmnzsroe invented from scratch. We needed
more than a decade to develop all the building blocks thaffinadly used in FDEM. The basic
ideas were developed in the SLDGL (Selbstadaptive LosamgDifferentialgleichungen) program
package [1] that consisted of several subpackages foreliffaypes of elliptic and parabolic PDEs
(1-D, 2-D, 3-D, fixed or variable grid etc.). This was for smatomputers. Then came the vector
computers and we made a complete redesign, the FIDISOL grogackage [2] to vectorize the
code efficiently, see Chapter 17 in [2]. Up to here the PDEsweived on a rectangular domain
with rectangular grid. So the geometrical flexibility wa#l shissing. To improve the geometrical
flexibility we developed the CADSOL (Cartesian Arbitraryl8@) program package [3]. Here we
have arbitrary geometrical domain, but with a body-oridngeid. We developed the algorithm to
generate difference and error formulas of arbitrary coé@sesy order on an arbitrary set of 2-D or 3-D
points and we also developed the concept of dividing lineseat coupled domains with different
PDEs. For a body-oriented grid each node knows its neighioons the node indices. However,
the usually hand-generated body-oriented grid is stilh@erestriction. What we needed is such a
method on an unstructured FEM mesh.

This final goal was attained in the FDEM program package: Tiuetsire of the 2-D or 3-D space
is given by a corresponding FEM mesh that gives us full gedoadtflexibility. The neighborhood
relation between the nodes is given by the element list, we daviding lines with matching grid
and sliding dividing lines with non-matching grid to segaraubdomains with different PDEs. The
most challenging problem, however, was the efficient paliatition of such a complicated algorithm
on distributed memory parallel computers. Here we make amgpé of the basic principle of the
separation of the selection and of the processing of thetdasave communication [4]. A basic
paper on FDEM is [5], a progress report is [6].

This chapter is organized as follows: In Section 2.2 the gaiwa of difference and error formulas
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is presented. Section 2.3 tells how we estimate the digat&tn error that is used in Section 2.4 to
estimate the total error of the solution. In Section 2.5 tbéadaptation is discussed. Section 2.6
presents how different subdomains with different PDEs im@&é¢d by dividing lines. In Section 2.7
the extension to 3-D is discussed, Secion 2.8 presents thighaation for distributed memory par-
allel computers. In Section 2.9 we make some remarks to meatisolver LINSOL. In Section 2.10
are presented some “academic” examples to demonstratedbherfies of FDEM.

2.2 The generation of difference and error formulas of arbit rary consistency
order for space and time

FDM means that the solutiomis in each node locally approximated by a polynomial. Heredige
cuss at first the approximation in the space coordinates z. For the sake of simplicity we explain
the procedure for 2-D, i.e. far, y, and we discuss the extension to 3-D below. If we want a FDM
of consistency ordey we select for the approximation a polynomial of orgavhich means that we
get the exact solution if the solution itself is a polynonovébrderq. This is used for the test of the
FDM, see later section. The 2-D polynomial of ordds

Py(xz,y) = ap + a1z + agy + azz? + agxy + asy® + agx® + - + am_1y%. (2.2.1)
This polynomial hasn coefficientsa;, where

m = (q+1)(qg+2)/2. (2.2.2)

For the determination of thex coefficientsag to a,,_1 we needm nodes with coordinates:{, yo)
to (z;m_1,ym—1) - FOrq = 2 we needn = 6 nodes, see Fig. 2.2.1.

3
[ ]
o4
Ol °?
[ ] .1
5=m-1

Figure 2.2.1: Example ofm = 6 nodes for a polynomial of order= 2.

If we would directly determine a polynomial that interp@satthe 6 function values; of the
6 nodes, the function values would be “hidden” in the polyimmHowever, for the FDM we need
difference formulas where the function valugs(variables) appear explicitly. Therefore we deter-
minem “influence polynomials’P, ; of orderq. The influence polynomiaF, ; has function value
in node; and0 in the otherm — 1 nodes:

P,

q

= { 1 in nodei, (2.2.3)

0 in other nodes.
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To determine the coefficients, of the influence polynomiaF, ; we put into (2.2.1) the coordinates
(z;,y;) of them nodes and foj = i the value ofP, ; is 1 and0 for j # i. This givesm systems of
equations with the same matr{ and them columns of the unit matriX as r.h.s. These: systems
can be expressed in the following form:

i = 0 - m—1
equ: 3= 0 : 1-ap;+ zoai;+ R ygamfl,z‘ =
1 0
j=m—1:1 ap; +Tm-1a1,+ - +yl_1am-1,; = 0 L.
(2.2.4)

The solution of each system are the coefficients to a,,—1 ; of the i*” influence polynomialP, ;.
If we denote byM the coefficient matrix of the systems (2.2.4)

1 20 vy *3 moyo v§ --- Y
1 21 oy 23 myr vyl

M= ! ! ! (2.2.5)
1 Tm—1 Z/gn_1

and by A the matrix whose column are the coefficients of thé” influence polynomial, i.e. the
solution of thei*" system (2.2.4), we can write (2.2.4) and its solution

M-A=1 A=M"" (2.2.6)

which means that the coefficients of tié influence polynomial are th&” column of the inverse
M~ of the coefficient matrix\/ (2.2.5), which is an interesting interpretation of the i®esin our
case.

With the influence polynomials (2.2.3) we can define the patated function: which we denote
by u,4 (the indexd means “discretized” )

m—1

ug(z,y) = Z uqu,i(xa Y)- (2.2.7)
1=0

This interpolates with a polynomial of ordeitheu; in them nodes. If we need later for the sliding
dividing lines the function valua in some arbitrary point in the space, we can interpolate #soa
“variable” express it by the neighboring function valueggq2.2.7).

If we want difference formulas, we must differentiate (2)2correspondingly. E.g. if we want a
difference formula for,, which we denote by, 4, we use
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m—1

Oug 0P, i(x,y)
: =Y g ety 2.2.
Yar,d ox P Ui ox ( 8)

Similarly, if we wantu,, ; we used*uy/0z> or for u,, 4 we used*uq/dzdy.

Before we can use formulas of type (2.2.7) or (2.2.8) we masid# where we want to use them.
In the case of Fig. 2.2.1 we want to use them for the ribdehen we have to evaluate tii& ;(x, y)
in (2.2.7) or thed P, ;(z,y)/0x in (2.2.8) forz = zy,y = yo. Then these expressions become mere
numbersy; or §; and we have from (2.2.7) or (2.2.8)

x07y0 Z U, (229)

ua:d 900,210 Z ﬁluz
(2.2.10)

For each node we store the coefficients of the interpolatamdila and of all derivative formulas with
respect tar, y, zz, yy andxy, which are in 2-D 6 formulas witim = (¢ + 1)(q + 2)/2 coefficients,
each. Below we will see that we also must store corresporubegficients for the error formulas.

The next problem is: How to selegt “good” nodes around the evaluation node where we want
the formulas, e.g. nodein Fig. 2.1.1. The surrounding nodes should be as close athpmaround
the evaluation node because nodes that are far away in¢hegisandwidth of the resulting large and
sparse matrix for the solution of our PDE, and they may intoed‘false” (non-local) information if
the function values change rapidly. This latter point isrésson why on a coarse mesh high orgler
is “overdrawn”, i.e. gives larger errors than lower order.

The FEM mesh is usually generated by a mesh generator, eTqRAN, I-DEAS. In 2-D we use
linear triangles that are determined by 3 nodes, see Fig2.2TRe element list which we call nek list

elem. nek(e,k) 3
e k=1 2 3 |le—local
1 413 419 395 |egiobal
nel 512 496 211 k=1 p

Figure 2.2.2:lllustration of triangular element and corresponding edatrist (nek list).
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gives for each element the number of the global nodes for tbee8 nodes. Clearly there is also a
node list where for each global node its coordinatemdy are stored. This is the basic information
about the structure of the space. It should be recalled thaise a FDM on that FEM mesh. The
FEM mesh is only used for the neighborhood relation betweeles.

It is easy to invert the nek list so that we get the nekinv liseve for each node the information
is stored in which element it occurs, see Fig. 2.2.3. An inclaxnter vector with the length of the

node index )
nekinv
no. counter
1 4 26,12 5 <«— element
2 6 6 3 18 7,128 |<€—nNO0O.

Figure 2.2.3:nekinv list that gives for each node the element numbers islwihoccurs.

element list for each node is initialized by zeros. Then ooesghrough all node numbers of the
nek list and for each node that is met in this processing thegponding index counter of the node
is increased by one. So one knows for each node in how manyeatsrit occurs. Then an array
nekinv is defined with length equal to the number of nodes aidthvequal to the maximal value in
the index counter vector. Then one initializes again thexntbunter vector by zero and goes again
through all nodes of the nek list. For each node that is méndksx counter is increased by one and
the element number is stored in the corresponding columitiggoef the nekinv array.

The next problem is the determination of the nearest neighbg for each node, see Fig. 2.2.4.
We want to create a list fstring (first ring) where for eachadiie node numbers of its direct neigh-
bors on the mesh are stored, see Fig. 2.2.5. The nearesbaoeighg are all node numbers of all
triangles in which the node occurs, see Fig. 2.2.4. Thedhen(elements) are obtained from the
nekinv list, Fig. 2.2.3. For each triangle we get the node lmens from the nek list, Fig. 2.2.2. For
each node that occurs a “true” is entered in a logical list éxéends over all nodes (initialized by
“false”). Then for the central node also a “false” is enter&tbw all nodes that have a “true” are
entered in the fstring list, Fig. 2.2.5. Quite naturally ifirat step the “width” of the fstring list is
determined, then it is filled in a second step.

Now all the information about the structure of the spacedsest in the fstring list for the nearest
neighbor rings and the nek list and nekinv list could be @eletf the “central” node is at or close
to the boundary the nearest neighbor ring extends unsyrzalétrinto the interior of the domain.
With the information of the fstring list it is now easy to selafor nodes in further rings around the
central node, see Fig. 2.2.4.

For the determination of the: coefficients of them influence polynomials from the: linear
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up to
order

ring

nearst neighbor

Figure 2.2.4:1llustration for nearest neighbor ring and ring search fodes.

systems (2.2.4) we need for the computation of thex m matrix M (2.2.5) m nodes. These
nodes should be as close as possible to the central nodeskepades far away introduce false
(non-local) information. So we search for nodes in surrangdings around the central node, see
Fig. 2.2.4. Naively one would search only for nodes. However, on straight lines the nodes are
linearly dependent. Then the matd{ would be singular. Therefore we do not searchrfonodes
sufficient for the order; but for the ordery + Ag. Usually we selecAg = 4 because, as we will
see below, we also generate formulas of okger2 for the estimation of the error and we thus need
additional nodes because of the linear dependencies. &t ihstill another request: If in Fig. 2.2.4
the “central” node would be at a boundary, we need for therogde- 2 at least 3 nodes in the

node index
no. counter fstring
nnr
1 B 2,5 3,810 12 -«+— node
2 8 1,3,7,6,9,5 13, 11 - nr.

Figure 2.2.5:fstring list that gives for each node the node numbers of #erest neighbor ring on the

mesh.
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x-direction, i.e. 2 rings, and with the order+ 2 = 4 for the error estimate 4 rings, we therefore
search for the nodes in up o+ 2 rings. Which limit is decisive, either the number of nodedor

q + Agq or for the number of ringg + 2 depends on the situation of the central node in the mesh. We
have now availablen + r nodes.

For the gathering of the nodes of the next ring (the first righie nearest neighbor ring) one
creates a logical vector that extends over all nodes (fdriloised memory parallelization over all
local nodes, see later section). It is initialized by “fals&hen one goes through all nodes of the
previously selected ring and enters a “true” in the positball nodes of the nearest neighbor rings
of these nodes. So these nodes are “registered”. Then osdlgoagh all nodes of the two previous
rings and enters a “false” in the corresponding positiorheflogical vector to exclude these nodes.
The remaining positions with “true” give the numbers of tloeles of the next ring. This can be seen
if one looks at Fig. 2.2.4.

Because we have selected more than the necessary numbenades there is the problem to
select from then + r nodes then best ones for the matrix/. The situation is depicted in Fig. 2.2.6.
As mentioned above we want narrow formulas, i.e. with nodiesecto the central node. However,

ring

m "M" limits

Figure 2.2.6: lllustration for the selection of “good” equations from the m+r equations.

because of linear dependencies on straight lines there otdyerinformation for the coefficient that
should be computed by the actual row in the Gauss eliminagtioness for the solution of (2.2.4).
In such a situation the pivot (diagonal) element (by whichstrhe divided) is zero or very small.

Therefore we must use row pivoting: we search for the largbsblute value in the pivot column
below the diagonal element and exchange the correspondimgumd the old pivot row. However,

the new pivot row may belong to a node that is far away from #reral node. Therefore we arrange
the nodes (equations) in thie: + r) x m matrix “M” (that contains the desired matri¥) in the
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sequence of the rings, see Fig. 2.2.6. We prescribe a ¥glug and search for the pivot only in the
equations of the actual ring. We allow a crossing of a ringtlonly if

| pivot | < €pivot- (2.2.11)

This procedure gives narrow difference and error formuliakigh quality. The parameterdq
(usually Ag = 4) ande,;,: are key parameters for the generation of the formulas. The et
epivot May depend on the type of grid and of the orgerSo by “playing” with the value ot ;.
one may improve the formulas which can be seen directly bybéteer error estimate (see below).
Rather robust values arg;,.; = 1072,5 - 1073,1073 for the ordersy = 2,4, 6. This algorithm
has been developed and used for 2-D examples. Howeveteil fair certain 3-D examples. So we
developed an alternative algorithm which will be describetbw. It should be mentioned that the
inversion of M is executed by the Gauss-Jordan algorithm.

However, we want to mention at first two further points for toenputation of the matrix¥7” of
Fig. 2.2.6 which is generated from + r nodes according to the prescription (2.2.5), i.e. a fow
consists ofl, z;, y;, 22, - - - ,yi. As we have a black-box solver we never know what are the salue
of the coordinates and thu$, y/ may have very large or very small values. Therefore we toansf
the set of nodes that has been selected, e.g. the nodes & Eif).so that the central node is in the
origin and the largest- or y-coordinate is att = +1 andy = +1, see Fig. 2.2.7. I, b are the

Ay i y'
3|1
03 ®
b *2 £l 2’
4 S .0 , o
------- L e —p  ¢¢ @ .,
X Yo -1 1 x
g -
H ° 1 X 5’ s 1
5 . = |

Figure 2.2.7: lllustration for the coordinate transformatién, y) — («/,7').

maximal distances of a node iny-direction from the central node and, yy are the coordinates of
the central node, we have

1
r=ar' +x9, o =—(x—x),
a
1
y=b'+yo, ¥ =7y —10) (2.2.12)

10
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We determine the influence polynomials in the transformedesy, i.e. we form the matrix¥{”
with (2.2.5), but witha’,y’ from (2.2.12). The resulting coefficients aig and the polynomial
(2.2.1) now writes

Py(r,) = dy+ 5 (- (0 = 20)) + ab(o (5 = ) + 5 (0 —w0)? +oo (2243)
1

a5 0~ 90))".

Because the central node in the transformed system is thi@ diar the influence polynomial of the
central node we havg, = 1 and for the other influence polynomials we haye= 0.

The next problem is the normalization of the matrix/". As we use a pivot thresholel,;,. in
(2.2.11) for the crossing of a ring limit, it is useful to naatize the linear system (2.2.4) that has
now the matrix ‘A" of Fig. 2.2.6. Therefore we normalize to absolute row sumatd¢o1, i.e. we
divide each row by the sum of the absolute values of the eleyarihe row.

The extension to 3-D is straight forward. Here we use tettaires for the structure of the space.
A 3-D polynomial of ordery is now

Py(x,y,2) = ap + a1x + axy + azz + asx? + aszy + agrz + a7y’ + (2.2.14)
+agyz + a922 + a10x3 +--+ am_lzq.

It has

m = (¢+1)(qg+2)(qg+3)/6 (2.2.15)

coefficientsa; that are basically determined as in 2-D. For the selectioth@fodes for the ma-
trix “ M” , Fig. 2.2.6, we have now nearest neighbor balls, but fopéitity we will call them as in
2-D “rings”. We select nodes that are sufficient for the orgler Aq and we use at leagt+ 2 rings
(balls), resulting in thém + ) x m matrix “M”.

Above we described the algorithm how to select fromsthe- » rows of “AM” m good ones with
the criterion (2.2.11). This strategy that worked excdliem 2-D failed mostly in 3-D (in some
examples it worked). So we generalized the condition (2)2id the following way: during the
solution process for the inversion of the matrik/” of Fig. 2.2.6 we accept an element as pivot in
the pivoting process, if

| element > min(epiyor, @ - PIVOL,,,,, , PIVOL,,, ;). (2.2.16)

Here epivot is that of equ. (2.2.11)q is an appropriate parameter in the range? to 101,
pivotmeqn IS the mean value of the absolute values of the pivot canelidat the pivot column,
andpivot,, ., is the maximal value.

However, if we go down in the pivot column to select the pivigtneent, it depends on the se-
guence of the nodes in the pivot column. Remember that the io¥he matrix V" are created by
corresponding nodes that have been gathered in the rind¥ ¢2-balls (3-D). For this sequence we
have three types of strategies:

Arrangement:

1. according to single rings, so the nodes have been gathered

11
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2. combining two rings, e.g. ringand2 are treated like one ring, ringjand4 as one ring etc.,
3. all gathered nodes are considered as one unit.
Sorting (in the corresponding arrangement):
a. for global node number,
b. for distance to central node,
c. atfirst sortingz., then sorting.

Note: the gathering on the parallel processors is made édpttal node numbers, and for a regular
grid there are several nodes with the same distance. If wedaaplyc., on a parallel computer the
results may be different for different number of processors

Search:
1. search linearly (independent of ring limits) until anmeént is found that fulfills (2.2.16),

2. search max. absol. element in the ring (for arrangerhgndr in double ring (for arrange-
ment 2.), accept as pivot if (2.2.16) is fulfilled, else go &xtring/double ring.

In many “critical” examples the strategy2./c./1.” for arrangement, sorting, search has been
proved to be the best one. If we have a class of problem, eegm#nufacturing of metal bellows,
we can easily optimize the parametelin (2.2.16) by looking at the error estimates. In this case
a = 0.75 - 107! was optimal. For the Bosch problem in axisymmetric cylindricoordinates
a = 0.01 was the best value, but there ist a large good range.

We have learned in the solution process of the extreme teghpioblems with mesh ratios of
1 : 10000 that the selection of the appropriate nodes, above all oredugrids, is a very critical and
central point. The error estimate gives the insight in thisaion process and shows the way to the
best selection.

One should imagine what happens in 3-D: E.g. fdi0a x 100 x 100 unstructured tetrahedral
FEM mesh, generated by a mesh generator, for each of the dienmbdes the nearest neighbor
ring (ball) must be determined, and from that the necessrgfsiodes for thé¢m + r) x m matrix
“M". For each ‘M” the m appropriate nodes for the difference (and error) formularbitrary order
g must be selected with the criterion (2.2.16). This must beedor interior nodes and boundary
nodes. As FDEM is a black-box solver one never knows what raaser puts into the algorithm.
Later we discuss the selfadaptation of the mesh and alse oftierg. So the mesh and the difference
formulas may be changing during the solution process. Adb¢hitems necessitate an extremely
robust algorithm. In such a situation it is mandatory to hameerror estimate that tells us if our
solution is reliable and how good it is.

Here are some remarks to “mesh-free” methods. We use in ZDridngular and in 3-D the
tetrahedral FEM mesh only for the structure of the spacegterthine the neighborhood relations
between the nodes. If we have determined for each node itsstageighbor ring (ball), we forget
the FEM mesh. From this point on we have a “mesh-free” methatidperates only on the nodes.
So one could use instead of the FEM mesh an arbitrary set ofgimi the 2-D or 3-D space, with

12
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the information which of the points are boundary points. Mbae had to invent an algorithm to
determine the nearest neighbor ring for each point. Thelsshput most expensive algorithm is the
search for the distance. But then there is the question halistdbute the nodes in the computa-
tional space. Such a distribution will be made efficientlyalyiangular or tetrahedral grid that gives
automatically the structure of the space. And thus we ark baour FDEM. Up to here we have

/_\.f;' i p - 1

& a ® p=2

® + . @ p=3
iz ti2 ti-1 tj

Figure 2.2.8: lllustration for the difference formulas of ordeifor w;.

discussed the generation of 2-D or 3-D difference formutaspatial direction. For parabolic PDEs
we need 1-D formulas in time for the time derivative We use backward difference formulas of
consistency ordep that lead in FDEM to fully implicit methods for parabolic eations. Fig. 2.2.8
shows symbolically the formulas for the orders- 1 to 3. For stability reasons we use the formulas
only up to the ordep = 5. The generation of such 1-D interpolation and differencenfdas of type

Py(t) = by + bt + bt + -+ + byt? (2.2.17)

has been presented in detail in [1]. We use the Newton int&ipn polynomial for the generation of
thep+1 influence polynomials that are easily determined by Nevgteaheme of divided differences.
Basically they also could be determined by a 1-D version ofspace method.

2.3 The estimate of the discretization error

In Section 2.2 we have explained how we can generate differtarmulas of arbitrary consistency
orderq in space and ordes in time. This can be used to estimate the discretizatiorr.efirbis is
explained at first for the spatial formulas.

If we denote e.qg. the difference formula for the derivativedy u,, 4 (indexd means “discretized”)
or more precisely by, 4, which indicates that it is of consistency ordg(exact for a polynomial
of orderg), we estimate the discretization erfyr by

Ay = Uz d g2 — Uz,d g (2.3.1)

13
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i.e. by the difference of the difference formulas of orgef 2 and actual ordeg. The exact dis-
cretization error is

dy = Uy — Uy, q,q- (2.3.2)

So we have for the estimate replaced the unknown derivativey a higher order formula,, g ;2.
Numerical investigations have shown that for the type ohtea” formulas the odd orders are not
better than the preceding even orders. Therefore we estithaterror of the actual orderby the
difference to the ordey + 2.

But be careful: The estimate (2.3.1) assumes implicitly tina formula of order; + 2 is a “better”
formula, which means that it is “closer” to the derivativg. However, if we have a coarse grid
relative to the changing of the solution and use a high oralendila with many nodes{ nodes, for
2-D given by (2.2.2) and for 3-D by (2.2.15)), nodes that ardrom the central node may introduce
false information. This leads to the experience that on eseogrid the higher order may give worse
results than the lower order; the higher order is “overdfawast this effect gives us a built-in self-
control of the estimate (2.3.1). If we have large errorsdhigm large difference between ordet 2
andgq. If on the other hand there is a small error, we can trust dimate. This was a very beneficial
experience that we observed when we applied for the first tmestimate (2.3.1). It is trivial that
the type of estimate holds for all other derivatives, e.g,, u.., etc.

This effect of overdrawing an order leads us to the decidiahwe use for practical reasons only
the ordersy = 2,4,6. For the error estimate of the order= 8 we needed the formula of order
g = 10. Such a formula is usually (highly) overdrawn on practicasmmes for technical problems.
So we limited the order by = 6 (error estimation by; = 8). The error estimate gives us also the
possibility to check which order is the best one. We will sgted that we use this property to select
in a selfadaptive algorithm an own individual order for eacke. Looking at the discretization error
estimate allows us also to select optimal parameters fosalextion of the nodes for the difference
formulas, i.e. the parametey;, in (2.2.11) andwx in (2.2.16). We still see below in the error
equation how the mere discretization errors propagateeimtos of the solution.

For the error estimate we do not use explicitly the deriesiof order; + 2 andq as seen in (2.3.1)
but we generate directly error formulas. If e.g. the formfolav,, 4,2 has coefficients; and for
uy 4,4 Nas coefficienty; we have

dx = aguo +ayjuy + -+ Am(g+2)—1Um(g+2)—1 — (233)
—(boug + brug + -+ + bm(q)_lum(q)_l).

Herem(q + 2) (m of ¢ + 2) denotesn for 2-D from (2.2.2) and for 3-D from (2.2.15) whegehas
been replaced by + 2, andm(q) is (2.2.2) or (2.2.15). Then we have

dy:= (ag = bo)uo + (a1 = br)ur + -+ + (Am(g)-1 = bm(g)—1)tm(g)—1 + (2.:3.4)
Fam(q)Um(g) T F Am(g+2)—1Um(g+2)-1-

The corresponding coefficients are directly stored;a® that we have for the evaluation

dy = Couo + C1u1 + **+ + Cr(g42)—1Um(g+2)—1- (2.3.5)
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2.4 The black-box solver and the error equation

As mentioned above we use for the time derivatiydackward difference formulas of order= 1
to 5, see Fig. 2.2.8. Here we estimate the discretization eyrthiédifference to the next ordgr-1:

dt = ut,d,p-i—l — ut,d,p' (236)

For this estimate basically hold all the arguments that we kléscussed for the spatial error estimate.
We also store directly the error coefficients like in (2.3.5)

2.4 The black-box solver and the error equation

We want to solve arbitrary non-linear systems of 2-D or 3-Dapalic and elliptic PDEs under
arbitrary non-linear boundary conditions (BCs) on an aabjt unstructured mesh. The domain of
solution may be composed of subdomains with non-matchiiatg gnd different PDEs and BCs. The
user may prescribe a relative maximal ertalr (tolerance) and in a selfadaptive process the mesh is
refined and the order optimized to get the desired accurdegrlg, in 3-D such a process is always
very expensive in computation and storage. It should be iovegd that in the equations (and quite
naturally in the BCs) there may not be derivatives, so thatnelide algebro-differential systems.
This is a very ambitious goal and we will show how we can sohig problem quite naturally and
evidently by the FDEM.

The most general operator that we admit for the PDEs and BG83, with the unknown solu-
tion u(t, x,y, z) has the form:

Pu = P(t, Ty Yy 2y Uy Uty Ugy Uy y Ugy Uz Uyyyy Uzzy Uy, Uz, uyz) =0. (2-4'1)
If we have a system of, PDES the solution, and the operatoPu havem components:
Ul Plu

u=| ... |, Pu= . (2.4.2)
Um PLu

If ¢ is included, the system must be parabolic, withobittmust be elliptic. Basically it should also
be possible to solve hyperbolic equations if they do not rdiseontinuities, but we do not have
experiences in that area.

We explain the solution method for 2-D and discuss the eidant® 3-D later. If we dropz in
(2.4.1) we get the 2-D operator for PDEs and BCs:

P’LL = P(t7x7y7u7ut7u1‘7uy7u1‘1‘7u1‘y7uyy) = 0 (243)
Because it is non-linear in and its derivatives we linearize with the Newton-Raphsoihioa by

the approach

we=ut) = 4 4 AW (2.4.4)
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but we immediately drop the iteration indexWe get a linear PDE or BC for the Newton correction
function A (it is not yet discretized):

O0Pu 0Pu O0Pu O0Pu
A= ———Au— —Auy — ——Auy — -+ — Aw. —
QAu ou b ouy b Ouy b Oty Hyy
= P(t,z,y,u, U, Ug, Uy, Ugg, Ugy, Uyy)- (2.4.5)

Here e.g. Au, is the z-derivative of the Newton correction functioAw. The r.h.s. P(--)
is formally (2.4.3), but here we have dropped the Newtoraiten index so that it is in reality
P(t,z,y,u®,u{”),-..). This is the Newton residual or Newton defect. It is zero oifily: is
the solution, it is non-zero far") # w.

ThedPu/0u are the Jacobi matrices. For a scalar PDE (one unknown \@Yials a scalar value.
If we have a system of, PDESs,u and Pu havem components (2.4.2) and e.g.

oP1u L. oP1u
8Pu aul,x aum,z apu
= e = ! (2.4.6)
Ouy OPnpu .. OPnu auk,a}
aul,w aum,z

is am x m matrix and likewise the othétPu/0u. . They represent the dependencies of the operator
Pu from the unknown functiom and its derivatives and are introduced by the linearizgpimtess.
Now we discretize the linear Newton-PDE (2.4.5) using diffece formulas of type (2.2.10). For
the derivatives ofAu we do not use error estimates because these are errors isf @ncbthus small
of second order. This discretization generates a large paude matrix),. Fig. 2.4.1 illustrates
how for a scalar PDE the ten%%Aux contributes to row of the matrix@,, wherei denotes the
central node of the formula foAu,. For a system ofn PDESs there aren x m blocks instead of
scalar elements.
The derivatives in the r.h.sPu of (2.4.5) are replaced by difference formula plus erroineste,

e.g.

Uy = Ugpq+dg (2.4.7)

and we linearize in the error estimate terms which introdwaggin Jacobian matrices of type (2.4.6).
These additional error terms on the “level of the equatia®’, on the consistency level where we

approximate a differential equation by a difference equmttreate corresponding error terms on the
“level of the solution”. If we arrange all error terms on thie.$. we get therror equation

level of solution
Aug = Aupy + Aup, + Aup, + Aup, + Aup,, =
Q' [(Pu)a+ Di+{ Dy + Dy + Dyy }]. (2.4.8)

space key error

level of equation
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Q;l is the inverse of the matrig; of Fig. 2.4.1, but it is never computed explicitly (it would b full
matrix), (Pu)4 is the “discretized” Newton residual, i.e. the r.hBu in (2.4.5), where discretized
means that all derivatives have been replaced by differiamorulas. TheD,, are discretization error

terms, e.g.
p, = (2Pv dy, Dy = OPu) ) (9Pu) 4 (2.4.9)
Ouy d Ouy d Oy d

The terms in the brackets in (2.4.8) are error terms that eaolputed on the level of the equation.

The corresponding errors of the solution are arranged abege source terms. So on the level of the

solution the total erroAu, has been split up into its parts resulting from the terms énttitackets.
Aup, is the Newton correction that results from the Newton residiu ), and is computed from

Q4Aup, = (Pu)y. (2.4.10)

Here we see why we do not neéy‘l‘1 explicitly. The Newton correctiol\up,, is the only error
term that is in each Newton step applied to the solution aliagrto (2.4.4). The other error terms
in the first row of (2.4.8) are only used for the error contiblwe would apply these terms we had
(eventually) a “better” solution but no longer an error mstie.

D, (2.4.9) shows transparently the contributionaetliscretization errors to the solution: The
discretization error estimate’s of u,, 4 andd,, of u,, 4 are multiplied with their Jacobian matrices,
added and (formally) multiplied b@;l to transfer the error from the level of the equation to the

oPu oPu
—

Au, (cxlAuvl +a,Au, +---+a,Au, +)

ol Al
12 ‘ nodes
|
|
|
|
|
|
|
|
|
|

Figure 2.4.1:lllustration for the generation of rowof the matrix@, for a scalar PDE.
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level of the solution. This possibility to follow explicitithe propagation of all errors is the essential
advantage of FDEM.

In the error equation (2.4.8) the space errors in the brigetay the role of a key error. For given
solution, grid and space orderthis value is given in each node. In the sense of error baigrici
does not make sense to have the other terms in the bracketslyn@, (for parabolic equations) and
(Pu)q larger or much smaller. If they are larger, they destroy teigacy, if they are much smaller,
they only waste computation time because the accuracy isdb&rmined only by the space key
error. So the error equation not only makes transparentraltsebut tells us also how to balance the
different errors for an efficient solution of the PDEs.

2.5 The selfadaptation for space and time

Let us assume we have a systermoPDEs and a grid with,,,; nodes. Then we have= m - n,,q
unknowns. If we want to discuss accuracy we must have a singteer that characterizes the ac-
curacy of the whole field of solution in the nodes. Therefoeeimtroduce normg - ||. Because for
technical applications always the maximal values, e.g.imalxstress or velocity, are relevant, we
introduce max norms. For the solutiap (indexd means “discretized”) we use

lugll = max  |ug; k|, (2.5.1)
i=1m
kj = 17nnod
i.e. the maximum over ath components and atl,,,; hodes.
For the errors we want to have relative error norms. Howdger black-box we never know if a

solution component has a local zero value which makes a ftetative error unfeasible. Therefore
we use “global relative” errors. For a componetie global relative error is

mazx |Aug; k|
k:Lnnod

HAudel,i (252)

max |ug;k
k=1,nn04
i.e. we have the max error of the componeémelative to the max of that component. If we have
a zero or very small component in the whole domain, even toisad relative error does not make
sense. This allows to check individually the accuracy ofdbmponents. The global relative error is

then

||AudH7“el = maIHAudHrel,ia (2.5.3)
i=1,m

i.e. the max of the global relative component errors.
The Newton correctiod\u p, is computed from (2.4.10). In the sense of error balancir(@.#.8)
we stop the Newton iteration if

[(Pu)all < 0.1 -max(0.5 tolg, [[{}) (2.5.4)
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with tolg from (2.5.13) (see explanation there) and whigrelenotes the space key error, see (2.4.8)
and 0.1 is a “tuning factor”. This means that we must comgheespace key errdr} in each Newton
step. However, as we need it nevertheless after the lastddestép for the computation of the error,
this may not be too much additional computation time. Thatswh of (2.4.10) for the computation
of a Newton correction is much more expensive.

Here we should mention that we have designed a very robustddeaigorithm: After each New-
ton step, before we accept a Newton correction, we check if

1Pl < P I, (2.5.5)

i.e. we check if the Newton residual has decreased. If thés dot hold, we use instead of (2.4.4) a
damped Newton method by

u&yﬂ) =ul + wAugu), (2.5.6)

where the relaxation factar initially is w = 1. If (2.5.5) does not hold, we repeatedly put= w/2
and we try again until either (2.5.5) holdswr 0.01. In the latter case we stop the Newton iteration
and print out “Newton iteration does not converge”. «f< 1 we have no longer the quadratic
convergence of the Newton method. However, if we are closegmto the solution we must have
w = 1 and quadratic convergence.

Another numerical engineering decision is to use the “siinepl’ Newton method, i.e. to iterate
with the “old” matrix Q4, if we have fast convergence, i.e. if

I(P)Y ) < 0.1)/(P)Y| (2.5.7)

holds. Then we do not compute a new matgy. If we use a direct solver for (2.4.10) we do not
have to repeat the LU factorization in such a Newton step. é¥aw then we cannot expect (fully)
quadratic convergence.

Eventually the computation of the Newton correctitsn p, from (2.4.10) is executed by an itera-
tive solution of the linear system. # denotes the index of the Newton iteration we want to solve

QuAuly) = ()Y Y. (2.5.8)

If this system for the/-th Newton correctlomu}) is solved itself by an inner iteration with iteration
index u.. we stop the inner iteration if the foIIowmg condition heid

1QuAul — (P)Y Y

— <& = (2.5.9)
(P~
=1\ 2
[Aup, | 0.8]1{} 0.4tolg.
= 0.1maz =) ’ -1, -1
lug |l 1(Pu)g I 11(Pu)g
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We want to explain the three terms in the brackets. For thetérm we assume that we want to
solve iteratively a linear systemiz = b. In thek!” iteration step we havey, andr, = Az, —b. The
error ise;, = = — x,. Multiplication by A and adding/subtracting oéfyields Ae, = Ax — Az =
Ax —b— Axp + b= —ry becausedz — b = 0. In this notation the I.h.s. of (2.5.9) corresponds to

Irell _ 1= Aewll  IAlllexll _ llexl]
] [ Az] [[A[[l] ]

At the other hand for quadratic convergence of Newton's omkttve expect an erroAz(") ~
(Az=1)2 or a relative error nornf|| Az~ ||/||z*~D|))2. This means that the next Newton
correction will change the digits in this region so that iedaot make sense to compute the solution
more accurately than to these digits. This explains the tfrsh in the brackets. Term two in the
brackets means in a similar way that it does not make sensenipute digits that are below the
discretization error. Term three uses in the same way tleeaiotetolg on the level of the equation
that is obtained from the user-prescribed relative tolegan as is explained below in equ. (2.5.13).
The coefficients 0.1, 0.8, 0.4 are typical numerical engingduning factors.

So we can summarize the meaning of (2.5.9): It does not malgede compute in the iterative
solution of (2.5.7), i.e. in the iterative computation of aWton correctiorﬂuﬁ), more digits than
are overwritten by the next Newton correction or are moreugte than the discretization error or
the prescribed accuracy.

As we do not have a previous Newton correction for the firsatten we take

e*=0.1 for v=1 (2.5.10)

and we restrict for practical reasofisby

0.1>¢*>1074 (2.5.11)

Before we discuss the selfadaptation for time and space e@ aescale of the accuracy on the
level of the equation in the sense of the error equation§R.4-he user prescribes a global relative
tolerancetol for the solution and requests

HAudHrel < tol (2.5.12)

with || Augl.¢; from (2.5.3). What is a corresponding valtigg on the level of the equation that is
needed for the control? The admissible errotois: ||u4|| becauseol is a relative error. We know
from the solution of (2.4.9) how the Newton resid(&, ), is transformed from the level of the equa-
tion to the Newton correctiod\up, on the level of the solution. We assume that the same relation
holds between the errool - ||ugq|| (level of solution) and a corresponding valtigg on the level of

the equation and we make the numerical engineering approach

|(Py)all
tolg := tol - ||ugq|| :—— . (2.5.13)
el A
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This value is used in the selfadaptation process.

Now we want to discuss the selection of the step aizeand of the consistency orderin time
direction for parabolic equations. Here we use backwardrmdifice formulas of the type of Fig. 2.2.8
and error estimates of type (2.2.3). At a time stegre want to compute a time incremeft,,, ; for
the next time step that makes the size of the time discriizatror termD; (2.4.9) roughly 1/3 the
size of the space key error terfy in the error equation (2.4.8) in the sense of error balanaing
roughly 1/3 the size ofolg. If we have equidistant time step si2g the time discretization error is
~ (At)P. Therefore we request, ifdenotes theé'" equation of a system of. equations,

1 1/p
At = min | smazx(||{}il], tolg) /|| Dell - Aty. (2.5.14)
i=l,m | 3 k
However, this is a prediction for the situation at time ; that may fail. Therefore we check before
we accept the new solution if

|ADy || < maz([|{}:], tolg) (2.5.15)

holds for alli and if not we drop the solution and compute from (2.5.14) a Ay, 1, now using in
the r.h.s. the infomation af, ;. The user can prescribe limitst,,;,,, Atynqq fOr At.

The control of the ordey in thet-direction is made in the following way: Thediscretization error
terms|| D, ;|| (2.4.9) for them components are computed for the actual orgeand the neighboring
ordersp£1. If the error term of the actual ordgris the smallest for all componentsthe ordem is
optimal and is used for the next time step. If the error ternttie orderp + 1 is the smallest one for
all components, i.e. the error decreases with increasing order, the grdefl is used for the next
time step. If on the other hand the error term for 1 is the smallest one for onlyne component
1, the orderp is “overdrawn” and the ordey — 1 is used for the next step. As mentioned above the
orderp is limited to1 < p < 5 for stability reasons. If we took off the upper limit for testhe
method only occasionally selectpd= 6 and returned quickly tp < 5.

Clearly the starting is with ordes = 1. The user prescribes an initial valdet;,,;;. With this
At 2 “blind” steps are executed. Then with the solution fgrtq, 2 the error fort; can be
estimated. If the condition (2.5.15) does not hold, thetsmiuis dropped and from (2.5.4) a new
is computed. This procedure is repeated until (2.5.15)lféléa. The algorithm for the optimization
of the ordem can start ats.

Here we want to discuss the optional possibility to computgodal error estimate in the time
direction. At each time stef there is a timéocal error that can be computed from the error equation
(2.4.8). However, be careful: How do we discretixa; in the Newton differential equation (2.4.5)?
If we look only at the errors at timg,, the preceding values at tinng_,, are considered to be “exact”,
i.e. we do not consider their errors. In this case we havedridhmulas of types of Fig. 2.2.8 for the
discretization ofAu; in (2.4.5) only the term fot; as nonzero. Théw - values for preceding_,
are considered to be zero. This gives from (2.4.8) the latal.e

If we want to follow the historyof the local errors in time, i.e. how they propagate in time, w
must discretize\u; in (2.4.5) with all the previous error valuésu for t;_,, i.e. in the formulas for
Awy of type of Fig. 2.2.8 we have to consider the previous errofiles. These error profiles must be
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stored like the solution for the preceding time steps. Weaghastore 7 profiles because of the error
estimate by the ordey = 6 for the maximal actual ordes = 5. This procedure then delivers the
globalerror in time that gives the development of the discretiratind linearization errors in time.
The corresponding error equation is formally (2.4.8), bffeds from that for the local error by the
contribution of preceding errors in thsu, discretization.

These time discretization items are relevant only for palfalequations. Now we return to the
discussion of elliptic equations.

The next problem is the individual control of the space obgrarately for each node. This is a
unique feature that becomes possible only by our simple &plic# estimate of the discretization
error. Let us consider a nodeand ask: What is its optimal (space) ordér Here we must at first
mention that we consider for practical reasons only thersrge= 2,4,6. Numerical tests have
shown that the odd orders do not give better results thanrdfmegding even orders. So we consider
only even orders. The error of the ordee 6 is estimated by the order= 8. Practical experience
has shown that for common mesh sizes the order 8 is mostly “overdrawn” so that the error
estimate fails (built-in self-control). This has alreadselb mentioned in Section 2.3. So we do not
consider orderg > 6. Basically arbitrary orders could be used.

For the optimization of the order we compute at nodee space key error terf (see (2.4.8))
for the orders; = 2,4, 6: [[{}||;,q=2,4,6. We take the higher order only if

H{}Hi,higher order S f : H{}Hi,lower order (2516)

wheref is a numerical engineering tuning factor. Presently we take

foes = 0.5, fie6 = 0.01, (2.5.17)

which means that we take the order 4 only if its error termgs khar0.5 that of the order 2 and we
take order 6 only if its error term is less than 0.01 of thathaf brder 4. The reason is that higher
order has more nodes in the difference formula which meaatsttiere are correspondingly more
nonzeros in the large and sparse mafpix see Fig. 2.4.1, which makes the solution of the linear
system (2.4.10) more costly. This holds more pronouncethtorder 6 so that we accept this order
only if its discretization error term is significantly sn&llthan that of the order 4.

This unique feature to have an individual optimal order factenode is rather expensive because
we must store for each node the coefficients of the differemak error formulas for all 3 orders
2,4,6. However, it gives the most reliable error estimatmabse the method checks in each node if
the order would be overdrawn which is visible by a larger ieteom for the higher order.

The next point is mesh refinement. The user prescribes algielbéive toleranceol and wants
for the solution the accuracy requirement (2.5.12). If thigdl grid does not fulfil (2.5.12) the only
possibility is to refine the mesh where it is necessary. Bez#e control is made on the level of the
equation (consistency level) we again need the vadlgthat is computed by (2.5.13) frotel. We
check in each node

if |[{}[li > sgrid - tolg — then node is refinement node. (2.5.18)
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We have again a tuning factey,.;; which depends largely on the type of problem to be solved so
that no special value can be recommended. Eventuglly = 10 may be a starting guess. If the
global relative error (2.5.3)Auyqll,., > tol and for the given value of,,.;; no refinement node is
found, s4.iq is too large and we pu,,;q < 0.1s4,.44, i.€. We reduces,,;; by a factor of 10. This
procedure is eventually repeated until at least one refinenaae is found. So we have ultimately a
selfadaptation also for,.;, itself.

If in a triangle at least one node is a refinement node, theseolgthe triangle are halved by 3 new
nodes so that 4 similar triangles result, see Fig. 2.5.1. veheeu, at a new node is computed by
a 2-D interpolation formula of ordey (2.2.9), the order of the new node is the min of the order of
its two neighbors. If in Fig. 2.5.1 the left neighbor triaaglf the original triangle is not refined,

value form

2-D interpol.
(4) /

oder = min( left, right )

Figure 2.5.1:lllustration for the refinement of a triangle.

this triangle has 2 edges with 2 nodes and one edge with 3 radtiesthe refinement step. If in
a following refinement step an adjacent small triangle isragafined, there would be more than
3 nodes on an edge of the large triangle. Therefore we havedirfor reasons of data organization
the number of nodes on an edge to three. If more than threesrmrdan edge would be created, the
larger triangle must also be refined, but now not for reasacofiracy but for reason of data storage
scheme. This induces a refinement cascade.

A sophisticated algorithm has been developed for the remermascade. For each triangle its
refinement stage is stored:means not refined, means refined once etc. A logical list is created
where for each triangle is noted in which refinement stageuitrbe refined. This list has the fol-
lowing shape:

element| refinement| logical list for refinement stages
number stage stage 0| 1 2 3
1 1 false | true | false | false
2 0 true | false| false | false
3 3 false | false | false | true
4 2 false | false| (true) | false
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This means e.g. that element 1 is refined in stadpecause of accuracy. Element 4 is refined
because of the cascade. Before the refinement is made, ieckedth if the triangles that must be
refined have neighbors that are of one refinement stage lawethat are larger. Those triangles
must also be refined that there are not more than three nodesecedge.

The search for such neighbors is as follows: Investigatetiee edges of a triangle. If there are
3 nodes on an edge no further search at this edge is needadsbdbare is no larger neighbor. At
other edges with the inverted nek list and logical lists Far triangles of the edge nodes the neighbor
triangle is found and thus its refinement stage is known. $e@&ch must be executed after each
stage of the refinement that starts with the largest elenamtsends with the smallest ones. At the
time of writing this report a doctoral thesis is in prepasatthat describes in all details the mesh
refinement on a distributed memory parallel computer, seraRle3 at the end of the References.

2.6 Dividing lines

In many technical applications the whole (global) solutiesults from the solution of coupled sub-
domains with (eventually) different PDEs. In Fig. 2.6.1 ved e.g. a block composed of 4 different

coupling conditions  (CCs)

©) a @
PDE,| PDE, P |

~
P D E4 P D E3 N quadr;;g!e pt.

)

Thode — @ — = —_:: 2 variables

Figure 2.6.1: lllutration for dividing lines (DLs) and coupling conditia (CCs).

materials with different heat conduction coefficients. & want to compute the heat flux in the whole
block subjected to some boundary conditions, we can digeréte whole solution domain, but we
cannot differentiate across a material boundary. Thegefig must compute the solution separately
in the subdomains and couple the different solutions adrasmterfaces.

So from the geometrical configuration on the left side of Rig. 1 results the logical configuration
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on the right side. For the separation of the subdomains weduate “dividing lines” (DLs). From
one geometrical node on an interface there result two lbgimdes on the dividing line. Therefore
at such a node we have two variables that each belong unitpelye of the domains. For the two
variables we need two coupling conditions (CCs), e.g. foeat lsonduction problem we have equal
temperature and heat flux which medns= 7>, \1T1 , = X215, at the indicated DL in Fig. 2.6.1.
At the crossing of two DLs we have a quadruple point witbariables and CCs, see Fig. 2.6.1, at
the intersection o8 DLs we havet etc. If we have a system ofi PDEs we hav@m or 4m or 6m
CCs for the above mentioned cases.

As we cannot differentiate across a DL we use one-sidedrdiffe stars at the DLs that use
function values of the corresponding subdomain. Thus the &k treated as “interior” boundaries.
As a mesh generator delivers a configuration as shown on fthef [Eig. 2.6.1, at the beginning of
the solution process at first the new variables must be gextksa that the logical configuration on
the right of Fig. 2.6.1 results. Here we have a grid that gtrasght through the whole domain, i.e.
we have a matching grid on both sides of the DLs.

The solution algorithm then creates a global maix for the whole domain that is composed
from the PDEs in the interior, from the CCs at the interfacethe subdomains and from the BCs
at the exterior boundaries. Special care must be taken venBiehits a boundary. There results a
global solution with a global error estimate for the wholendan.

However, the situation in practical applications may bk istore complicated: the different sub-
domains may have different grids and they may even slid¢ivela to each other, see Fig. 2.6.2.
Here we can recognize that the lower boundary of the uppedoahanges the property between

free/ SDL/'

boundary m

Figure 2.6.2: lllustration for sliding dividing line (SDL).

“free boundary” and “coupling boundary”. We call such areifaice a sliding dividing line (SDL). It
should be mentioned that the lower domain may not slide. Tveehave a static non-matching grid
that is also included in this algorithm.

The problem is now, how to couple the solutions of the subdasnacross the SDL. For the DL

25



The FDEM Program Package

with matching grid we had always two (or more) coupled nodhed tesult from one geometrical
node. The solution of the problem for the SDL is illustratedrig. 2.6.3. A geometrical node of

@ geometrical node

o— SDL
/\W O fictitious opposite node
ﬁ’upTy,up = ﬂ'loTy,lo e
A B
& N

use polynomial of A to get formulas of B: ———g—

Figure 2.6.3:lllustration to the coupling across a sliding dividing li(@DL).

one grid generates automatically a fictitious opposite rmdéhe other grid. However, for a FDM
function values and derivatives are directly known onlyetmetrical nodes. What are the values at
fictitious nodes, e.g. at nodg in Fig. 2.6.3.? We search for a fictitious noBehe nearest geometri-
cal node of its grid, this is nodd in Fig. 2.6.3. For nodel we know the coefficients of the influence
polynomials and these polynomials have been evaluated fog 4 to get interpolation, difference
and error formulas atl. We store for SDL nodes not only the coefficients of these tdas but
also the cofficients of the influence polynomials, i.e. theeiseA = M~! (2.2.6). The influence
polynomials are now evaluated at noBe= (x g, yp) and we get the coefficients of an interpolation
formula (2.2.7) or a difference formula of type (2.2.8) fbeffictitious nodes3. Thus we have dif-
ference and error formulas for the fictitious nadehat are used in the coupling conditions between
the geometrical node and its fictitious twin node like for thatching DL nodes.

For the DL we had e.g. in Fig. 2.6.1 for a heat condition probtbe coupling conditions (CCs)
equal temperature and equal heat flux that delivered the guatins for the two logical variables
at the DL. However, for SDLs in Fig. 2.6.3 we have at a coupliogle only one variable for the
geometrical node. The formulas of the opposite fictitioudencontain the variables of the formulas
of the nearest opposite geometrical node, but no new varighb we can impose at a geometrical
node of a SDL onlyne CC. Therefore we prescribe in the example of a heat conduptioblem in
Fig. 2.6.3 for the geometrical nodes of the upper domain leguaperaturel’,, = 7;, and for the
geometrical nodes of the lower domain equal heat Nyxly ., = Ay Ty.1, -

If we look at Fig. 2.6.2 we recognize that the lower bounddrthe upper domain is partially free
boundary and partially SDL that couples to the lower domdirsophisticated algorithm has been
developed to determine which node has which property. Ttalgl®f the algorithm are not reported
here.

It should be mentioned that for domains that are separaté&Diys the mesh refinement is made
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independently for the different domains. This is possildeduse here we have non-matching grids.

2.7 Extension to 3-D

Up to now we have explained FDEM for 2-D. In the following we again through sections 2.4 to
2.6 and discuss the extension to 3-D.

The general PDE and BC operator for 3-D is given in (2.4.1) lzaxsl been specialized to 2-D in
(2.4.3). Corresponding to (2.4.5) the 3-D Newton PDE for3Hea Newton correction functiod\u
now reads:

OPu OPu 0Pu OPu
Auz Ay = SNy = DNy o = SN
QAu ou b ouy b Ouy te Ouy, Uyz
= P(tvwayazaua ut7u$7uy7UZ7u$$vuyy7u227uxy7ux27uyz)- (2.7.1)

The discretization results like (2.4.8) now in the 3-D eequation

Aug = Aup, + Ath + Aqu + AuDy + AUDZ + Aquy + AU,D” + AuDyZ =
Q' [(Pu)g+ Dy+{Dy + Dy + D, + Dyy + Dyz + Dy }]. 2.7.2)

{} = space key error

The overall erroiAu, is now split into its8 contributions on the level of the solution that result from
the 8 contributions in the brackets on the level of the equatiohe $pace key errof } has now
6 terms.

In Section 2.5 the selfadaptation has been formulated thalds basically also for 3-D. For the
mesh refinement, Fig. 2.5.1, we halve the edges of a triafigle least one of its nodes was a
refinement node according to (2.5.18). Similarly in 3-D wévdahe edges of a tetrahedron from
which then resul8 “half tetrahedrons”. Again the request that on an edge aracst3 nodes
leads to a refinement cascade where larger tetrahedronsumigtially be refined not because of a
refinement node but for the sake of the request that comestfrerrules of data organization. The
sophisticated algorithm for the cascade that has beentgdfor 2-D extends similarly to 3-D.

In Section 2.6 we introduced matching dividing lines (DLegdanon-matching sliding dividing
lines (SDLs). In 3-D these are now dividisgr faces. Nevertheless we will call them DLs or SDLs.
For each geometrical node of a DL (that is now a surface) newltréwo logical nodes, each one
belongs uniquely to one of the domains that are separateaeblt. At the intersections of several
DLs similarly to Fig. 2.6.1 there may result more than twadadjnodes from one geometrical node.
It is difficult to show such a situation in a picture.

Still more complicated is the situation for SDLs similar tigF2.6.2 and 2.6.3. Because the grids
are non-matching, a node of one grid creates a fictitious abtlee other side of the SDL and now
one must search on the grid of that surface for the neareshefeioal node. If the two surfaces
slide relatively to each other like depicted for 2-D in Fig6.2 one must determine which part of
the surfaces is free boundary and which part is SDL. The spomding algorithm is still far more
complicated than in 2-D and is not explained here.
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2.8 Parallelization

The numerical solution of PDEs, above all for 3-D problemesds much computation and memory,
often up to the available limits of the computer, or by othe@rdas: the user finally wanted a much
larger computer than the available one. This need is themmtirive the ever faster development of
ever larger computers. Large computers are always patalheputers that combine the computation
and memory of hundreds or thousands of processors. So tieetieeatwo main reasons for parallel
computing: more computation and more memory.

The essential drawback of a parallel computer is the comeatioh. The local data on a processor
are accessible with the bandwidth and latency of the cagrarchy or of the much slower memory.
However, if remote data, i.e. data that is stored on othargs®ors, must be accessed, the bandwidth
and the latency of the communication network are essergralpeters that determine the “usability”
of a parallel computer. A cluster of workstations is also eafp@ computer, but it suffers from bad
communication parameters.

So the essential goal of parallelization is to minimize camioation. In a certain amount commu-
nication and storage can be exchanged: If data are requeste@dnother processor at the moment
when they are needed, the processor has to wait until thehdegaarrived. If the data, e.g. informa-
tion about the nodes of a mesh, is stored parts orp processors, communication must be executed
if for the generation of difference and error formulas ddtatber processors are needed. If on the
other hand in a preparatory step data that will be neededrisdstlso on the processors that will use
it, i.e. the data are stored several times, this createagaaverhead, but avoids communication.

For an efficient parallelization one should always follove triciple of the “separation of the
selection and of the processing of the data”, which meankisncontext: at first store the needed
remote data on the own processor and then process the datfd]sp. 136. The FDEM program
package has been designed with this priciple in mind.

If FDEM should run on all types of parallel computers with igthand distributed memory, the
only possibility is message passing. Therefore we use tasigiandard MPI. Many examples have
been published that demostrate that MPI is more efficient tha shared memory quasi-standard
OpenMP, even if there is a shared memory or global addresg spa

In FDEM it is often necessary to rearrange the data over theggsors. Here we make use of the
“basket principle”, Fig. 2.8.1: Each processor sends it¥) @ata in a “basket” in a ring shift through
all processors and each processor takes out the data tleaidis for the “new” data distribution. As
the sends and receives of the MPI messages must fit togeth@isoften not known how many data
must be exchanged between which processes, the processbamge in a first step the information
about the data to be exchanged and then in a second step gedhardata.

When the mesh data are read (usually from a file) they arédistd inp equal parts to the pro-
cessors in the order of the (global) node numbers. Howeweryant to have “neighboring” nodes,
that are needed for the generation and evaluation of difterdormulas, on the own processor to
avoid communication. Therefore we sort the nodes for theioordinate. This is made by presort-
ing of the nodes on each processor and then sorting over dlcegsors where up tg/2 processors
are active. This sorted sequence of the nodes is distribatedqual parts to the processors which
means a one-dimensional domain decomposition of the doreeénleft part of Fig. 2.8.2 fg5r = 4
processors.

To avoid communication we store the needed data of the ldftight processor or processors also
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EBoogosx
Coo-gaeE

shifted in ring

Figure 2.8.1:lllustration of the basket principle fgr= 4 processors.

on the own processor. We call this overlap data. For the arder need for the error formulas+ 2
rings, i.e. grid lines (2-D) or grid planes (3-D) to the lefidaright. We determine a “mean” edge
lengthh of the elements and we store the nodes of the left and rigleepanrs

from Tleft  —  Qoverlap * (Q+2)h

2.8.1
to Tright +  Qoverlap * (Q+2)h7 ( )

wherea,eriqp > 1S a safety factor. There is a list where for each processtoigd the information
about the coordinates of its own leftmost and rightmost dimatez;. s, andx,;4r,¢. This list is stored
on each processor so that it knows which data are stored antltbeprocessors. The transfer of the
overlap data is made in such a way that the whole data of theecoed left and right processor(s) is
stored on the own processor and then superfluous data isatidi

For the elements we have the rule that an element belongs fardlcessor that holds its leftmost
node on ther-axis, i.e. the node with smallestcoordinate. After the distribution of the nodes the
elements are distributed according to this rule. In Fig..2tBe triangle belongs to the processor
that owns node 1. A similar rule holds for the edges which gartant if an edge must be halved in
the mesh refinement process. In Fig. 2.8.3 edges 1 and 3 beldhg processor that holds node 1,
edge 2 belongs to the processor that holds node 2.

on processor

u— proc. ‘ ip-1 ‘ ip ‘ ip+1 ‘
1 2 3 o over- over-
fap fap

nodes needed for proc. ip

Figure 2.8.2:lllustration for the distribution of the data to the proaass
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If there is mesh refinement, after each refinement step thesnaxd elements are redistributed.
this is exactly the same procedure as for the first distiputiecause new nodes are always added at
the end of the old node list.

Now we must differ between global node numbers that incluideoales and local node numbers
that include all nodes stored on a processor, including ¥edap nodes. After the distribution of the
nodes and elements to the processors these get a local nodemand local element number on the
processor. We have then on each processor a local nek ligfitiea for each element its local nodes
and a local inverted nek list that gives for each node thel lmgmbers of the elements to which it
belongs. So we have the following node information:

local node number
global node number
home processor

domain number (all domains, separated by DLs or SDLs, batadl®oundaries have a domain
number because a boundary is treated as “domain”)

number of coupling nodes to which the node couples (=1 fouleggnodes,> 1 for DLs or
SDLs, so for =1 it couples only to itself, for =2 it couples toeoother node etc.)

coefficients of difference and error formulas

coordinates

node 3
proc. ip

node 1 edge 2

node 2

Vo

processor boundary

Figure 2.8.3:lllustration for the owning of triangles and edges.

30



2.8 Parallelization

e consistency ordey

e solution (n values for a system afi PDES)

¢ local element numbers of the elements to which the node gelon
element information

¢ local element number

e global element number

e home processor

e domain number

¢ local node numbers of the nodes that belong to the element

e element of a DL or SDL: yes/no

¢ refinement stage

Figure 2.8.4:lllustration for the refinement of a triangle whose nodeststributed to 3 processors.

An element may have in 2-D 3 to 6 nodes, depending on the reéinestage of its neighboring
elements. If one of the nodes of the element of Fig. 2.8.3 efiaament node, the element must
be refined, see Fig. 2.8.4. The home of the original trianglprocessoip, there is its leftmost
node. However, this triangle is surely also in the overlaprotessotp + 1 andip + 2. The rule is
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that only the home processés refines the triangle. Processiprowns also the edges 1 and 3, but
edge 2 belongs to processpr+ 1. The resulting smaller trianglé belongs to processap, but the
trianglesB, C, D belong to processap + 1. Similar ownings hold for the new edges. Besides the
refinement by the accuracy request (2.5.18) there is alsefimement cascade (explained in Section
2.5) so that on an edge there are no more than 3 nodes becahsedata organization.

Newly created nodes and triangles must get new global nuwsribat are behind the old numbers.
However, that the processors can work in parallel they mostwkhow many new nodes/triangles
are created by the other processors so that they know whag isumber range of their new num-
bers. Therefore in an initial step this information is cesbind exchanged between the processors.
Then the refinement process is started from the largest tentlalest elements with continuous ex-
change of information between the processors, always vistinduishing between home data and
overlap data. The illustrations 2.8.3 and 2.8.4 have beewrslfior 2-D. It is practically impossible
to illustrate graphically the corresponding situation i 3but the rules are the same.

Itis quite obvious that the whole algorithm for the mesh mfivent for distributed memory parallel
computers is extremely complicated and we needed much rimogethian expected to develop this
algorithm. It will be presented in a separate paper, see Redat the end of the References. After
the refinement process the data (nodes, triangles) are dig#ibbuted newly onto the processors as
shown in Fig. 2.8.2.

The solution process of the PDEs starts with the data dig&ibonto the processors where on each
processor a local numbering over all own and overlap datagd.uSo each processor can compute
its part of the matrix@,, Fig. 2.4.1 and the r.h.$Pu), of equation (2.4.10) completely independent
of the other processors without communication, see Fig52.8

on proc. 1

Qd | (]Du )d

2
3
4

Figure 2.8.5: Illustration for the distribution of the data to the procass

As each processor has all the necessary data in its memdryowdl numbering, it can compute
for its own nodes (not for overlap nodes) the difference anar dormulas, its part of the matrig
and r.h.s.(Pu), as if it would be a single processor and not a processor inal@acomputer. The
key for this seemingly quite simple procedure is the ovedad the local numbering. It is clear
that between Newton steps the valuesugffor the overlap data must be exchanged between the
processors.
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2.9 Remarks to the linear solver LINSOL

When a processor has computed its part of the m&yiand r.h.s(Pu), of (2.4.10), see Fig. 2.8.5, it
calls the parallelized linear solver LINSOL. LINSOL has beveloped together with the previous
PDE solvers FIDISOL [2], Chapter 17 and CADSOL [3] and hasberghanced continuously since
that time. It is now publicly available, see [7] and the refares given there. As theprocessors call
LINSOL independently they are automatically synchronibgdhe data.

Originally LINSOL was a purely iterative linear solver wittifferent types of CG (conjugate
gradient) methods. As there are CG methods with quite diffeproperties, a polyalgorithm has
been developed that switches over methods, see [2], ChBptdhe polyalgorithm starts with a fast
but less robust method (stagnates if the matrix is not sefftaliagonally dominant), switches to a
medium method if the convergence is not satisfactory, armovery robust but very slow method as
emergency exit if the convergence is very slow.

Because many of our technical problems could not be sol¥miksitly by pure CG we developed a
very sophisticated parallelized LU or ILU preconditionif@] (this reference can be accessed via [7],
documentation). For full LU preconditioning one has a disadver with automatic post-correction.
LINSOL has also several bandwidth optimizers [9]. For 3-Dlgpems an efficient bandwidth opti-
mizer is essential.

LINSOL has 8 basic data structures: diagonals full and phckawvs full and packed, columns
full and packed, main diagonal and starry sky (double index)matrix is composed from these
basic “elements”, an information vector gives the necgsgdormation. These data structures are
split up into row and column blocks to support an efficientgialization of the matrix-vector mul-
tiplication [4] which is the kernel operation of all iteragi solvers. For the (I)LU factorization we
use a single row wrap-around over the processors with aweabtiffer window for efficient load
balancing. The factorized parfsandU then are reorganized in packed columns and rows for an
efficient forward elimination and backward substitutionl)dwing the principle of the separation of
the selection and processing of the data.

2.10 Academic test examples

In this section we present “academic” test examples (inrashto “real” hard technical examples in
later chapters). We explain our test method for 2-D. The lprabwe want to solve, i.e. the PDEs
and BCs, is abbreviated by

P, = P(z,y,u, u$7uy7uxx7uyyvuary) = 0 (2.10.1)

For the test of our program, i.e. the test of the FDEM solvat ahthe PDEs and BCs that are
programmed by the user, we use a PDE whose exact solutioroverknThis PDE should have as
far as possible the properties of the original problem (A)JLOFor this purpose we prescribe the
test solution u(x,y) and generate from (2.10.1) a problem that has the solatidrhis problem is
the test PDE

Pu— Pu = 0. (2.10.2)
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P is our problem with the known functiol(z, y) instead of the unknown functiom Pw is then a
given function ofx, y which is in (2.10.2) an absolute term (that contains no ée&). Let us take
for illustration the PDE

Pu = gy + uyy = 0. (2.10.3)
We want to have the test solution
T (z,y) =t + 22y + oL (2.10.4)
So we have
Uy = 423 + 2:Uy2, Upy = 1222 + 2y2,
Uy = 202y + 43, Uyy = 222 + 1242, (2.10.5)
We get
PU =Ty + Ty, = 122 + 2y + 227 + 12¢°
1422 + 1492 (2.10.6)
Our test PDE is then
Pu — P = ugy + uy, — (142% + 14y?) = 0. (2.10.7)

So we see thaPu is a pure forcing term that does not influence the part withvér@bles.
Quite naturally we must proceed similarly with the BCs. Lstassume we have Dirichlet BCs on
the boundary

then the test BCs are
u—f(z,y) = (@x,y) — f(z,y)) =0, (2.10.9)
BC(u) BC(q)
which formally gives
u—"1u(z,y) =0 (2.10.10)

with @ from (2.10.4).

The test problem (2.10.6), (2.10.10) has the desired sol@ti(2.10.4). The test solution is a
polynomial of order 4. If we use a solution method of consisyeorderq = 4 we must get the
exact solutiorz and an error estimate in the range of the rounding error. lisesa solution method
of consistency ordegq = 2 we get an error that should be well estimated. Theoreticaiyshould
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get an exact error estimate because the error is estimatagblynomial of order 4. However, the
polynomial of order 4 (which would b&) cannot be reproduced exactly by the solution method of
orderg = 2. So far the illustration of the test PDE (2.10.2) by a simplaraple.

If we want to check if we have correctly programmed our PDEmuest programPu completely
independently ofPu. Then we start our solution process for the test problen0(2)lwith initial
(starting) solution: = 7. Then the defecPu — P must be small, it is usually in the rangeldf!1.

We then compare the estimated relative effifitiy||-; (2.5.3) to the exact error

[T — ud

(2.10.11)
[[uall

Usually we choose as test funtiana polynomial of order 2, 4, 6 and solve with consistency order
q = 2,4,6. Then the relative errdfAu,||,..; and the exact error (2.10.11) are usually in the range of
rounding errors. We will see examples below.

In the generation of the Newton correctidsu p,, the Jacobian matrices enter as can be seen in
Fig. 2.4.1 foro Pu/0x. They also enter into the computation of the error as canéreisg2.4.9). As
the generation of the formulas for the Jacobians and theg@muming of the formulas is a dangerous
source of errors, we have developed a “Jacobi tester”. BigoPu/0x we compare the value of
0Pu/0x computed from the corresponding subroutine to a differepcgient

APu _ P(- ugte,---)— Pu (2.10.12)
Auy, €

and print out where there are unadmissible differencess iSla severe test for the Jacobians. Above
this has been explained for a scalar PDE. If we have a systemRIDESs we test the: x m Jacobian
matrices, e.g. (2.4.6) in the same way by components. Itidhmimentioned that the teri#wu in

the test PDE (2.10.4) does not change the Jacobians bet#isa iexplicit function ofc, y (andz

in 3-D). The Jacobi test gives the exact value of the devigatnly if the variable occurs linearly in
Pu. If it occurs in the form off (u) the derivative is accurate up to f’'(u). Nevertheless also in
such a case the Jacobi tester reveals immediately an dthar, eaused by a false derivative or by a
typing error in the code. According to our experience theban matrices are the main source of
errors in the implementation of the PDEs.

Another important question for non-linear PDEs is: DoesNb&/ton-Raphson method converge?
Newton’s method converges quadratically, but only if we @mse to the solution. If we are far
away with the starting solution, everything may happen. tRisr reason we have above introduced
a damped Newton with a relaxation factor that controls ifMfesvton defec{ Pu), decreases in the
Newton step. According to our experience the test PDE gigeod impression how the real problem
will behave. Above all we have seen that for a bad selectiacheohodes for the difference formulas
Newton may diverge while it converges for a better selectibinerefore we start for the test of the
Newton convergence by a disturbed initial solution. We sdhe test PDE (2.10.2) with starting
solution1.01 @ (1% disturbance) or with.1 @ (10% disturbance) and observe the convergence. So
we can see if we can solve our PDEs at least for the test solUfiar some plasticity models Newton
did not converge for more thah1% disturbance of the test functian Consequently we could not
find a solution of the original problem because Newton digdrgSo we know from our test PDE
that the PDE system is correctly programmed and that thersahtions of this type of problem, but
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Table 2.10.1:Results for the solution of (2.10.13), (2.10.14) on a cinelth 751 nodes for different
consistency ordergand test functions.

orderg = 2 orderq = 4 orderqg = 6
error exact | CPU | error exact| CPU | error exact | CPU
typew | error estim.| sec | errorestim.| sec. | errorestim. | sec.
pol. 0.177 0.55| 0.904F —2 | 0.63 | 0.300F — 10 | 5.81
order 6 0.159 0.138F — 1 0.260F — 7
sugar- | 0.439F —1 | 0.44 | 0.144F —1 | 0.62 | 0.229F —1 | 4.66
loaf 0.554F — 1 0.954F — 2 3.448 %)

*) here the order 8 for the error estimate is overdrawn (tcars® grid)

that the system is so sensitive to minimal disturbancespitsatical physical solutions are unusable,
see the corresponding discussion in a later chapter.

If we have successfully solved our test PDE (2.10.2) we clam ¢ait of the code the terms éfu
and we have regained our original problem that we wantedlte sBractically we write the code for
Pu in separate lines that then are declared by a “!I” in Fortraroasment and thus are ineffectual.

In the following we present some 2-D “academic” test exampi&e want to solve the following
system of 3 PDEs for velocity component&ndv and vorticityw:

Upg + Uyy + wy — f1 =0,
Vg + Vyy — Wy — f2 =0, (2.10.13)
Uwy + Vwy — (Way + wyy)/Re — f3 = 0.

These are the Navier-Stokes equations in velocity/veytiirm for a 2-D viscous fluid. We set the
Reynolds numbeke = 1. The f; are forcing functions that are selected so that we get ailpesc
solutionw(z, y). So we ultimately solve a test PDE. The BCs are

u—g1 =0, v— g9 =0, w+uy — vy — g3 =0. (2.10.14)

Here theg; are again forcing functions that are determined so that wehgeprescribed solution
u(x,y). We prescribe

7 =7v = w = polynomial inx, y of order 6 (2.10.15)

or

DT = — 32 t?) (2.10.16)

which is a sugar loaf type function, see Fig. 2.10.1.
We compute on an IBM SP WinterHawk2 with Power3-2 process?#5 MHz. We use parallel
computing with 8 processors. The CPU time in sec is for thaengsocessor 1.
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Figure 2.10.1:Sugar loaf type function equ. (2.10.16).

We solve the equations (2.10.13), (2.10.14) on a circle vathius=1 on a grid with 751 nodes,
1410 elements that has been generated by the commercialgaestator I-DEAS. The results are
shown in Table 2.10.1. If we use far, 7, w a polynomial of order 6 and use for the solution
consistency ordeg = 6 we must reproduce the exact solution up to rounding erroifse dxact
global relative error (2.10.11) &3 - 10~'0, the estimated global relative error (2.5.3))i86 - 107
which means that both are in the rounding error range. If viveswith ordersg = 4 or 2 the errors
increase and the CPU time decreases. If we taka,for w the sugar loaf test solution (2.10.16) the
exact and estimated errors go down from the order 2 to the orderg = 4, but they increase for
the orderg = 6: This is the built-in self-control of the error estimate. aflthe exact error goes up
means that the order 6 is already “overdrawn”: the used gtiold coarse for this order and change of
function values on the grid, above all near the top of the slogdi Fig. 2.10.1. The error is estimated
by the order; = 8 which is still more overdrawn and results in an error estemwdt3.45, i.e.345%.
This shows that and how the error estimate fails in this c@be. most important property is that it
shows that it fails. The user sees only the 3.45 error estigadl thus knows that he cannot trust the
error estimate. He does not know if the solution is usable &tact error i9.23 - 1071, i.e. 2.3%,
but he does not know it in the general case. Here we know itloetause we know for test purposes
the exact solution.
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Table 2.10.2:Results of the selfadaptation of mesh and order for sugdr-test function for
tol = 0.25-1072.

no. no. | no. of no. of nodes global relat. sec.
of of nodes with order error for
cycle | nodes| elem.| ref. 2 4 6 exact | estimated| cycle
1 751 | 1410 | 230 | 443| 304 | 4 | 0.161E-1| 0.108E-1| 2.53
2 1623 | 3075 | 104 | 281 | 1336| 6 | 0.613E-2| 0.622E-2| 6.03
3 2408 | 4398 | — | 237 | 2152 | 19| 0.166E-2| 0.169E-2| 13.43

For the demonstration of selfadaptation we solve the sawig@gm with the sugar-loaf test func-
tion on the same computer, but we now switch on the mesh reéineand order control and we

request a relative toleran¢el = 0.25 - 1072, i.e. 0.25% in the check (2.5.12). The result is shown
in Table 2.10.2.

Grid of 3™ cycle

Figure 2.10.2:Refined grid after the3 cycle of Table 2.10.2.
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In cycle 1 we start with the 751 nodes, 1410 elements of thggradi grid that has been generated
by the I-DEAS mesh generator. The condition (2.5.18) andr¢fieement cascade condition find
230 refinement nodes. From the 751 nodes 443 are solved wién pr= 2, 304 withq = 4 and
only 4 withg = 6. The exact and estimated errors aré6 - 10~! and0.11 - 10~!. Then between
cycle 1 and cycle 2 the triangles that contain the 230 refimtmedes are refined by which there
result totally 1623 nodes and 3075 elements that are théstnibdted on the 8 processors according
to thez-coordinate with the overlap as described above. In cyclev? 104 refinement nodes are
found that lead for cycle 3 to 2048 nodes and 4398 elementsn Tiere are found no refinement
nodes and the exact and estimated errors are belbwObserve the accurate estimate of the error
which results from the fact that the optimal order is seldtig the order control. The CPU time for
a cycle clearly increases with the increasing number of .ode

Fig. 2.10.2 shows the grid after th&’Zycle. The coarsest grid is the 751 node grid, the medium
sized grid is that of cycle 2 and the fine grid is that of cycl@Be refined grid on the left boundary of
the circle eventually results from a bad choice of the nodeshie difference formulas that resulted
in a larger error estimate. In this sense the mesh refineraeisd a control for the quality of the
difference formulas. In order to see the influence of the ogdand of the grid we made a series

P i
p /

v

Figure 2.10.3: Type of grid for 4x 1 domain.

computation with 5 grids and different orders for the saintof (2.10.13), (2.10.14) for the test
function (2.10.16) (sugar loaf with top in the middle of ttenthin) on at x 1 domain with the grid
type of Fig. 2.10.3. The characteristics of the 5 grids amwshin Table 2.10.3. The number of
grid points inxz- andy-direction is doubled from one grid to the other which resiit the 4-fold
number of nodes and unknowns. We compute on the same IBM S#®as, dut now for grids 1 to 4
with 16 processors and for grid 5 with 64 processors for g®n@asons. The results are shown
in Table 2.10.4. We are interested only in the exact and astidnerrors and in the CPU time (of
processor 1).

Table 2.10.3:Characteristics of the 5 grids.

grid¢  dimension nodes elements unknowns

1 80 x 20 1600 3002 4800
2 160 x 40 6400 12402 19200
3 320 x 80 25600 50402 76800
4 640 x 160 102400 203202 307200
5 1280 x 320 409600 816002 1228800
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Table 2.10.4:Results for solution of (2.10.13), (2.10.14) on the 1 domain with test function (2.10.16)
for the 5 grids of Table 2.10.3.

orderqg = 2 qg=4 q=206
grid | no. | errorexact| CPU | errorexact| CPU | errorexact| CPU
proc. | error estim.| sec | error estim.| sec | error estim.| sec
1 16 0.1024 0.97 0.1429 1.32 0.3383 2.80
0.291E-1 0.4048 0.5702
2 16 0.152E-1 | 2.20 | 0.993E-2 | 3.42 | 0.987E-3 | 6.94
0.533E-2 0.122E-1 0.195E-2
3 16 0.297E-2 | 9.15 0.196E-2 | 7.02 0.159E-5 | 19.40
0.126E-2 0.183E-2 0.187E-5
4 16 0.307E-3 | 18.37| 0.989E-5 | 26.02| 0.346E-7 | 104.24
0.302E-3 0.101E-4 0.432E-7
5 64 0.758E-4 | 43.10| 0.392E-6 | 65.03| 0.939E-9 | 154.5
0.749E-4 0.388E-6 0.991E-9

For grid 1 the smallest errors are for the orget 2, i.e. the orderg = 4, 6 are overdrawn. For
the other grids higher order gives smaller errors. If we goofee grid from ordegy = 2 to order
q = 4 we see how the errors go down with increasing order whichdsrbre pronounced the finer
the grid. If we go down in a column for fixed ordemwe find approximately the error law that the
error goes down lik¢1/2)9. For the very small errors we are already in the roundingreenage so
that the error law does no longer hold.

Theoretically we should get for grid 4 and grid 5 the same Cimé tbecause we have 4-fold
number of processors. However, if the number of unknown®ases from 307 200 to 1 228 800 the
condition number of the matrig); increases which results in much more iterations for thefites
solver BiCGSTABZ2 [10], see also [11], p. 139. Thus a probleith wW-fold number of unknowns is
for an iterative solver a problem that needs much more thad-#told computation because with the
number of unknowns the properties of the linear system becgignificantly worse.

The following is a 3-D example. We want to solve the system BECES for the variables, v, w
which is again of Navier-Stokes type

u;m+uyy+uzz+u+uux —{—’Uuy—F’U)uz —fl :0’
Vpg + Uyy + Vs + 0 + w0y +vvy +wv, — fo =0,
Weg + Wyy + W, + W + vWy + vWwy + ww, — f3 =0, (2.10.17)

with the BCs
u—g1 =0, v—g2 =0, w—g3=0. (2.10.18)
The f; andg; are forcing functions that are determined so that the exdotisn is

T=7 =1 = e 2@ Hy*+2%), (2.10.19)
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We solve on a unit cube with 8 processors of the IBM SP as abéeesuse the iterative CG solver
ATPRES that is very robust but very slow, see [7]. We starhwifl0 x 10 x 10 grid, compute
with fixed orderq = 4, switch on the mesh refinement. For the refinement we pres@ritycles
with total refinement, i.e. each node is a refinement node-Dnvdth this coarse initial grid local
refinement caused difficulties. It resulted in a quite irtaggrid so that the error increased instead
of the expected decreasing. However, the total refinemesepred the regular (now finer) grid and
decreased the error.

Table 2.10.5:Results for complete mesh refinement for the solution ofq2.2), (2.10.18).

no. no. no. global relat. sec.
of of of error for
cycle | nodes| elements| unknows| exact | estimated| cycle
1 1000 3645 3000 0.315E-2| 0.417E-2| 12.5
2 6130 | 29160 18390 | 0.401E-3| 0.828E-3| 66.2
3 | 43361 233280 | 130089 | 0.264E-4| 0.951E-4| 548.0

Table 2.10.5 shows the results for the 3 cycles. In 3-D we hetvahedron elements. For total
refinement from each tetrahedron result 8 tetrahedronshwgiies the sequen@$45 — 29160 —
233280 tetrahedrons which shows how fast the number of elemenigsgro3-D for total refinement.
We also can see that the error estimate in 3-D is worse tharDink2ere we estimate the error of
the 3-D polynomials of ordefy = 4 by the error polynomials of order 6. Under these circumstanc
we find it really astonishing that the maximal differencevietn order 4 and 6 for 43361 local
approximations is so small. This shows the robustness ofiwar estimate.

X=-1 +y x=1
y=1 : y=1
@ |
|
! 2x1
l
|
|
|
x=-0.7 x=:0 x=0.3 —_— X
y= |
@ |
5 1x0.5
|
y=-0.5 :

Figure 2.10.4:Domains for the example with SDL (non matching grids).
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As mentioned above we used for the solution of the linearesydr the computation of the
Newton correction and error the generalized CG method AT®REIch is robust and slow. The
kernel operation of CG-type methods is the matrix-vectoitiplication (MVM). ATPRES needs
2 MVMs per iteration step. In cycle 3 of Table 2.10.5 we neeflmdthe 3 Newton iterations
28+2091+1622 MVMs and for the computation of the error 1247Mi4. This is the essential com-
putation of the 548 sec total time (of processor 1).

The next of these “academic” examples is for a 2-D Slidingiddg Line (SDL). Fig. 2.10.4
shows & x 1 domain and d x 0.5 domain and their (fixed) relative position to each other. & u
on both domains 40 x 20 grid or an80 x 40 grid. So the smaller domain has half the mesh lengths
of the larger domain, we have thus non-matching grids. Weestble problem (2.10.13) (2.10.14)
from above. The test function is either (2.10.15) or (2.@pWith top atz = 0, y = 0, but we add
+1 in the larger domairi] and+2 in the smaller domaifil. The coupling conditions (CCs) at the
SDL are the jump in the function values and equal derivatie compute on 8 processors of the
IBM SP. The results are shown in Table 2.10.6.

Table 2.10.6:Results for the example with Sliding Dividing Line (SDL) oif-2.10.4.

orderq = 2 qg=4 q=6
type | errorexact| CPU | errorexact| CPU | errorexact| CPU
U error estim.| sec error estim.| sec error estim.| sec

(Newt.) (Newt.) (Newt.)
grid 40 x 20 for each domain (4800 unknowns)
pol. 0.2164 2.61 0.405E-2 2.88 | 0.167E-11| 2.75

ord.6 | 0.1801 (6) 0.503E-2 (4) 0.714E-10| (1)
sugar- 0.3121 1.62 0.3044 3.12 0.552E-1 6.16
loaf 0.1163 4) 0.1926 (6) 0.612E-1 (5)
grid 80 x 40 for each domain (19200 unknowns)
pol. 0.729E-1 8.91 0.451E-3 4.29 0.135E-11| 9.58

ord.6 | 0.631E-1 (5) 0.732E-3 1) 0.917E-10| (1)
sugar-| 0.551E-1 5.05 0.211E-1 8.69 0.664E-2 18.41
loaf | 0.159E-1 | (3) 0.109E-1 | (4) 0.437E-2 | (4)

Because the coupling of the global solution for the two dorsds made by the CCs at the SDL
we need more Newton iterations than for a single domain. &fbex we give in Table 2.10.6 the
number of Newton steps in parentheses below the CPU time. stEngng solution is always the
exact solution. If we took another starting solution, eug= 1, we would need one or two more
Newton steps. This starting solution explains why we nedy briNewton step for test function as
polynomial of order 6 and consistency order= 6 because here the starting solution is the exact
solution.
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3 Applications

3.1 Introduction to Applications

Besides the evolution of the FDEM program package to mouithgilsmains with non-matching grid
the application of FDEM to some industrial problems sho@dibmonstrated as result of the research
project. When we addressed some firms if they would be irteates participate in a cooperation, it
became immediately clear that they were interested onhelf had a problem for which there was
no standard software on the commercial market availables mbans that the selected problems are
really difficult problems. The agreement was that the firmiveleed the PDEs and BCs and we tried
to solve them with FDEM.

The first problem was the simulation of the manufacturingpss of metal bellows (Metallbalgen)
from stainless steel sheet. However, the industrial patKA could only deliver the problem
description and not the PDEs. They were no specialists foplfisticity equations of stainless steel
sheet. So we looked for a partner that could deliver the secg$?DEs and we addressed (by the
advice of the metallurgists of the University of Karlsrulig Institute for Metal Forming Technology
(IFU) of the University of Stuttgart. They promissed to delithe necessary PDEs and to determine
the corresponding empirical coefficients in the equationgensile tests in their laboratory. For
this purpose IWKA had to furnish the tensile test pieces. ddaohately, the IFU used itself for
their calculations commercial codes for metal forming psses and had themselves no practical
experience with the PDEs that were used in these codes. édétbodes were FEM codes where the
PDEs are not explicitly used as we do it in the FDM. So a for ushie learning process started:
The IFU delivered a plasticity model, we programmed it aradet# the code with the test methods
described above so that we were sure that the PDEs were iraptechcorrectly. Then we tried
to solve the physical problem for the simulation of the tentést to reproduce the measurements.
However, either the numerical solution of the physical pgobfailed because the Newton iteration
failed to converge, even for severe linearizations of theaéqgns, or the solution was physically
unrealistic. Then we got another plasticity model from g bnd the play started anew. This for us
extremely frustrating process lasted two and a half yeatiswae finally, after the official end of the
project funding, had the desired plasticity model that daimulate the measurements. Only then
the programming of the manufacturing process could stdre. details of this part of the project are
presented in Section 3.2.

The second industrial project was delivered by the High $tnesDiesel Injection Pump branch
of Bosch. It is a fluid-structure interaction problem. Thgation pressure for Diesel is now up to
2000 bar. This means that under this force the piston and the houditigegoump are considerably
deformed so that the lubrication and caulking gap that hasdéhvef only a few micrometers is
affected correspondingly. The difficulty comes from thdatint scales: The housing and length
of the gap is in the range of centimeters, the diameter of th®m in the range of millimeters,
but the width of the gap is in the range of micrometers. If wantsta solve the PDEs correctly,
which are for the piston and the housing the elasticity @gnatand for the fluid in the gap the
incompressible Navier-Stokes equations, we must resblveguations over the width of the gap.
So we will have quite different grids for housing, piston ayapb. For the present case the piston is
fixed. In later applications the piston will be moving andoatise heat conduction will be computed.
These problems need the coupling of the solutions for hgugitston and gap and thus initiated the
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evolution of FDEM for Sliding Dividing Lines (SDLs) that allv a global solution with global error
estimate for the coupled domains of housing, piston and gap.details of this part of the project
are discussed in Section 3.3.

The third industrial project was from the area of fuel cellfie manufacturer Freudenberg pro-
duces non-woven materials that are used in PEM (proton egehaembrane) fuel cells. Originally,
the intention was to simulate a whole fuel cell and to find auw lthe properties of the non-woven
material that is used as a gas diffusion layer (GDL) influsribe performance of the fuel cell. How-
ever, when Freudenberg Forschungsdienste, our partwestigated the problem of compiling the
PDEs for the whole cell they recognized that they were nat abthin the intended effort to for-
mulate the equations at the catalytic membrane and to detertime necessary coefficients for the
chemical reactions. Therefore they simplified the problei@DL with catalytic production of water
vapor at the membrane. The details of this part of the prejexcpresented in Section 3.4.

Originally there was still a fourth industrial partner frdhre area of electric machinery. However,
because of financial difficulties they closed the researbhalith which we intended to cooperate
soon after the start of the FDEM project.

3.2 Simulation of the manufacturing of metal bellows

As mentioned above we went together with the scientistseofffb) through an extremely frustrating
learning process until we finally had a system of PDEs thaldodescribe the plastic deformation of
stainless steel sheet. We got plasticity models at 13.18012.01, 25.1.02, 3.4.02, 17.7.02, 14.8.02,
25.10.02 and finally 18.12.02 (this is the German writing atied day, month, year). The last model
was—as we believed—a correct complete description of teatbplasticity model. It is extremely
non-linear. We programmed the model and tested the codethgttest function. However, due to
this non-linearity Newton’s method did not converge if warttd with a0.1% disturbed solution.
This was a bad warning for the solution of the physical pnobtbat had as starting solution the
solution of the last elastic step. As expected Newton’s oabttid not converge. We then linearized
the equations in time by taking appropriate function vafues the previous time step which helped
for the first plastic step but resulted in non-physical ressfar further time steps. Our conclusion is:
We cannot decide from the point of view of the numerical sotuif this plasticity model is a valid
model. We only can state that it is an unusable model. Nesiegh we will describe in Section 3.2.2
the numerical solution method of this model. Before we carthi® we must at first discuss in
Section 3.2.1 the solution of the elastic equations thavelethe starting solution for the plastic
equations and finally describe the spring-back solutioheatnd of the metal forming process.

Because the full “theoretical” plasticity model could net bised we tried, like FEM-users do, to
solve also for the plastic region the elastic equations amatdject the stresses that are then much
too large down to the yield curve. This resulted in far togéastresses because the material was
too hard. If the material yields it is soft. Then we got at 203%a proposal of the IFU for a “soft”
elasticity module. We played with the empirical coefficigit this approach and could for the first
time simulate the tensile test approximately. By the irigesion between the simulation and the
experiment we could recognize how the functional approachtb be modified to simulate exactly
the physical experiment of the tensile test machine. So wiefihally the desired plasticity model
for the stainless steel sheet. This part of the researclsigited in Section 3.2.3.

Now we could attack with this plasticity model the simulatiof the manufacturing of a single
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wave of a metal bellow. A whole bellow is composed of a seqeaicsingle waves, but the com-
putation of a single wave determines the properties of th@levbellow. The manufacturing process
consists of different phases: initial blowing with pure hyfrming, then combined forming by pres-
sure and moving tool, and finally the spring-back if pressamé form are taken off. However, the
numerical simulation revealed that the steel sheet burgtenithe internal pressure and “explosion”
into the form. Because of the inherent instability of thelydeon this resulted in (nearly) unsurmount-
able difficulties. This part of the research is presentedeictisn 3.2.4.
The equations that we want to solve are presented in thetreptite IFU on their part of the

compound project [12]. Quite naturally we have continugusl refer to equations given in that
report. If we e.g. refer to equation (x.y) in [12] we denotbyit[12](x.y).

3.2.1 The numerical solution of the elasticity equations fo r the tensile test

We want to simulate the tensile test in order to adapt thetipigsmodel to the measurements.
However, the tensile test starts with elastic deformati®@a we must at first solve the elasticity
equations.

180 >

Figure 3.2.1.1:Tensile test piece (above) and simplification (below).

Fig. 3.2.1.1 shows in the upper part the test piece. It is p&rin the end regions. As we do
not know how the force is entered into the test piece we sfnthie configuration, see Fig. 3.2.1.1
lower part.

Because the thickness of the metal sheet is Oritymm we use a 2-D model ir, y. We get
the elasticity equations for 2-D by equating the geomdtdedinition of strain and the definition of
strain from Hooke’s law. From [12](2.11) and [12](2.26) wet §pr e,
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Eix[am — UpyOyy) = % (3.2.1.1)

In [12] is used an orthotropic Hooke material law (in contitasthe usual isotropic law) because by
the rolling process of the thin steel sheet the propertidéiseofnaterial are different in the rolling direc-
tion and orthogonal to it. Here we assume that the rollingdion is ther-direction in Fig. 3.2.1.1.
Thus E, is Young’'s module inz-direction, similarly £, in y-direction, and there is the shear mod-
ule G,,. v,y is Poisson’s ratio. Values for the steel of the test piecegaren in [12](2.81) to
[12](2.83). The stresses are denotedaly, oy, 0,,. The strains: . are defined in [12](2.11) to
[12](2.14) by the derivatives of the displacemeanjsu, in z- andy-direction, and by the stresses in
[12](2.26) to [12](2.31).

As we will see later, for plastic deformation not the disglaentsu,, u, but the displacement
velocitiesv,, v, are decisive:

Ouy _ Ouy
o T o
With the displacement velocities we can define strain veexi For small deformations they are
given as the linear part of equs. [12](2.5) to [12](2.10), e.

(3.2.1.2)

Uy =

S % é % S 1(8%5 %
T ox W oy Y2 oy Ox
They are used in the formulation of the plasticity equatice® Section 3.2.2.

If we want to simulate the tensile test until the test pieceaks, we must start with the elastic
PDEs and then, if the yield limit is crossed, continue wita pastic PDEs. So, at this limit, we had
to change from the variables,, u, that are used in the elastic PDEs to the variables, that are
used in the plastic PDEs. Because this is unsuitable we usetincases the variables, v,. For
this purpose we solve the elastic PDEs in incremental fakf@ proceed in the elastic part by a time
incrementAt¢. We have

). (3.2.1.3)

ou,  Aug
. = ~ . 3.2.1.4
Ve = T T A ( )
Therefore we use

A
Vg = A“tx, Auy = At - vy, (3.2.1.5)

A

Uy = %, Auy = At - vy,

This gives us the displacements in the time increndenif v, v, are known.

There is still another reason to proceed incrementallyniretilf we solve the plastic equations we
have large deformations, i.e. the original configuratiostisngly disturbed. Therefore, after each
time step, we update the coordinates of the nodes by thead@plents:

Tpew = wold+Au$7

3.2.1.6
Ynew = yold+Auya ( )
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3.2 Simulation of the manufacturing of metal bellows

where the index “old” denotes the values after the precetiling step.

For the stresses the incremental advancing means that weit@stress incrementso,.,., Ao,
Ao,y that are then added to the “old” value of the previous timp.stédis means a stretching of the
material in increments instead of a continuous stretching.

For the incremental stretching equ. (3.2.1.1) becomes

1 0Au,
We have
Ozz = Oggold T Aoy, ACyy = Oy — Ozzx,old>
Oyy = Oyyold + Doy, Aoyy = Oyy — Tyy.olds (3.2.1.8)
Ozy = Ozy,old + AUzya AO':vy = Oxy — Ozxy,old-
From (3.2.1.5) we get
OAuy I(At - vy) _ At%,
Oz ox Oz
0Au,  O(At-vy) ov
= = At 3.2.1.9
0Au,  O(At-v,) _ At%,
dy dy dy
0Au, _ O(At - vy) _ At%
ox Ox ox
If we replace in (3.2.1.70¢ andAwu, by (3.2.1.8) and (3.2.1.9) we get
1 Oug
E_JC[JM — Oxaold — Vay(Tyy — Oyyold)] — At o 0. (3.2.1.10)
By a similar procedure we get fey,, from [12](2.11) and [12](2.27)
Vg 1 ov
_E_j(gmm - Jxx,old) + E_y(o-yy - Jyy,old) - Ata—yy =0. (3.2.1.11)
and fore,,, we get from [12](2.12) and [12](2.31)
1 ov v
— — - A T+ )y =0o. 2.1.12
ny (Umy Uzy,old) t( dy + O ) 0 (3 )

These are 3 equations for the 5 unknowRsvy, 044, 04y, 04y. The missing 2 PDEs come from the
balancing of the forces which are for 2-D from [12](2.2)

00 1
Ox
00y

ox

Dowy _, (3.2.1.13)
dy

Do _, (3.2.1.14)
oy
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Here we do not need to formulate the balancing in incremdotal because it holds as consequence
of the linearity of the equations for thes and theAo's.

Table 3.2.1.1:Sequence of variables and equations for the solution ofltstie equations.

no. | variable| equation
1 Vg (3.2.1.10)
2 vy (3.2.1.12)
3 0se | (3.2.1.13)
4 | o, |(32111)
5 oy | (3.2.1.14)

The numerical solution of this system of 5 PDESs turned outtodbher critical because we use in
FDEM “centralized” difference stars and in the PDEs theranly first derivatives which lead to
odd/even uncoupling of the solution (the BCs are given belaMe see the discretization error from
the error estimate und we found that the sequence of vasiablé PDESs that is given in Table 3.2.1.1
was optimal. Because we found in the simulation of the terteit with the simplified configuration
of Fig. 3.2.1.1, lower part, that,, = 0, 0., = 0 theoretically and numerically, we used also a
“3-equation model” where the PDEs foy, ando,, were replaced by explicit value zero. Then we
have the sequence of variables and PDEs given in Table 3.2.1.

Table 3.2.1.2:Sequence of variables and PDEs for the “3-equation modeBl&stic equations.

no. | variable | equation

1 Vg (3.2.1.10)
2 Uy (3.2.1.11)
3 Orx (3.2.1.13)
4 Oyy oyy =0
5 Oy Opy =0

Before we discuss the BCs we want to give the expressiontidéosttess components of a surface
and the normal and tangential stresses. Fig. 3.2.1.2 shewdgace elemeniS with components
dS*®, dSY and the normah (length 1) with components®, n¥. In o, the first index denotes the
normal direction of the surface on whiehacts and the second index denotes the direction of the
stress. From that definition the fordé” at a surface element is, with,, = o,:

x Yy -
gp — [ 4570w +dSVou, z-component (3.2.1.15)
dS*0,, +dSYoy, y-component

Force ondSs®, ondSY
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3.2 Simulation of the manufacturing of metal bellows

From Fig. 3.2.1.2 we can see that

ast _ gt dsv_ ¥
as 1’ s 1’
from which we get
dS* =n"dSs, dSY =nY dS. (3.2.1.16)
So we get from (3.1.2.15)
x Y
dF — ( Tag 70+ Oy 1 > ds. (3.2.1.17)
Oy N° + Oyy 1Y

Because stress is= fl—g we get for the stress vector at the surface

xT Yy -
o ( Toa®  +0gyn ) z-component (3.2.1.18)

Ozyn®  + oyyn? y-component

surface element z-dir.  y-direction
with normal in

At a surface whose normal is in thedirection we get from (3.2.1.18)

n® 1 Oua
n= (ny> = <0> co = <Umy> . (3.2.1.19)

and at a surface whose normal is in ghdirection

n= (Z;) = (2) o= (Z;Z) . (3.2.1.20)

In Fig. 3.2.1.3 we see the tangent vecatat the surface elementS. We can directly see from the

n
ds
1 ¥
ds*
normal in X
x - direction d
ds’

normal in y - direction

Figure 3.2.1.2:lllustration for surface elemetS.
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geometry that® = —nY (negative direction)ty = n®. Thus we get

t= @) — <_n’;ﬁy> . (3.2.1.21)

If we denote by’ the transpose of the stress vector (3.2.1.18) we get theaistness as the com-
ponent of the stress vector in the normal direction as thiauispeoduct ofe andn:

On =00 -1 =0.(n%)? + 20,,n"nY + 0yy(n¥)?, (3.2.1.22)

and similarly with (3.2.1.21) the tangential component

o =0l -t = —0mn™nY 4+ 0py((n°)? — (n¥)?) 4+ ayyn® n. (3.2.1.23)

We will need these expressions later in this report.

Now we want to discuss the BCs for the solution of the equatifriTable 3.2.1.1 for the elastic
part of the tensile test with the simplified test piece of Hf.1.1. Fig. 3.2.1.4 shows the BCs. We
want to explain them a little. At the upper and lower edgehuwiitt the corners (end points of the
edge), we use for,, v,, 0., the indicated PDEs. For the BCs, like for the PDEs, it is intquatr to
have the right PDE for the right variable, else there are migalgproblems (divergence of LINSOL,
divergence of Newton, large errors). The upper and lowee eatg force-free edges. The stress
components there are zero. The normal is ingkdirection,n? = 1 (upper) orny = —1 (lower),
n® = 0. thus from (3.2.1.18) we get,, = 0 ando,,, = 0 from z- andy-component to be zero.

The left end of the simplified test piece is fixed; = 0. The right end moves with the speed
vz test Of the tensile test maschine. For the other variables thed@se left and right end are the
same. Fop, we use PDE (3.2.1.12), but in order to fix the test piece injthéection we use), = 0

ty

tx n*

ds* as

ds’

Figure 3.2.1.3:lllustration for tangent.
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3.2 Simulation of the manufacturing of metal bellows

v, : PDE@G.2112) o :PDE(3.2110)
v, PDEG2LLD o,:0,=0
Oy 0,=0

\

Ty 0
|
v, v, =0 (U, =V, right) "without corners
v, : PDE(3.2.1.12), but o
.. : PDE(3.2.110) ik R 2
o,,: PDE(3.2.111), but center line
g =0 in corner
Y
Oy 1T =1 |

- / V' like above
&y, = 0

Figure 3.2.1.4:BCs for the simplified tensile test piece for the equationtatifie 3.2.1.1.

at the nodes of the center line of the test piegg, ands,, result from the movement of the right
end, we use PDEs (3.2.1.10) and (3.2.1.11). Because theoeyigomponent of the stress and we
have the normal witm® = £ 1, n¥ = 0 we get from (3.2.1.18y,, = 0. Thus we have used at all
edges the basic elasticity equations (3.2.1.10)—(32)1.1

For the “3-equation model” of Table 3.2.1.2 we merely replte condition for,, at the left and
right end byo,,, = 0.

Because the elastic equations are only used to producigtasinditions for the plastic equations
we do not present results here. They are trivial becausedipdgm is linear and the solution could be
obtained by the theory because of the simple geometry. Henvidwve look carefully the problem
is severely non-linear because we move the coordinateseofdhfiguration when the test piece
extends in the:-direction and shrinks consequently in thi@irection. The results of the full model
of Table 3.2.1.1 showed that,, ~ 0ando,, ~ 0 so that we later used the “3-equation model”
of Table 3.2.1.2. The spatial maximal relative discreli@aerrors were estimated in the range®
down to10~1Y because of the linearity of a single time step.

3.2.2 The attempt to solve numerically a “full” plasticity m odel for the tensile test

After many vain trials the IFU finally presented a “full” ptasty model, the theoretical background
is given in [12]. Here we restrict to the discussion of the euwal solution. We could solve nu-
merically the system of PDEs—for the test function. Howeadirattempts to get solutions for the
physical model failed because of the extreme non-linearfitthe system. These attempts, for the
model discussed below and for all the preceding models,utned most of the project resources.
The only result was: the model is “unusable” for practicgllagations. Nevertheless we present here
the numerical solution method to show how we attacked thilgno.

For the plasticity we have now, besides the variables,, 0,., 0,y, 04, that had been introduced
in the elastic part, an additional variable: the plastip@yameten. With the discussion in [12] about
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the von Mises stress and the equations [12](2.32), [19]2[22](2.56) we get that the material gets
plastic i.e. is above the yield stress, if we have

7> Yo+ K(e + A", (3.2.2.1)

with the equivalence stress

o= \/ng + 02, — Oua0yy + 303, (3.2.2.2)

for the 2-D case. The values fdf, K, g, n are given for the stainless steel sheet in [12](2.72) to
[12](2.77) where we take ther-values und havéy = A,.. As \ is a variable whose value may be
different for each node, and asdepends also on the values of tie of the node, we must check in
each node individually the condition (3.2.2.1) to decidiaé material at the node is elastic or plastic.

The question is now: with which equations the next time ste time incremental procedure)
should be solved, with the elastic or plastic PDEs? For thelsition of the manufacturing process of
the metal bellows we know for the previous time step if a agfaode of the steel sheet is a free node
or if it is forced by the tool, i.e. moves with the tool. As wentdo develop for stability reasons
a totally implicit method we must know which conditions hatithe_endof the actual time step
because they decide. Therefore we always makdim® steps: a test stepth the conditions of the
previous step to check if the steel is elastic or plasticaetid of the step (and for the manufacturing:
is a boundary node free or forced) and then execute the catigpustepwith the conditions found
at the end of the test step.

The explicit plasticity equations are obtained by equatiteggeometrical expression for the strain
velocity, e.g.¢,., [12](2.5) with that of the plastic expression [12](2.68).the geometrical expres-

sion is now the linear Cauchy term and the non-linear Green. té/ith the notation
. dA 0N OA [2))
A= _or 0 L o4 3.2.2.3
dt Ot * o * 8yvy ( )

from [12](2.51) where we have uséd/dt = v, dy/dt = v,, OX/0z = 0 we get

oA o\ oX. 1
(E + Ux% + ’Uya—y)%(20'mm — O'yy) — (3224)
(e, DusDvs | Ouy Ovyy
Ox Ox Ox oxr oz’

Similarly we get byg,,,

O\ O\ oN. 1
(3t * 5 * gy 5 2w~ 7ea) = (3:225)

(Do Ous Ovr Oy Oy
Oy 0y 0y Oy Oy

)=0
and byz,

(Q + @ + Q) 3ny
ot "or T oy 2
1 0v, = Ovuy Oug Ovy  Ouy Ovy
2(8y+8x)+8x oy or Oy

- (3.2.2.6)

ol ]=0.
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3.2 Simulation of the manufacturing of metal bellows

These are 3 equations for the 6 variablgsv,, 0., 0y, 72y, A. TWo further equations are the equi-
librium equations (3.2.1.13) and (3.2.1.14) that are thaesas for elastic deformation. T
equation is the equation for that is in reality an equation fok, equation [12](2.60) that we rear-
range in the form

SN S S SR
ot " "ox T oy Kn(sg+ N1 &
1 00z 00z 004y
1= 12 T T
(5 Powa( 5~ F ey m t oy )+
Ooyy 0o yy 0oy
+20,,( By + vy B + vy 9y )+
0oy 0oy 0oy
+60 2 ( aty + vy 5 Lty 3 Yy — (3.2.2.7)
0o yy 0oy, 0o yy
— 0z ot Vg o + vy 9y ) —
8am 80'11 ao':m:

—O'yy(w + Ux% + Vy ay )]} =0.

Here we recognize that the first 3 terms (that &rend the terms in the parentheses are total time
derivativesd/dt. The corresponding justification for these equations ismgin [12].

We have now the problem to solve these equations. The segjoétite variables and equations is
given in Table 3.2.2.1 similarly to Table 3.2.1.1. The BGs thrat of Fig. 3.2.1.4 where we replace
the elastic equations by the corresponding plastic equati¢3.2.1.10)— (3.2.2.3), (3.2.1.11)}-
(3.2.2.4), (3.2.1.12)> (3.2.2.5).

There are two problems. The first problem are the time dévast The PDESs are time evolution
PDEs, i.e. of parabolic type. FDEM can solve directly palebeguations. However, in this case we
cannot use this possibility but we must proceed by time memts as explained above for the elastic
equations. Therefore we use in (3.2.2.4)—(3.2.2.7) e.g.

oA AN A= Aold 0044 Aoy Ozx — Ozx,0ld

ot~ At At ot At At (3228
and similarly foro,, 04y. Ao, 022,014 €LC. are the profiles of the previous time step. The second
problem are the derivativedu, /0, Ou, /0y, Ou,/0x, Ou, /0y, i.e. the space derivatives of the
displacements.,,, u, in the non-linear Green terms of the strain velocities inatiqus (3.2.2.4)—
(3.2.2.6). We have for a node u, ; = z;(t) — z;(t = 0). However, we knowz;(t) only after the
moving of the coordinates at the end of a time step. Thereferase

Ug; = Ti(tora) — 2i(t = 0),  uy; = yi(taa) — vi(t = 0), (3.2.2.9)

wheret, is the time of the previous step. We store the profiles.pfand v, for all nodes and
compute with the difference formulas the required denestiwith respect ta andy.
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Table 3.2.2.1:Sequence of variables and equations for the solution offthi plastic equations.

no | variable| equation
1 Vg (3.2.2.4)
2 Vy (3.2.2.6)
3| o4 |(3.21.13)
4 Tyy (3.2.2.5)
51 o4 |(321.14)
6 A (3.2.2.7)

This system of equations is, with the exception of the twedinequilibrium equations, extremely
non-linear, above all tha-equation (3.2.2.7). Observe thatdn(3.2.2.2) the stresses appear non-
linearly. We compute with the elastic equations until in test step the condition (3.2.2.1) holds,
then for this node the plastic equations are used for the atatipn step. As long as the equations
are elastic, we havé = 0. The starting values for the other variables are those ofa$teelastic
step. So we solve, by the time discretization (3.2.2.8),aichetime step an elliptic problem. This
means a fully implicit procedure because all 6 variablescaraputed at the new time step. So we
expect unconditional stability in time.

We have implemented the PDEs and used a test polynaridisecond order and solved with
consistency orde = 2. So we should reproduce the test solution in the range ofdheding
errors. This could indeed be observed which proves thatghatemns were implemented correctly.
We switched on the Jacobi tester that finally did no longeontegrrors so that we are sure that the
Jacobian matrices were correct. It should be mentioneddh#tese extremely non-linear equations
the Jacobian matrices are correspondingly complicatekegons that could be made treatable only
by the definition of smaller intermediate expressions.

Then we used, as usual, a starting solution wiith disturbance and expected that Newton'’s
method finds back with a% correction to the exact solution. However, Newton divergkdried
to reduce the Newton defect by a relaxation faci@and finally gave up ifv was below 0.01. Then
we made a series of numerical experiments that showed: lzethsturbance of.2% Newton found
back the exact solution, for larger disturbances it divergéo we see that we had correctly imple-
mented the PDEs, but the extreme non-linearity made the rcaheolution very critical.

When we then took off the terms of the test solution and treeddive the physical problem as
continuation of the elastic solution, Newton did not cogee(as we had expected). We then made
numerous experiments with linearizations of the systenthdfindex “old” denotes the values at
the previous time step, we replacedy 7,4, Or in theA-termsv,, (0\/0z) — vy q1a(OA/0x), Orin
(8.2.2.7)(e0 + A) — (g0 + Aoia), Or the whole brace$} — {},4. We could get solutions of the
linearized systems, but only for one plastic time step. Huwsd plastic time step then gave always
physically unrealistic solutions.

In order to simplify the system we intended to go to a “3-eimummodel” like in Table 3.2.1.2
with oy, = 0,0, = 0. However, this is not possible and shows the strange clearatthe system:
In equation (3.2.2.4) we have fot,, = 0,0, =0
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3.2 Simulation of the manufacturing of metal bellows

1 1
%(QO’WC —oyy) = N 2050 = 1. (3.2.2.10)
So the variabler,.,. for which this equation should be used, drops out. We leaeetlite metallurgists
to discuss this property.

The consequence of these very frustrating numerical exjats is: the PDESs of the “full” plastic-
ity model can be solved as we have seen for the test solutibthéy are “unusable” for the physical
problem because Newton converges only very close to thé@olas a consequence of the extreme
non-linearity. We then gave up to try to find physical soln@f these equations as continuation of

the elastic solution.

3.2.3 The approach with a “plastic”  E-module for the tensile test

Because we could not get physical solutions of the “full"sti@ model equations we proceeded as
follows: We solved the elastic equations of Table 3.2.1rlafime incremental step and checked if
the equivalent stress was above the yield stress with thditgmm (3.2.2.1). If we are above the yield
surface we have the situation of Fig. 3.2.3.1: The value isftoo large.

Therefore we project all stresses down so that we come downlatlow the yield surface. We
use the approach

Ogz = @ O0ggely Oyy — A Oyyel; Ozy — A Ogxyel; (3.23.1)

where the index “el” means computed with the elastic eqoatidrhe projected stresses fulfil still
the equilibrium equations (3.2.1.13) and (3.2.1.14) beedbe factor drops out. We have with
(3.2.3.1), (3.2.2.2)

4 O, stress

elastic

plastic, yield
surface

&, strain

Figure 3.2.3.1:lllustration forz too large.

g =,/a?02, ,+ -=ay\Joi ,+ =aTe. (3.2.3.2)

55



Applications

With the yield stres¥” [12](2.39)

Y =Yy — K(eo + \)", (3.2.3.3)

we want the coefficient such thatz < Y. For more flexibility we use

Yo+ K(go +A)"

a=1-—a(l - ). (3.2.3.4)

2 _ 2 _ 2
\/Uxx,el Uyy,el Ozx,elOyy,el + 3amy,el

Fora = 1 we haves = Y, i.e. we project onto the yield surface, far= 2 we have the situation
of Fig. 3.2.3.2: we go down twice the difference to the yialiface so that the yield surface runs
between the elastic and the projected values. With thegegbed stresses and PDE (3.2.2.7) the
value \ for the next time step is computed.

+ O

el.  yield

surface
el.

Figure 3.2.3.2:lllustration of (3.2.3.4) forx = 2.

We made numerical experiments with the coefficients in thstel equations given in [12](2.81)
to [12](2.83) and forY” given in [12](2.75) to [12](2.77). However, the results weuch that the
stresses were far too large for a certain strain: The mateda too hard. If the steel yields it is
“dough” and not a spring. We tried with lower values of themodule to meet the measurements,
but the attempts failed. This wa®t the way to solve the problem.

From the numerical experiments it became obvious thatFfthmodule must be very “soft” and
depend on the strain Therefore the IFU made the following proposition, #gr (in our notation)

Yo =Y, + Ku(eoz + €22)", (3.2.3.5)

from which follows withE,, = 9Y,. /0., [12](2.78)

E, =K, nm(eo,x + 5:13:17)”171- (3.2.3.6)
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The proposed coefficients are [12](2.75) to [12](2.77):

N N
Yoo =60—y, K,=175—73, eo,=102, n,=0.293. (3.2.3.7)
mm mm

As we have for plastic deformation large strain, we must fa@ke: the non-linear Cauchy-Green
form [12](2.3). For 2-D we have in tensor notation

1 (Ou; | Ouy 1< Ou; Ou;
it = 3 <8xk + axi> +5 ; 5 B (3.2.3.8)
from which we get in our notation

_ Oug 1 [ Oug.og Ouy. o
oo = Py (( Moy g (O ) , (3.2:39)

~Ouy 1 [ Oug.o  ,Ouy.,
W=+ (( 5V (G? ) (3.2.3.10)

1 (Ou, Ouy 1 [Ougy Ouy  Ouy Ouy
oy = = — — — . 3.2.3.11
Cay 2<8y+8x>+2<6x 6y+8:ﬂ8y> ( )

If we equates,.,, from Hooke’s law [12](2.26) and from (3.2.3.9) we get

1 _Ouy 1 [ Oug.g Ouy .o

If we want to proceed incrementally as explained in the cdardéequs. (3.2.1.7)—(3.2.1.10) we get
from (3.2.3.12) for an incremental stress and displacement

+ (aA“y)2> . (3.2.3.13)

1
7 [A0zs — vy Aoy = —— + 5 o )2 O

E:z: 856 2
For a time incremenf\t we get with (3.2.1.5) and (3.2.1.8)

OAu, 1 <( OAu,

1
E_m[‘fm — O old — Vay(Oyy — Uyy,old)] -
ov 1 ov ov
—At=—= — ZAP? 22 (=22 ) =o0. 3.2.3.14
oxr 2 <(8m)+(8x)> 0 ( )
Similarly we get fore,, ande,,
Vg 1
_E_:(Uxx - Uzm,old) + E_y(ayy - Uyy,old) -
ov 1 ov ov
ALY T A2 TH2 Z7UN2 ) — 2.3.1
G- 5o (GEr+ (G2) =0 (3.2.3.15)

57



Applications

2(1 4 vgy) 1 Ov,  Ouy
S 7 V' Ty
Ex—i—Eny 2 <8y+8x
1 v, Ovu v, Ov
AP 2 2V ) . 3.2.3.16
2 (836 oy oxr Oy ) 0 ( )

Here we have used [12](2.83)

E, + E,

G A0 )

(3.2.3.17)
The equilibrium equations (3.2.1.13), (3.2.1.14) are Hmaesas in the elastic case.

Like explained for Table 3.2.1.2 we reduce witl), = 0, 0., = 0 these 5 equations to the “1-D”
3-equation model for the simplified tensile test piece of Bi@.1.1. Here we write down explicitly
these equations:

1 Ovy 1, o, 00z, O0vy 5 B
Em (Uxx Uzm,old) At O 2At <( Oz ) + ( O ) = O, (32318)
_ Vay _ B Ovy 1 0vg Ouy 9\
B, (Uxx Umc,old) At By 2At (( Dy ) + (—8y ) =0, (3.2.3.19)
0 _, (3.2.3.20)
ox

These are 3 equations for the 3 variablgs vy, 0,,. The BCs are those of Fig. 3.2.1.4, but now
we have at the left/right boundany,: PDE (3.2.1.19)g,,: PDE (3.2.3.18)g,, = 0, 04y = 0
and at the upper/lower boundary: PDE (3.2.1.18)p,: PDE (3.2.3.19)p,,: 00.,/0x = 0, the
non-mentioned conditions are the same.

Now we use for the simulation of the tensile test this 3-eiquatnodel, i.e. the “elastic” equa-
tions also in the plasticegion, but the constant elastie-module E,. is now replaced bye, from
(3.2.3.6). Thus we go automatically along the yield limierez,.,. is computed from the non-linear
Cauchy-Green form (3.2.3.9)

_JOuy 1| Ougo  Ouy.y
Exz = { e +3 {( e )+ ( . ) ]}Old. (3.2.3.21)

The index “old” means that the values are computed from thaltref the previous time step. For
the computation obu,/Jz, du,/0x see the remarks to equation (3.2.2.9). Heris the global
displacement. The check if the steel is elastic or plastinasle withY from (3.2.3.3), i.e. by the
condition (3.2.2.1).

Here we should explain more precisely how we proceed: Fomatimee step we make at first
a test step with the conditions of the previous step, i.e.eadtiat were elastic at the end of the
previous computation step are solved with the elastic éopugmtAt the end of the test step we check
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3.2 Simulation of the manufacturing of metal bellows

if the nodes are elastic or plastic and then the computatemis executed with the corresponding
equations. At the end of the computation step the nodes ain algecked for elastic or plastic and
with these properties the next test step is executed.

After the computation step a new value for the plasticityapagter) is computed for plastic nodes.
As long as a node is elastic we have= 0 until it becomes plastic for the first time. When a node is
plastic we compute\ from the PDE (3.2.27). For the 3-equation modg),(= 0, o, = 0) (3.2.2.7)
reduces to

ot or Yoy Kn(eg+ N 1lT

00z 00z 00z
. =0. .2.3.22
am< 5t + vy . + vy By ) (3.2.3.22)

Time derivativeso\/dt, do,. /0t are discretized with (3.2.2.8). In this scalar PDE onlys the
unknown function, all other values are taken from the actoahputation step. The so computed
value of \ is then used in the next time step.

Then we made numerous numerial experiments \Eithfrom (3.2.3.6) to simulate the measure-
ments of the tensile test. We started with coefficients thetewproposed by the IFU and failed
completely to meet with the simulation the physical meas@rs. Then we varied systematically
the coefficients and observed how we had to change the vdlaesve came with the numerical
result closer to the measurements. We finally ended up wigs@trthat was not satisfactory, but the
possibilities of the coefficients were exhausted.

Therefore we looked how we could addpt by an additional functional term. We ended up with

E, = (1 + 6:17(51'1')) K:E,O n:v(em,o + Emm)nzil (32323)

which means that in (3.2.3.6) the constant valeis replaced by

K, = (1 + 51‘(81‘1‘))K$,07 (3.2.3.24)

whered, (e.,) is itself a function of:,,,. By an appropriate choice of this function we could nearly
perfectly simulate the measurement. For the solution oPtb&s we take,, = €, 014, i.€. the
value of the previous time step to have an explicit formula.

However, there was a new problem: obviously the volume ofsiheulated test piece was not
maintained, it was too small. This means that the transvesa&actionr was too large. We had
used the constant value of [12](2.82), = 0.5055. So the problem was much more complicated:
We had to adapt the parameters of our approach so that wealteyama the measurements and at the
same time to determine a value:othat maintained the volume.

Fig. 3.2.3.3 shows the simplified test piece with the notetimr the cross sectiofi, the volumel/
and the dimensionk b, h in z-, y-, z-direction. The actual cross sectiéhand initial valueFy are

F=b-h, Fy=20-0.2=4mm? (3.2.3.25)
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see Fig. 3.2.1.1. The actual volurifeand initial valuelj, are

V=F-1, Vy=4-180 =720 mm>. (3.2.3.26)

The values of andb can be determined by the difference of theandy-coordinates of correspond-

Volumen V

Cross

Figure 3.2.3.3:Notations for the determination of the cross sectioand VolumeV'.

ing corner nodes.

Now we want to discuss the determination/ofi.e. the actual thickness of the metal sheet. The
original value ishy = 0.2 mm. By the expansion of the test piece and the corresponding\uease
contraction also in the-direction the thickness shrinks frohg to the actual valué. In the same
way as we have derived from [12](2.26) foy. the incremental PDE (3.2.1.10) we compose from
[12](2.11) and [12](2.28) fot ., with o,,, = 0, 0., = 0 (3-equation model) the PDE

1%
_ﬂ(o':m: - Uma:,old) — At

v,
=0. 3.2.3.27
- 0 (3:2.327)

0z

Note thato,, is constant for the simplified test piece. Wittt - v, = Au, we get

0Au, Vs

az = —E—x(O'mm — O'xx’old). (32328)
This is a linear differential equation faxwu,, the incremental displacement irdirection. We have
the situation of Fig. 3.2.3.4Au, has negative slope. It goes through the origin and at thddseit
with distanceh it has the valueAu, = h - slope. The new thickness i8 = hyq — slope - hyq =

(1 — slope)hyq. SO we get with the slop@Aw, /0= (3.2.3.28)

h=|1- %(am — Gasotd) | old- (3.2.3.29)
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3.2 Simulation of the manufacturing of metal bellows

AAUZ

N

Figure 3.2.3.4:lllustration for equ. (3.2.3.28).

We have formally derived this relation for elastic deforimat However, with our approach of “soft”
E-module and plastic value of we use this relation withv,. = v, @and E, from (3.2.2.23)
also for plastic deformation. Here we do not need the nogalirGreen strain tensor because the
corresponding terms of tyd@u,./0z)? (compare (3.2.3.9)) are zero for our 3-equation model (2-D)
The transverse contraction is here the only effect that meisbnsidered ia-direction. Withh from
(3.2.3.29),F from (3.2.3.25) we can compute the actual volurh&om (3.2.3.26).

As mentioned above we observed a too small value of the voldrbecause by the elastic value
Vzy IN (3.2.3.19) that determines the width of the test piece:andn (3.2.3.29) that determines the
thickness,the contraction was too large. Therefore we didadok for a value ofv that maintained
the volumeV” at the initial valuel,. We found by numerical experiments thal, = v,. = Vpastic
must be a function of ... (not a constant) of the form

Vplastic(Exz) = —0.09 - &5, 4+ 0.066 - €2, — 0.0107 - 4, + 0.492. (3.2.3.30)

For thisv the volumeV of the test piece was nearly equalifp = 720 mm3, see Fig. 3.2.3.5. For
the solution of the PDEs we take, = <., .4, i.€. the value of the previous time step to have an
explicit formula.

Now we must discuss how we can compare the measurementseamdtierical simulation. From
the tensile test machine we get a stress .. that is defined by

forc ;
Omachine = %7 (3.2.3.31)

where force,..nine iS the measured actual force to extend the test piecdgislthe original cross
section (3.2.3.25). Note that this is a purely fictitiougssrbecause it does not consider the contrac-
tion of the cross section when the test piece extends. The¥al,.1ine IS given as function of the
strainegy with

dsn —
e0 = ~go 0 (3.2.3.32)
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721,0

720,5 A

720,0

volume V, mm 3

719,5 A

719,0

0,0 0,1 0,2 0,3 0,4 0,5

Figure 3.2.3.5:Volume V' of the test piece for the simulation of the tensile test action of ¢,
(3.2.3.21).

whereds is the distance of the two control pointsand B of Fig. 3.2.1.1 that have the original
distance80 mm. The value oflgy is measured by two claws that are fixed on the test piece.

Both valuess,,,.chine @andegg are not directly available in the solution of the elastiagtic PDEs.
Therefore we compute

Oge + F
Fy

Tcomp = (3.2.3.33)
whereo,, is the solution of the PDEs from the 3-equation model (coosttest piece) and’ and
F, are the actual and original cross section (3.2.3.25) wiftrom (3.2.3.29). A valuesg comp IS
determined from

A'B' — A(]B(’]'

—— (3.2.3.34)
AOBO

€80,comp =

Ay, Bj, are two grid points closest t4, B of Fig. 3.2.1.1,A B}, is the original distance of these grid
points andA’ B’ the actual distance. For the comparison of measurementimwuthtion we put in
the figures

Omachine <= Ocomp; €80 < €80,comp- (32335)
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3.2 Simulation of the manufacturing of metal bellows

We got early in the project from the IFU the measured valuea tehsile test as a table of values
of dgg and o ,qcnine. The corresponding CUrve,,..nine OVEr €5y can be seen in different scales
in Figs. 3.2.3.6 to 3.2.3.10. Unfortunately this measumnom which are based all our following
conclusions and adaptutions cannot be found in the IFU tépa}.

Now we want to discuss the results of the simulation. For impkfied test piece, lower part of
Fig. 3.2.1.1, we used a triangular grid witR2 x 23 nodes inz-, y-direction. The maximal relative
errors were for, : 0.4 - 10712, v, : 0.7 - 1079, 0, : 0.2 - 10713 so that we can say the results
for a time step have spatial error close to zero. This is tealref the simple test piece for the
3-equation model where,,. is constant on the whole test piece. The maximal relativer éor \
was0.2 - 10713,

The speed of the tensile test machine= v, .., see the BCs of Fig. 3.2.1.4, is different for the
elastic and plastic part. Therefore we use different tinrestAt = Atgqsi.c iN the elastic region
until a first node becomes plastic in the test steps. Then wetexecute the corresponding com-
putation step but chang&t to a smaller value\t = At;-..s t0 meet better the transition point and
continue the computation until again a first node becomestiplahen we sef\t = Atq4c and in-
crease the speed of the tensile test machimgrinr steps from the elastic speeti4-10~2 mm/sec)
to the plastic speefD.4 mm/sec) because a sudden change is not realistic. We continue the com
putation until the test piece “breaks” af,,chine = 995 N/mm? (stop the computation). We did
numerical experiments to see how the result changes witktlseand selected the values so that
the errors are far below 1%. We uséd.;qstic = 5.0 sec, Atyrans = 0.5 sec, Atpastic = 0.5 sec,
nincr = 5. In Figs. 3.2.3.6-3.2.3.10 we present the result of the oreazent and of the computa-
tion in different scales. In Fig. 3.2.3.11 is presented #ation betweeBsg) .om, (3.2.3.34) and ,,,
(3.2.3.21) for the actual computation. Variable coeffitsdike 6, (¢4, ) in (3.2.3.23) owpqstic(€xa)
(3.2.3.30) must be taken as functionsegf (which is used as,, 4 for the solution of the PDESs)
that we can generalize these relations.

The results shown above have been computed with the foltpaat of coefficients and functions
that appear iy (3.2.3.3) andt, (3.2.3.23):

N N
Yo =60—3, K =215——s, (3.2.3.36)
mm? mm2
co=1.02,  n=0293,
Ean > 036 : b= g, 8

N
Ky = 26000——,
mm

€x0 = 1.02,n, = 0.1.
The main result of this Section 3.2.3 is the “soff*module (3.2.3.23) that permits together with
the PDEs (3.2.3.18)—(3.2.3.20) the perfect simulatiorheftensile test for stainless steel sheet. The

appropriate set of coefficients and functions is given bg.830) and (3.2.3.36). This is not a mere
playing with coefficients but it is the macroscopic expresdior microscopic crystal perturbation
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Figure 3.2.3.6:Stress/strain relation measured (solid line) and compfadashed line), overview. Here
both coincide.
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Figure 3.2.3.7:Results for smalt.

processes in the metal sheet when it is deformed plastidailythe task of the metallurgist to ana-
lyze these results. Our task is to use this approach for thelation of the manufacturing process of
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Figure 3.2.3.8:Results for small to medium
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Figure 3.2.3.9:Results for mediura.

metal bellows. This is discussed in the next section.
Remark:Unfortunately we had later to recognize that there was & faformation or a misunder-
standing: The values of the stresses for the measuremerddased not on the original cross section
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Figure 3.2.3.10:Results for large.
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Figure 3.2.3.11:Relation betweengg comp UNAE ;.

of the test piece (as we assumed above) but on the actualsgoisn, see the context of equation
(3.2.4.46) and the new values there.
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3.2 Simulation of the manufacturing of metal bellows

3.2.4 Simulation of the manufacturing of a single wave of the metal bellow

The manufacturing process of a wave of a metal bellow is éxpthin [12], Chapter 4. There the
geometry of the tool, its position at the beginning and atahé are shown in [12] Figs. 4.1 and
4.5. In the experiment at IWKA that we want to simulate sevesaes have been formed. How-
ever, here we want to simulate the forming process of a singlee. Therefore we must introduce
“artificial” BCs that cut the single wave out of a group of waverhus the initial configuration is
that of Fig. 3.2.4.1. The manufacturing then is executethénfollowing way: In an initial blowing
step a pressure is built up in the interior of the metal shegwt. pThen the right tool and the right
end of the pipe section move with a prescribed speed to thendf the right tool hits the left tool
so that we have the situation of Fig. 3.2.4.2. Then, afteeatiing” phase in which other waves are
formed the pressure is taken off and then the tools, that>aadlyaseparated, are removed. Now in
the spring-back phase the remaining inherent stresseslaneed until an equilibrium configuration
is reached, see Fig. 3.2.4.3. The comparison of Figs. 2.2rid 3.2.4.3 shows the importance of the
spring-back phase.

left tool right tool
5.1
R=1
\

..

2.9

R=1.45

0.2 22

47| 46

Figure 3.2.4.1:Initial position of tool. Scale is imm.

Now we want to present the rotationally symmetric PDEs fasstt deformation in cylindrical
coordinates, see Fig. 3.2.4.4. The variables are the deyplant velocities,, v, and the stresses
T2y Orry Opg, Orz. Although we have for cylindrical symmetry no dependencepcand there is
v, = 0, there is the stress,, in circumferential direction. The basic equations are igive[12],
Chapter 3. The geometric definition of the orthotropic étadéformation is given in [12](3.38) to
(3.41), the deformation by the stresses (Hooke’s law) iergiv [12](3.44) to (3.48). We proceed
like in Section 3.2.1 for the tensile test incrementallyime steps. We have with displacement
and incremeniAy,

_ Ou, _ Au,

~
~

ot At

Uz

(3.2.4.1)
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and we define
Au, = At - v,, Au,. = At - v,. (3.2.4.2)
After each time step we update the coordinates of the nodbs wi
Znew = Zold + Ay, Tnew = Told + Ay (3.2.4.3)

The index “old” denotes the result of the previous time step.
If we equate the expresions fey, of [12](3.38) and [12](3.44) and go like in Section 3.2.1he t

2.2
=\

5.1

Figure 3.2.4.2:Closed tools.

3.5

7

9.5

A,

46 7.31

Figure 3.2.4.3:Final configuration of a wave.
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incremental form we get

1 ov
_[Jzz — Ozz,0ld — Vgaz(o'gaap - Jcpcp,old) - Vzr(o'rr - Urr,old)] —At—==0
FE 0z
z
(3.2.4.4)
Similarly we get frome,.., egp, €,2 = €2
Vipz VUpy 1 v,
———(0pp — 0O —— (0, —0 + —(op — o — At =0,
E[p ( P @ap,old) Ez ( zz zz,old) Er( rr rr,old) 61"
(3.2.4.5)
Vs 1 Uy
_E—(Uzz - Uzz,old) + E_[Ucpcp — Opp,old — chr(arr - Urr,old)] - At? = 07
z )
(3.2.4.6)
1 1 ov ov
— — — —At(== ) =0. 3.24.7
2Grz (Jrz Urz,Old) 9 ( EP + or ) ( )

We havev,,, = v.,, v, = v,,. From [12](3.4) we get the equilibrium equations witjioy = 0,
Orp = 0,04, =0

Oo oo, 1
LA "+ oy — = 3.2.4.8
or + 0z + r (o Top) =0, ( )

0o, 0o, Orz
or 0z r

which need not be written in incremental form as explainéerafqu. (3.2.1.14). In Table 3.2.4.1 the
sequence of the variables and equations is shown. The Valuibe coefficients in the equations are
given in [12](3.79) to (3.81).

=0 (3.2.4.9)

Figure 3.2.4.4:Coordinate system with initial and final configuratianis circumferential direction.
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Table 3.2.4.1:Sequence of variables and equations for the manufactufitiganetal bellow.

no | variable | equation
1 v, (3.2.4.4)
2 Uy (3.2.4.5)
3| 0., | (3249
4 O (3.2.4.8)
5| o0p |(3.24.6)
6 Ors (3.2.4.7)

For the plastic deformation we will use the same basic egoatbut now with variable “plastic”
E-module, “plastic” Poisson ratio and non-linear Green strain term. This will be explainedwel
Here we want at first discuss the BCs that we use. These aredahe” in both cases. As we check
in each node if it is elastic or plastic we may have adjacedenavith different properties. This may
occur above all in a bending of the metal sheet where in therinautral zone the stresses may be
lower.

r tZ /'/> n? = ¢ .
L.

Figure 3.2.4.5:lllustration to normakh and tangent.

In Fig. 3.2.4.5 we illustrate the normal and tangent with their components in cylindrical

coordinates. We have
n? t? —n"
n:< ) t:< >:( ) (3.2.4.10)
n’ tr n?

Similarly to (3.2.1.18) we have the stress at the surfachefietal sheet now in cylindrical coordi-
nates

z a -
i :<Jzzn +0..n ) z-component (3.2.4.11)

orn*  + opn” r-component

surface element z-dir. r-direction
with normal in
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3.2 Simulation of the manufacturing of metal bellows

The normal and tangential componentsradre

T

ol -n=0..(n*)?+20,..0°n" + 0. (n")* (3.2.4.12)

(3.2.4.13)

On

T

Ot 0"t = —onn" + UTZ((nZ)Q - (nr)Q) + oppnn”

Fig. 3.2.4.6 shows symbolically the 4 boundaries. For thendary (c) we must distinguish if a

left <—

corners n#
belong

to @

—> right

corners
belong

~ to®

Figure 3.2.4.6:Symbolic illustration of the 4 boundariesb, ¢, d of the metal sheet.

node is “free”, i.e. it is not forced by the tool, or if it is “foed”, i.e. its movement is dictated by the
tool. As the left half of the original metal sheet tube cantaohonly the left tool (see Fig. 3.2.4.1)
we check only if its nodes “touch” the left tool, similarly vebeck the right half with the right tool.
We proceed as follows: In a test step that is executed withdhditions of the previous computation
step, we check if a node is elastic or plastic and for the noflesundary (c) also, if a node is free
or forced. How we do it is explained below.

Boundary conditions at the boundaries (a) and (b) of Fig43%2

v, : v, =0at(a),
Vy = Vpoor at (b)a
v.: PDFE (3.2.4.7).

A special case are the upper left and right corners. If in titéal blowing phase an upper corner
touches the tool (observe in Fig. 3.2.4.1 that there isaihjtia gap of0.5 mm between the metal
sheet and the tool), i.e. if in the test step

Tcorner = Tcorner,old + At - Ur,corner 3 23.5 (32414)

we havev, corner = 0. This condition holds until in the phase where the pressureduced we have

(3.2.4.15)

On,corner > 0.
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Then the corner does no longer touch the tool, the explanf®io>0 is given at the discussion of
boundary (c).

0., PDFE (3.2.4.4),
o PDE (3.2.4.5),
opp: PDE (3.2.4.6),
or,: PDE (3.2.4.8).

Before we present the BCs for boundary (c) of Fig. 3.2.4.6 wstrexplain how we check if a
node is free or forced by the tool. The surface nodes of thademy (c) of Fig. 3.2.4.6 are denoted
by S;. We assume that the left and right tool of Fig. 3.2.4.1 are gigen pointwise by pointg’;,
see Fig. 3.2.4.7. Each nodg of the left half of the surface (c) of the metal sheet searcith
a sophisticated algorithm) for the two nearest nodigg; and 7., of the left tool, those of the
right half of the metal sheet search at the right tool. Therhaxe the situation of Fig. 3.2.4.8. The
normaln of node.S; right tool is determined orthogonal to the litg_,.5;,1 (we count nodes as
shown in the figure). We determine the intersectibof the normaln with the lineTj. s, T,.ig5:. The
vector fromS; to A isa - n. We have

~ ~ v/
|
|
!

left
tool

)

|

| -
|

|

|

|

|

J

|

\' '/

Figure 3.2.4.7:Pointwise representation of the tools.

AS, = a-n = (ZA - ZSi) - (“ o ) (3.2.4.16)

rA— TS, a-n’

and we determine from

if |n*| > |n"| then
a=(za — 25;)/n*
else
a=(ra—rs,)/n
endif

T
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to avoid division by zero. Ifl denotes the thickness of the metal sheet (@2mm) we denote

if a>a-d then
nodes; is free
else
nodes; is forced
endif.

Above all ifa < 0 S; would be “in” the tool. We use e.gv = 0.1.

If at the other hand a node is forced, we must check if the naesto lift off from the surface of
the tool and become a free node. Our idea was: if the nornesdssty, (3.2.4.12) becomes negative
the node wants to lift off. However, when we investigatedgigm of o, at a node that could not lift
off because it is pressed against the tool, we saw that theis negative. From that we conclude
that a node wants to lift off if,, > 0. To have some “security” we define:

if on > 1 the node becomes free (3.2.4.17)

After each test step we determine for each node of the medat it is elastic or plastic (see below)
and for the nodes of boundary (c) if the node is free or fordda: computation step then is executed
with these properties. Likewise we determine after eachpeation step again these properties and
execute the test step of the next time step with these nevegiep. Now we can present the BCs of
boundary (c) of Fig. 3.2.4.6.

Boundary conditions at the boundary (c) of Fig. 3.2.4.6:

left tool right tool

Figure 3.2.4.8:lllustration for the check for free or forced node.
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node is free
for [n*] = |n'| ] < |
v.: PDE (3.2.4.4), PDE (3.2.4.7),
v : PDE (3.2.4.7), PDE (3.2.4.5),
Oy O, ,n°+0o.,n" =0, PDE (3.2.4.4),
or: PDE (3.2.4.5), Oran® + oppn” =0,
0pp: PDE (3.2.4.6), PDE (3.2.4.6),

Opy i Opan® 4+ oppn” =0, 0,,n* + o.,n" = 0.

The condition with “=0" set one of the components of the stefatress equal to zero, see (3.2.4.11).
node is forced

for [n*| = [n"] [n*| < [n"]

vy equ. (3.2.4.20), PDE (3.2.4.7),

v, . PDE (3.2.4.7), equ. (3.2.4.21),
0..: PDE (32.4.4), PDE (3.2.4.4),
0w : PDE (3245), PDE (3.2.4.5),
0y PDE(3246), PDE (3.2.46),
orz: equ. (3.2.4.24), equ. (3.2.4.24).

The condition for, in the left column and for.. in the right column are the conditions that a forced
node of the metal sheet surface (c) can move only along tHestoface. We want to derive this
condition. The situation is illustrated in Fig. 3.2.4.9. \&sume that the metal creeps “upwards
along the tool with velocity with components., v, in z, r-direction at the left tool and’ at the
right tool. At the left tool we have

& — ntzool
Vz _n:ool
from which we get
nt
Uz = —Ur I;OOl for ‘nfool‘ > ‘n:ool" (32418)
Mool
n?
Upr = —U; tZOOl for ‘nfool’ < ‘n:;ool" (32419)

tool

At the right tool we have the creepingalong the tool, but the tool moves with ;,,,; to the left. We
have

z
v ool

T
z o0l
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3.2 Simulation of the manufacturing of metal bellows

from which we get

r
! " Mool

v, = —0, 2 for ’nfool‘ Z ’ngool"
tool
’ %
U, = —Uzni—(ml for |n;ool| < |n;001|'

tool

We havev, = v, 101 + v, OF U, = v, — v, 00 @nd We havey, = v,.. So we get

,rLT'
Vs = Vsytool — Vp =22 TO0 [no0] 2 [0, (3.2.4.20)
tool
nZ
vp = —(v; — UZ,tool) iOOl for |n;00l| < |n;00l|' (3.2.4.21)

tool

If we putv, 4., = 0 we get the equations (3.2.4.19) and (3.2.4.20). So the iegsa(3.2.4.21) and
(3.2.4.22) hold for the left todlv, ,,; = 0) and for the right tool.

The condition fow,., for the forced node of boundary (c) is the condition for thegtential compo-
nento, (3.2.4.13). If we neglect friction we havg = 0. However, there is eventually considerable
frictional stress between tool and metal sheet for forcedkao From [12], Section 3.6.2, we have
the frictional stress

O = MEonp (3.2.4.22)

left tool sheet

next tool

right tool

- hext tool
point

actual sheet
Ntool  node

Figure 3.2.4.9:1llustration for the creeping of the metal sheet along tHettl (above) and right tool
(below).
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with the friction coefficientn p = mgqi. (=0.08 for metal sheet with oiled surface) for static fidcti
(this is in reality not a “friction” but only a frictional séiss because there is no relative movement)
andmpg = my,,(=0.06) for kinetic (or sliding) friction. The boundary adition then is

or = £MEOnold (3.2.4.23)

with oy (3.2.4.13) andr,, o (3.2.4.12) where “old” means that, is computed from the data of the
previous time step. Thus the friction acts like an exteroedd.

There are now two problems: The first one is if we have statldratic friction. For kinetic friction
the metal sheet creeps along the tool, i.e. has a relativement to the tool. As the left tool does
not move and the right tool moves only in thedirection we have a relative movement if a forced
node of the surface (c) has # 0. So we take

for v, 20: mp = My,
else: ME = Mastatic-

The second problem is the sign “+” or “-" in (3.2.4.24) whiokpnds on the sign of, and ofo,, 4.
As mentioned in the context of equ. (3.2.4.18) at a forcecengd< 0. Therefore we use

O = —MFETp 0ld (3.2.4.24)

with o; from (3.2.4.13) and,, ;4 from (3.2.4.12), but for the values of the previous time stépr
mp see the context of equ. (3.2.4.23).

The numerical behaviour was much more critical than we exegecand our error estimate told
us what we had to do to get an accurate solution—so we feaagthiametal sheet that creeps along
the surface of the tool according to Fig. 3.2.4.9, would éethe tool. Remember that the sheet and
tool surface polygons are composed from straight lines éetwthe nodes. Therefore we used the
following simplified method: In the test step we check if a @adbat was free attaches to the tool
according to Fig. 3.2.4.8. Then we prescribe in the commutatep the values far,, v, so that the
node just meets the tool. Then this node is a forced node éofalfowing time steps, i.e. we have
v, = 0left, v, = v right, and we have in both cases = 0. So the node adheres to the tool.
Therefore we have now for attaching and attached nodes llberiog BCs at boundary (c):

node attaching node attached
Uz 1 Vy = Uy test v, =0 (left), Vz = Vtool (Tight)
Up @ Up = Urtest v =0

0..: PDE (32.44)  PDE (3.2.4.4)
04t PDE (3245)  PDE (3.2.4.5)
0y, : PDE (3.24.6)  PDE (3.2.4.6)
0.t PDE (32.4.7)  PDE (3.2.4.7).

As the metal sheet nodes are now attached to the tool them rislative movement and thus no
friction.

Boundary conditions at the boundary (d) of Fig. 3.2.4.6: eHee have normal stress, = —p
and tangential stress = 0, with o,,, oy from (3.2.4.12), (3.2.4.13). Ifn*| > |n"| (3.2.4.12) is a

76



3.2 Simulation of the manufacturing of metal bellows

good equation fos ., else foro,.., in both cases (3.2.4.13) can be usedsfor, except ifjn?| = |n"|,
whereo,., drops out of the equation. Therefore we subdivide the agiidio of (3.2.4.12), (3.2.4.13)
into 3 regions, depending dn*| and|n"|. We have introduced the same procedure in Section 3.3.1
in the context of Fig. 3.3.1.6 (here’, n¥). There the 3 sectors I, Il, Ill are defined (this was at an
earlier time, therefore it is explained there). Thus we hhecfollowing BCs at boundary (d):

sector | sector |l sector Il

v.: PDE (3.24.4), PDE (32.4.4), PDE (3.2.47),

vy : PDE (3.2.4.7), PDE (3.24.7), PDE (3.2.4.5),
Ozy: On = —Po, ot =0, PDE (3.2.44),
o PDE (3.24.5), PDE (3.2.4.5), o, = —po,
0pp: PDE (32.4.6), PDE (3.2.4.6), PDE (3.2.4.6),
Ory: o3 =0, On = —Po, oy = 0.

Hereo,, o, are from (3.2.4.12), (3.2.4.13). The interior pressuw@) is approximated by [12](4.1)—
(4.3), the approximated function is shown in Fig. [12](4.3)

Up to here we have discussed the BCs that hold for the init@libg phase, the phase where
the right tool moves, the rest phase where the pregsi{rg¢ changes only slightly and finally up to
the discharging of the pressure dowrptp= 0. Until then the tools are still closed and the formed
metal sheet is still fixed by the tools. Now the axially sepgddools are opened and the bellow wave
expands by the remaining inherent residual stresses ungigjailibrium state is reached. This is the
essential spring-back phase. We stop the computationfiffixied left end the right end of the wave
does no longer move, i.e. if

|V maz| < 1073 (3.2.4.25)

where the max is taken over the nodes of the right end (boyr{daof Fig. 3.2.4.6).

However, the stainless steel has after the forming proaessdly different propertieds and v be-
cause the internal crystal structrure has been strongiyrtlied by the deformation. The disturbance
depends on the total strain that the metal has passed thropgim our request the IFU did a series of
experiments with tensile test pieces that had undergoferelit straing. In the tensile test machine
the strain is measured as

[ —80
80 = —oq (3.2.4.26)

wherel is the length between two test poirisund B of the test piece whose original distance is
80 mm, see Fig. 3.2.1.1. However, this valag is not available in the simulation process. Here
we measure the non-linear straip, by equ. (3.2.3.8). From the simulation of the tensile test we
have the relation of ... as function okgy given in Fig. 3.2.3.11. In [12], Section 5.1.1, the resufts o
the measurements of the different material parametersffereht values of the initial straing, are
given.

For the spring-back expansion of the bellow wave we use th&tielequations of Table 3.2.4.1,
but now with reduced material parameters. We assume thevwbalhve fixed inz-direction at the
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left end and the other 3 surfaces are free surfaces. The Bis 4tboundaries (a)-(d) of Fig. 3.2.4.6
for the spring-back computation are:

Boundary conditions at the boundaries (a) and (b):

v, =0 at(a) v, : PDE (3.2.4.4) at(b)
vy : PDE (3.2.4.7),
0.2 =0,

o PDE (3.2.4.5),
0pp : PDE (3.2.4.6),
ory = 0.

The conditionss,, = 0 ando,, = 0 mean that the-component anad-component of the stress are
zero, see (3.2.4.11) far* = £1,n" = 0.

Boundary conditions at the boundaries (c) and (d):

for |n*| = [n"| [n?| < |n"|

v,: PDEFE (3.2.4.4), PDE (3.2.4.7),

vy . PDE (3.2.4.7), PDE (3.2.4.5),
Osr i 00 +o..n" =0, PDE (3.2.4.4),
or: PDE (3.2.4.5), Oran® + oppn” =0,
opp: PDE (3.2.4.6), PDE (3.2.4.6),
Opy i Opan® 4+ oppn” =0, 0,,n* + o,n" = 0.

Here the relations witw*, n” mean again that the corresponding components afe zero, see
(3.2.4.11).

Here we want to summarize again the pre-requisites for aessfd computation of the spring-
back. At first we must have the correct values of the stressgso,.,, 0., 0, at the end of the
forming process. These are calculated with the “séfttnodule and, determined from the simula-
tion of the tensile test. These parameters depend on thénear-straing, g that are individual for
each node. Then, for the spring-back expansion, we have agiividual parameterg& andv that
depend also on the local, s, i.e. the previous deformation history. So we recognizé e result
of the spring-back calculation is an extremely hard andiemdest for the quality of the material
parmeters.

Up to here we have discussed the problem with elastic PDE&id.ilow we want to discuss the
plastic PDEs with the “soft”-module and corresponding functionIn Section 3.2.3 we have seen
that in the 1-D casé& andv are functions o, i.e. of the deformation history. For the simulation
of the manufacturing of the metal bellow we extend this apphoto cylindrical coordinates. With
the displacements,, .. in z, r-direction we get from [12](3.8)—(3.12) the non-linear Cay-Green
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3.2 Simulation of the manufacturing of metal bellows

strains for rotational symmetry.{, = 0, 9/0¢ = 0):

€= 5~ + 5 e )%+ 5 o )2, (3.2.4.27)

Err = %ij" + %(85:")2 + %(8(;?)2, (3.2.4.28)

Epp = “7 %(%)2, (3.2.4.29)
R N T

For the definition of the “soft’E-module for rotationally symmetric cylindrical coordieatwe gen-
eralize relation (3.2.3.23) in the following way:

E, = (1 - 6x(5zz))Kx,O Tl;c(&p,o + Ezz)nw_l, (32431)
E, = (1 - 6:c(5rr))K:r,O n:v(gzv,o + Err)nzila (32432)
E, = (1- 5x(5sos0))Km,0 Ny (€0 + 5%0)”“”71. (3.2.4.33)

Here K, o, ng, £,,0 are the values of (3.2.3.34), (¢, ) is the function given in (3.2.3.34) whetg,
is replaced by, and similarly foré,(e,.), 6,(c,,). FOre we always use the valug,q, i.e. the
value of the previous time step to get an explicit expreskiothe £’s.

For G, we use the relation [12](3.81)

E, + E,

Gz = A1+ )

(3.2.4.34)
Here we must at first clarify what means,, see (3.2.4.36) below. In Section 3.2.3 we have seen that
Poisson’s ratia/,.s:. (here we do not differ between,, andv,.) for plastic deformation depends
Oone,; as givenin (3.2.3.29). We call thig,, because it depends ep,.. We generalize this relation
and define

Vaw = V(€22), Vpr = V(Er), Vpp = V(Epyp). (3.2.4.35)

This means that we take e.g. for, the value ofu,;,;. of (3.2.3.29) and replace,, by ¢.. etc.
Here we also use farthe values,,;; of the previous time step. 16, (3.2.1.36) we use:

for G,, take Vpy = min(Vpp, Vs ) (3.2.4.36)

which means that we take the valuerofor minimal transverse contraction.

Like for the tensile test we have for plastic deformatiorgéastrains so that we must take the
non-linear Cauchy-Green strain. If we take £gr equ. (3.2.4.29) and go with (3.2.4.2) to the incre-
mental form, then in (3.2.4.4) the negative last term (lirsteain) is replaced and we get (with e.g.
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Voo/E. = 1.,/ E,, see [12](2.18))

1 1%

_(Uzz - Uzz,old) - ﬂ(o' — 0 7old)_
Ez Ego PP PP
—%(aw — Orrold)— (3.2.4.37)
ov 1 ov ov
CALZZE O ZAR2(( 222 272V — .
t@z 2 t((ar)+(8z)) 0

In the same way we get fer.,, €., €, from (3.2.4.30)—(3.2.4.32)

Ve Vs 1

E—cp(o'soso - U<p<p,old) - E_Z(Uzz - Uzz,old) + E(Urr - Urr,old) - (32438)
ov, 1 v, v,
—At—" — AP ((52)? "2y =0
or 2 ((8T)+(8z)) ’
Vs, 1
_E—Z(UZZ — Uzz,old) + E_W(USOSO — O'Qp%old) — (3.2.4.39)
vV, v, 1 v,
- rr — Orro —At_r—_AtQ —)? =
2 (Orr — Orr old) 3 ( . )" =0,
2(1 + min(vyrp, v22)) 1 ov, Ovy
_ — _ZA — .2.4.4
Er T Ez (Urr Urr,old) 5 t( Or 2 ) (3 0)
1 ov, ov ov, ov
AL L z L 2y — 0.
2 t (ar or + 0z 82) 0

Here theE’s are from (3.2.4.33)—(3.2.4.35) and this are from (3.2.4.37). The equilibrium equa-
tions (3.2.4.8), (3.2.4.9) are the same.

For the boundary conditions of the 4 boundaries (a)-(d) gf Bi.2.4.6 that have been presented
above we must now replace the elastic PDEs (3.2.4.4)—(3)2by the plastic PDEs (3.2.4.39)—
(3.2.4.42).

The solution of the PDEs is executed in the following wayi,ikinto the simulation of the tensile
test: For each time step at first a test step is executed watledhditions that were given after the
previous computation step, i.e. a node that was recognimze ais elastic, is solved with the elastic
PDEs, else with the plastic PDEs and a node of boundary (dpgof32.4.6 that was forced is solved
with the BCs for a forced node, else with the BCs for a free noMlieer the test step we check if
a node is elastic or plastic and if a node of boundary (c) isddror free and then the computation
step is executed with the corresponding properties. Aftercomputation step for those nodes that
have been solved with the plastic equations a new value gilgsticity parameter is computed (see
below). Then again the check is executed if a node is elasfiastic and if a node of boundary (c)
is forced or free. Then with these properties the test stethéonext time step is executed.

To check if a node is elastic or plastic we need the equivatass [12](3.50) for cylindrical co-
ordinates:

T = \/Ugr + 0%, + 02, — 0pOpp — Opp0sz — 0220 + 302, (3.2.4.41)
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3.2 Simulation of the manufacturing of metal bellows

The yield stres¥” is given by (3.2.3.3)

Y =Yoo+ K(go + \)", (3.2.4.42)
and its coefficients by (3.2.3.34). We define:

if foranode 72V it is plastic,
else itis elastic.

We check as mentioned above after each test step and agaieath computation step, if a node is
elastic or plastic.

As long as all nodes are elastic, the plasticity parameterzero. If a node is plastic we compute
a new value of\ from the PDE [12](3.57) in cylindrical coordinates

o)) N o\ n o\ 1 1
— Yt At —vy=— .
ot or " 9z % Kn(eg+\)"125
do Oo Oo Oo
. {20'747«8—: + 20'9099% + 2O'ZZ72Z + 6O-T“Za—;z—
0oy 0oy 00, 0oy 00, 0oy
T R TR
0 0 0 0
+ {2%%% ool + 20— o+ 607, T
do Oo Oo Oo
"3 L — Oy 8” Ory 8;Z — 0. a;’“ - (3.24.43)
Jo Oo
Opp 822 2z 8?0} v+
do do Oo Oo
., 004, . 0oy s 00, s 0oy B
P P 0z "9z 0z
Jo do
Oy 8: — 0z ajﬂ Vz}-

Here time derivatives are discretized in the following way:

oA A= Nold 0oy, Orr — Oprold

— = = : 3.2.4.44

ot At ot At ( )
and similarly the other time derivatives. The index “old’hdées the value of the previous time step.
In (3.2.4.46) the only unknown function is thev’s ando’s are the result of the actual computation
step. This means that the new value)ofs then used in the next time step. This is exactly the
procedure that has been applied in the simulation of thel¢etest where the parameters for the

determination of£ undv have been determined as functioreof
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So far everything was prepared for the computation and wéeimgnted the corresponding equa-
tions into FDEM. For a certain number of time steps everghuent well, the errors were small, e.g.
below 1% for a certain grid, and they became smaller for finer gridsweieer, after a certain time
the errors started to grow continuously, the steel tubéestao oscillate: bubble and hole alternating
in the middle of the tube, and the values of the stresses apthdement velocities got unreasonable.
We changed the BCs, changed the grid, changed the time\stefhie situation became worse with
smaller time step. We limited thB-module to a lower limit of e.g40000 N/mm?, i.e. we made the
steel harder, and then we could compute until the right tiaotexd to move and the errors were small
at that time. The steel tube had extended in the middle byhigug4 mm. We knew from the error
estimate that the solution was okay. However, when the tadlexl to move the metal tube buckled,
and it buckled inwards and not as we expected from the matufiag process outwards to form a
wave of the bellow. Buckling means bifurcation of the salntithere is no longer a unique solu-
tion. Buckling inwards simply occured because it is enécglly cheaper than buckling outwards.
So the harder steel is not the solution of the problem. As imeed above we shift the grid by the
displacement after each time step. So the computed soligtithe solution for the old grid and not
for the new one. This is a type of explicit procedure and weirassl that this is the reason for the
oscillations. Therefore we introduced the grid iteration:

If & isthe iteration index, we check if
o — o] - 3.2.4.45
’Uff < Egrid ( LT )
and if not, we make a next iteration, i.e. compute a new smiuti

on the new gridk.

We also can prescribe a min. and max. number of iteration$inglly we have a solution on the
newgrid, which means also with respect to the grid we have a foilglicit procedure.

If we then repeated the computation everything was as he$arae solution, same small error—
until a certain time step. Then at the next time step the geichiion diverged: the tube started to
oscillate during the iteration, bubble, hole, bubble etotiluhe solution became nonsense. Again
with a largerE-module we could compute with small error until the tool ey then occured buck-
ling as mentioned above.

After a long and painful time we had the enlightenment: Winengrid iteration diverges, the steel
tube burstsUntil now everybody (IFU and IWKA) assumed that the formofg wave of the bellow
is hydroforming under the internal pressure. However, éiglosion forming The metal tube does
not bend into the form, it explodes or flies into the form. Iftake harder steel, i.e. largéFmodule,
the steel tube withstands to the internal pressure, anddsiifkhe tool starts to move, but this does
not simulate the bellow forming process.

Before we discuss further the simulation of the manufactumwe want to mention some points
that came up during the numerical attempts mentioned abBesides the large oscillations there
developed small oscillations with high “frequencies”. Vdifid similar oscillations at the Bosch
problem and there could cure them by a “parabola smoothseg,the context of Fig. 3.3.5.1. For
the bellow forming process we at first smoothed the inner andresurface and then all grid lines
parallel to these surfaces. By an appropriate choice ofrimothing parameters,, oot (3.3.5.5)
and 3, see (3.3.5.4), we could cure these high frequency osaeitlst but this had practically no
influence on the large oscillations that destroyed the woluwtrhen the tube bursted.
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3.2 Simulation of the manufacturing of metal bellows

Another, for us very frustrating point was the following: fhg the investigations we wanted
measured data of the tensile test that is very dense in theiticm region from elastic to plastic
deformation. In the discussions with the IFU we got the infation that the measurements of the
stress for the tensile test, e.g. of Fig. 3.2.3.6, were baseithe actual (reduced) cross section of
the probe and not, as we assumed, on the constant origirsa seation. The IFU could not clearly
explain, how the actual cross section was determined. Idaoat be cleared if this was originally
false information from the part of the IFU or a misunderstagan our part.

So we started again to determine from the tensile test aiamfir F(e,,) of type (3.2.3.23) and
v(ez) Of type (3.2.3.30), now based on the actual (reduced) cexg®a of the test piece. We again
adapted the set of coefficients and obtained similarly t8.8336), the coefficients not mentioned
here are those of (3.2.3.36):

0 < éepe <0.08: §=0,
0u(epa) = { 0.08 <y <0300 §= ;}%sm + w5 (3.2.4.46)
Exx > 0.30 : 6= 7_0511 — 70

Ko = 21000 N/mm?,
x0=1.02,m, = 0.1,
and forvyastic(42) instead of (3.2.4.30)

Vplastic(Eax) = —0.0175 €3+ 0.007 €2, + 0.001475 £, + 0.4916. (3.2.4.47)

Fig. 3.2.4.10 shows the comparison of the measurement atieé gimulation with the above given
coefficients for the tensile test. Now the stress is basederattual cross section, see context of
Fig. 3.2.3.3.

2
O-machme ’ ocompv N/mm

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

€50s €80,comp

Figure 3.2.4.10:Measured and simulated tensile test based on the actualseoson. The line for the
measurements is composed from very dense dots.

In the test step we determine if a node is free or forced, kad Hilit is elastic or plastic. The
criterion is the comparison of the equivalent stres8.2.4.41) and the plasticity parametethat
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is computed from the PDE (3.2.4.43). The criterion is giverthie context of equation (3.2.4.42).
This is a pointwise switchindrom elastic to plastic, individually for each node. Thisane that
for two neighboring nodes one node may be elastic and the otbde plastic. However, in the
steel there is no “switching”, there is always a continugasgition. As we attributed at first the
problems with the oscillations to the switching, we choseééscribe the transition from elastic to
plastic by a “transition functionthat goes continuously from elastic to plastic by the chaitan
appropriate functional approach. Our plasiemodule just describes the moving along the yield
surface of the metal sheet. There is also another open guéstithis context that the IFU could
not answer to us: The tensile test runs in several minutaheseorystalline structure of the steel has
time to adapt. However, the forming of a wave of the bellowsrimsome milliseconds so that the
crystalline structure has less or no time to adapt whichlteguesumably in another value for the
E-module: E = E(e,¢), i.e. E may depend not only on the strain but also on the strain wgloci
As we do not have information on the dependence ae take forE the above mentioned function
E(e) determined from the tensile test.

Now back to the transition function far. We made at first an approach with a parabola, but got
no satisfactory results. From the graphffwe concluded that an exponential approach would be
better. For we use a3 order parabola. Far < c/,qns1 We US€F ¢1qstic aNAVeastic, TOF € > E4ranse
we UseEqstic andvpgstic. BEIWEEINEqns1 @Nderrqns2 WE USE the transition functions

Etrans (5) = 10a0+a1€7

3.2.4.48
Vtrans(g) = by +bie+ 5282 + 5353 ( )

with

Etransl = 07 Etrans2 — 000405,
ap = 5.288, a; = —208.214,
bo = 0.4916, b; =0.1475-1072, by =0.7-1072, b3 =—0.175-10"1.

In a time stepping procedure these values are determindtidoralue ofz of the previous time
step. Fig. 3.2.4.11 shows, (¢, ) for the wholezs,,, range of the tensile test, Fig. 3.2.4.12 shows the
value for very smalk,,.. In the figures we can see how rapidly, drops, observe the logarithmic
scale forE,. As we have now a transition function with continudransition from elastic to plastic
we do no longer neetb computes and A and “switch” from elastic to plastic. We use the same
“elastic” equations, only with an appropriate variallenodule. We now could call these equations
elastic/plastic We now must extend this approach from the cartesian coatelisystem to the rota-
tionally symmetric cylindrical coordinate system. In etijoas (3.2.4.31)—(3.2.4.33) we extended
and in (3.2.4.35) with the approactf(e,, ), v(e,.) from the tensile test to the cylindrical coordi-
nates. However, if the metal sheet is bent up into the formF$g. 3.2.4.2, what is then the meaning
of e.., erry €4,7 At the beginning of the metal forming process we have thagit tube, the main
direction is thez-direction, see Fig. 3.2.4.4. However, if the sheet is benthe main direction on
the side walls of a wave is thedirection. For this reason we decided to quit for the etgsiastic
equations in cylindrical coordinates the orthotropic ma@uahel to go back to an isotropic model with

E = E(gmax), Emar = max(\efz,z’, ‘87"7"” ‘59090‘)7 (3.2.4.49)

v = V(Emaz)-
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Figure 3.2.4.11:E, (¢, ) with the transition function for the whole rangeaf,.
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Figure 3.2.4.12:F, (e, ) with the transition function for smadi, ..

Again ¢, is determined from the previous time stefk,., is replaced byE with the relation
[12](3.81).

Now we want to continue our considerations what to do whergthkiteration diverges, i.e. the
steel tube bursts. The expansion of the steel sheet intootine, See Fig. 3.2.4.2, is far beyond
the elastic/plastic approach. As long as we use the elalstitic equations the metal has still a
“memory” of its past. However, if it expands far into the foiimbehaves like dough. For the
elastic/plastic approach we have stress proportionarainstfor dough we have stress proportional
to strain velocity. In [12](3.15)—(3.19) we have the exgiess for the strain velocities in cylindrical

coordinates. For rotational symmetty,0p = 0, u, = 0, v, = 0 and taking only the linear terms
we get

_ Ovr Uy U 8r} - Ovus
Zr ) __ 2 YL e ——
9 zZzZ 0z )

Err = 5r s Epp = 72 Ot

. (3.2.4.50)
= b (G + 98
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In £, we haveu, in the braces which is the displacement from the originaitijpps However,
dough has no memory and forgets the original position. Thezewe drop this term i, . In
equation [12](3.44) we have the stress/strain relatiomw(isotropic):

1

€= 4 (022 — VOGp — VOR,) .
For the metal dough we now make a quite similar approach by
. 1
€z = 1 (022 = VOGp — Vo), (3.2.4.51)

with a proportionality factor between stress and straieig} which we callF’, whose dimension is
[F] = Ns/mm?2. Takingé.. from (3.2.4.50) we get the PDE, writing it with all terms teethh.s.:
1 Ov,

a (022 —VOGp — VOR) — 5, = 0. (3.2.4.52)

This is again a quasi-steady equation. We proceed in tinps stewhich the grid moves in dis-
placement increment&u = At - v. Therefore we use again the incremental form which is now for
(3.2.4.52), with the index “old” for the values of the prewstime step:

1 ov OV o1d
i (022 = Ozz0id — V (Opp — Opp.old) — V (Orr — Oprold)] — 8; 520 =0. (3.2.4.53)

Here the derivatives af, andv, .4 are taken on the same (actual) grid.

This is the stress-strain velocity relation obtained:fgr(3.2.4.50). In the same way we formulate
the corresponding equations fey,, <., andé,.. We do not write down these equations here.
Additionally hold the equilibrium equations (3.2.4.8) af¥2.4.9). The BCs are the same as before
if we replace in the BCs the equations (3.2.4.4) to (3.2.8yrhe corresponding equations for the
“dough”, e.g. equation (3.2.4.4) by (3.2.4.53).

Then we proceeded as follows: We computed with the elatitip equations until the grid
iteration diverged. The last converged solution was stemadl used as starting solution with the
equations for the “dough”. As we have no value forwe did numerical experiments with different
values ofF": the solution showed the expected behaviour, the steet slaemore soft for small’
and harder for largé’. However, the basic behaviour was the same as for the éfdasitic approach.
The steel tube bent a bit into the form, but the errors greweaditedl some time steps the solution was
meaningless. So this approach failed for the computatidheobursting tube. What to do now?

The idea is, to use instead of the quasi-steady equationsinsigady equations, but which ones?
If we form the partial derivative of the dough equations wigspect to time, e.g. of equation
(3.2.4.52) and then discretize the time derivatives by %“g.: (0 — o4q) /At We get just equa-
tion (3.2.4.53), thus no new information. So, what to do now?

The next idea is to form the totdkrivative of the equations, because the grid moves, angrithe
moves rather strongly if the sheet bends into the form. Faringocoordinates we have

o=o(t,zr)=o(tz(t),r(t).
Thus the totaterivative with respect to time is

do(t,z(t),r(t)) _ 0o 0o 0z 8_0@_8_0_’_8_0 +8_U
dt Tt T oz0t "orot ot 027" or

or, (3.2.4.54)
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3.2 Simulation of the manufacturing of metal bellows

as we havedz/0t = v, Or/0t = v,. This relation holds fot .., o,,, 04, ando,. In (3.2.4.52)
also appear8v./0z. Thus we also need the total derivative of derivatives gfldisement velocities,

e.g.

d avz(t’ Z(t)a T(t)) . 82’UZ 82/0,2 822}Z
dt ( 0z 920t + 022 vz + 3267’%' (3.2.4.55)

Similarly we can formd(dv,/or)/dt, d(0v,/0z)/dt andd(Ov,/Or)/dt. Foré,, (3.2.4.50) there

also will be needed
G = %)+ (%) 5 () v

Ovr 2

_ v + zy——vv v (3.2.4.56)

r r@z

10v, 1 Ovur 1 Ovur
r Ot 2 +r8sz+r87"fU7"

We now can form the total derivatives of all 4 stress/stragtoeity equations of which we have
presented the one far,, as equation (3.2.4.52). If we do this, we immediately diszeethe time
derivatives, e.g.

005, _ 0zz—0zz 0ld

ot At ’
d%v 9 (Ov aa&*(ac’ﬂvz) 1d (32457)
55 = o (55) = 7.

Here the index “old” means the solution in the same node gpéxdous time step an@v. /0z) 14
is computed on the actual (new) grid from the old solutiorwéfuse all these relations we get from
the 4 stress/strain velocity equations of type (3.3.4.B@}ime-discretized total derivative equations:

1 [922=0zz0ld 8ozz 002
F |: At + UZ + 87‘ UT‘

Top—Opp,old () 90pp _
V< R ”r>

(3.2.4.58)
(et . dey, 4 Oy, )]
52— (%2) 9% 2
z Atz old + 251)2 + (9 szr = 07
% {_y (Usw AU;EW ,old + aUswUZ_'_ da vw )_
v (O’zz_Z:z,old + 80'22,02 + ag;zvr) +
(3.2.4.59)

Orr—Orr old 80’r7 Jdorr _
At + vz t+ ar Ur

dvup Ovup
%7(%)01(1 + BQWU + 92 9ur o -0
At 0z0r 7% or2 “T | T
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1 02202 old 00, 00
F[_V< At T ooz Vet ar”r>+

Tpp = 9pp,old 904p 00pp
+ vz + ar Ur—

At 0z
(3.2.4.60)
Orr —Orr old 0oy 00 rr _
V( AL T ar V2T gy ”T)]
1 Yr—Vrold vZ | 18u 1 e _
(?T—zr—?Jr?az”err arvr) =0,
1+v Orz—0Orz,0ld do, doy _
F ( At T o V=T g ”r>
dvup Ovup
1 Oz 7( =z ) ld 821)- 82’0
2 (7& A T T G ) (3.2.4.61)

1 aavrz _(8(’;17-2 )old 9%v, 0%, —
3 At + gV T Gz or ) = 0.

These 4 equations are supplemented by the 2 equilibriuntieqag3.2.4.8) and (3.2.4.9) that hold
also for the unsteady solution.
Now the first 4 of these 6 equations for the 6 variables arelinear, e.g. by terms Iiké’%uz,

and they contain second order derivatives of the displanemaocities, e.g.%i%z or gzg; . This
changes completely the character of the PDEs compared tin¢ae elastic/plastic equations.

In these equations is the unknowiimodule. We had made the speculative approach (3.2.4.51)
for the stress/strain velocity relation, but we had no vdreF'. Our intention is to try to simulate
the manufacturing process by these equations with diffaralues of " until we find a value that
“fits” to the observed behaviour. The BCs for the elastic ¢éiqna had been discussed in the context
of Fig. 3.2.4.6. Now hold the same BCs, but we must replacd”PDEs (3.2.4.4)—(3.2.4.7) by the
PDEs (3.2.4.58)—(3.2.4.61).

The execution of the computation is as follows: we computénie incremental form with time
step sizeAt with the elastic/plastic equations until the quasi-stegudg iteration diverges. The last
converged solution is stored and is the starting solutiothefunsteady equations. We solve the
unsteady equations in time steps with step dize

The simple explicit marching in time direction with the gimi§ of the grid by the equations
(3.2.4.2), (3.2.4.3) after the time step leads to an explimie marching procedure where all deriva-
tives have been formed on the old grid, i.e. the grid of theiptes time step. However, if the steel
sheet “explodes” into the form, we have large displacemandsthe new grid is quite different from
the old grid. Therefore we introduced here also a grid itematAfter the computation of a solution
we recompute the solution repeatedly on the new grid urdibtid comes to rest. K is the iteration
index of the grid iteration, we check if

oz = 2] flor — o7

[l [l

< Egrid (3.2.4.62)
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3.2 Simulation of the manufacturing of metal bellows

and continue the iteration if (3.2.4.62) is not fulfilled. \Also can prescribe a min. and max. number
of iterations. If we use a smoothing of the grid, we apply timeathing after each grid iteration. So
finally we have at the end of the time step a solution on thegriav As the equations are non-linear
and the moving of the grid is also a non-linear process, we raveality now an extremely non-
linear problem. The converged solution of a time step thdéhdsstarting solution for the next time
step.

The experience has shown that such iteration processe$dilgrid iteration at each time step can
be accelerated by a relaxation factoor even can be made convergent at all by a small relaxation
factor. Therefore we introduce the possibility of a releffactor into the grid iteration by

displacement = w - displacement,pethod, (3.2.4.63)

wheredisplacement,eih0q 1S the displacement that the method delivers. For a smallevaf w
the grid shifts slowly during the grid iteration. As the gitdration is stopped by the condition
(3.2.4.62) we should now use- 4., as stopping criterion because for smalthe change i is
correspondingly smaller than far = 1. The effect of a smalb is that the actual grid can follow
better the development of the solution.

When we implemented the equations (3.2.4.58)—(3.2.4.61j)saal (and as described in the first
part of this report) we at first tested them by a test polynbsghution of second order, i.e. we added
absolute terms that the exact solution is the prescribgthpatial. If we start with the exact solution,
the Newton residual should be in the rangelof ! — 10~'2. However, for these equations the
residual wad0~7 which indicates a problem. When we started with a disturlobatisn, e.g.1.01 x
exact solution (1% disturbance), the Newton iteration séapat a residual af0—> because this was
small in relation to the discretization error, and we didgetithe prescribed solution but another one.
As such an extremely non-linear system may have many sogjtimbviously the Newton iteration
drifted to another solution although we had started clogbdaexact solution. From this behaviour
of the test problem we expected similar difficulties of thgbal problem.

For the solution of the physical problem we started from t& Qrid-converged quasi-steady
solution, but we could not get a physically reasonable gwiut We experimented with different
values of theF’-module and of the time step siZet, but no reasonable solution could be obtained.
So we concluded that the equations (3.2.4.58)—(3.2.4.@&Lhet suited for the computation of the
exploding steel sheet. But what to do now?

If we look at equation (3.2.4.54), we have replaced 8.0t by v,. This is correct if we are in a
completely continuous environment, but it may be inadegjifate proceed in incremental steps. For
an incremental procedure where the grid is shifted afteh éate step, the total time discretization
should better be formulated thus:

M_@_J 8_0% aU&_U—Uold a_UZ—Zold @T—rgld

dt o Tosot T arat . At 9 At T or At
(3.2.4.64)

where values with the index “old” are of the previous timepst€his relation holds for abb’s: o,
Trry Tppy 0. Similarly we discretize instead of (3.2.4.55) now e.g.

d <8vz(t,z(t),r(t))) _ 0 (81)2) + 8%v, 9z v, Or

dt 0z ot \'0z 022 Ot 0z0r ot
vy 7( Ovy )

oz oz
t

(3.2.4.65)

0%v, z—2 O2v, r—r
A+ GF Rt o A
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Similar relations hold fotl(0v, /0r)/dt, d(Jv, /0z)/dt andd(dv, /0r)/dt. Instead of (3.2.4.56) we
have now

£ -

Sl

dvr _
%Bw dz + r 6;2 —Ur % (3.2.4.66)

3 (B G e ()G
_|_

NERSS

)old 1 0vr 2—2014 1 0vy T—"01d Vr T=Told
+ 5 r 0z At + 5 .

r or At r2 At

If we use all these relations we get from the 4 stress/stralocity equations of type (3.3.4.52)
now the time discretized netetal derivative equations (instead of (3.2.4.58)—(3&LY):

1 | 022=02z,0ld + 0022 Z—Zold + 8ozz T—Told __
F At 0z At At

Tep —Tpp,old 00pp 22014 00pp r=ro1a | _
V< At T Te: AL T or Af)

(3.2.4.67)

Orr—0Orr old 80’1@2 Zold Bawr Told _
v ( At o AT At

o) )
%*( Y )old + 8 'Uz z— Zozd + 0%v, r=To1g \ _ 0
At 0z0r At -

_ Tep —Tpp,old 00pp z—2014 00 1=To1q | _
[V( At T s At 1 or At)

O0z22—0z2z 0ld 002 Z—201d 80“7" Told
V< At T e: AL T 0 A?)JF

(3.2.4.68)

Orr—0Orrold BUTrZ Zold 80'mn7“ Told | __
A+ AL T Tor At

Qv _ (Our
or 7( or )old + 02%vy 2=201d + 8%v, r=ro1g | _ 0
At 0z0r At or2 At -

1| Ozz— ozz ,old 00z 2— Zold 002, T—Told
F[V< oz + o At)+

Tpp— Usw old + 00pp z— Zold + 0000 r—roid _
0z or At

(3.2.4.69)

Orr—0Orr old 80'ng Zold BO'T,”T‘ Told _
v ( At T os At Y;

v
Tri(%)old _ v r— 7"old + 1 0vyr 2—201d + 10v, r=7oid | — 0
At 2 r 0z At r or At )
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3.2 Simulation of the manufacturing of metal bellows

1+v W+Mm+8orzm _
F At 0z At or At

v v
1 T;_(T;)old + 0%v, 2—2014 + O%vp T=To1g | _
2 At

022 At dzor At (3.2.4.70)

N[

%7( vy ) 5 5
(B + o 1 ) o
These 4 equations are supplemented by the equilibriumiegsg.2.4.8) and (3.2.4.9).

In contrast to the extremely non-linear equations (3.8%4-6.2.4.61) these equations now are
linear. The linearity comes from the fact that time derivativeshaf toordinates are expressed explic-
itly by difference quotients of the coordinates and the dowtes are not variables. If we expressed
these time derivatives by displacement velocities as wardi®.2.4.58)—(3.2.4.61) the equations
would be non-linear. All the previous remarks hold conaggrthe BCs, if we replace the non-linear
equations by the above linear equations, concerning tlogitdmic procedure with starting from the
last converged quasi-steady solution and concerning ftlétgration.

When we implemented the equations (3.2.4.67)—(3.2.4@numerical behaviour for the test
polynomial was quite different from that of the non-lineguations: now the Newton residual for
the exact polynomial was0~'? and for a disturbed solution the disturbance was correctehe
Newton step. This is the natural consequence of the lineafithe equations.

These equations now have the obvious property that we catinaoasly compute out of the
starting profile. If we use, as we do it, as initial guess far lewton iteration at a certain time step
the old solution and we use for test purposes the old grid aptydhe old BCs, the equations are
fulfilled, the Newton residual is zero and the old solutioméproduced. This did not hold for the
non-linear equations (3.2.4.58)—(3.2.4.61). For the nestaady equations with time stepping the
pressure changes and we get other solutions.

Now we have a system of PDEs and BCs that should describe ptesen forming, i.e. how
the metal tube explodes into the tool. However, what is theevaf the -module, that replaces the
E-module of the elastic/plastic equations? The computatiprocedure is as follows: We compute
with the elastic/plastic equations with the quasi-steaglyations in time stepAt (moving grid) and
with full grid iteration, until the grid iteration shows “glosion”, i.e. instead to converge to a solution
the displacement velocity increases in the grid iteratiotil the solution becomes “nonsense”. The
last converged quasi-steady solution is the starting isoldor the unsteady “dough” equations.

Before we discuss the choice of the value of fiienodule we want to show in detail the last
converged quasi-steady solution. We computed with the2gridx 39, with time stepping ofAt =
10 ms, stopping criterion (3.2.4.45),,;,4 = 10~*. The last converged time step was sgp it
needed235 grid iterations which shows that we are close to the expiodimit. Here we must
mention, that we changed for these investigation the gegmiet Fig. 3.2.4.1 the inner diameter of
the tool is47 mm. We computed instead witt6 mm so that the steel tube immediately touches the
tool, i.e. the upper left and right corner of the tube are fixBuk starting time of the computation is
40 ms because only at that moment the pressure starts to buildeigréathat time nothing happens).
So the time for step5 is 40 + 25 - 10 = 290 ms. We discuss the results of this last converging step
of the elastic/plastic equations before the steel tubeltelgs”. Fig. 3.2.4.13 shows the form of the
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steel sheet. In the middle it has been bent upldymm, half the thickness of the steel sheet.

Steel sheet

23,20

23,15

23,10 4

23,05 4

r 23,00

22,95 4

22,90 1

22,85 4

22,80

Figure 3.2.4.13:Form of the steel tube in time st@p. Observe the strongly increased scalerfoin the
upper left and right corners the tool can be seen.

Blow-up of steel sheet
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Figure 3.2.4.14:Blow-up of the upper surface of the steel sheet of &efw show that it is smooth.

Fig. 3.2.4.14 shows a blow-up of the upper surface of thd steset betweerr = 2 andz = 4

that shows that the surface is smooth. Fig. 3.2.4.15 showsligplacement velocity,. at upper
and lower surface, both curves nearly coincide for thisesciig. 3.2.4.16 shows a blow-up of
betweenz = 2 andz = 4. We can recognize in this scale thatis “wavy”. We can also clearly
recognize that, of the lower surface (squares) is a bit larger tharat the upper surface (stars)
which means that the steel sheet becomes thinner. Becauséwavy” we applied also for test
purposes the smoothing of Section 3.3.5 for the grid of thelstheet, see Fig. 3.3.5.1, with the
smoothing parameters;,,,..» = 2 (3.3.5.5), i.e.2 smoothing steps, and the smoothing parameter
6 = 0.5 (3.3.5.4), i.e. reduction of the curvature by a faddds. We smoothed on all grid lines
parallel to the surface that were originally horizontakbn The result was that the “waves” of
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Vr
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Figure 3.2.4.15:Displacement velocity, [mm/s] at upper and lower surface for stép, both curves
nearly coincide.

Blow-up of v
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Figure 3.2.4.16:Blow-up of v, betweern: = 2 andz = 4. The stars are at the upper, the squares at the
lower surface.

became larger and the error estimates increased by nearlgrder of magnitude. So smoothing of
the surface does not cure the waves,of

The following contour plots of thé variables and their errors for time st2p are gray scale in a
black-and-white printout, but they are colored in the omhmersion of the paper which gives much
more information. Therefore it is recommended to look as¢hiégures at the screen.
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Figure 3.2.4.17:Displacement velocity, [mm/s].
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Figure 3.2.4.18:Error estimate fow,.

Fig. 3.2.4.17 shows,, i.e. the movement of the steel sheetidirection. The largest values are
in the lower corner region, left with positive and right witikegativev,, S0 we can see the creeping
direction of the sheet material. Fig. 3.2.4.18 shows theallcelative error of,. The largest errors
are at the shoulders, the smallest in the middle and in theegfidns. Fig. 3.2.4.19 shows, i.e. the
movement in the-direction. The largest values are in the middle region sinallest values are at
the fixed end points.

The next figures show the stresses and their errers, Fig. 3.2.4.21, has large positive values
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v-r
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Figure 3.2.4.19:Displacement velocity, [mm/s].
error-v-r
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Figure 3.2.4.20:Error estimate fop,.

at the lower left and right corner and large negative valugbeaupper left and right corners. The
errors, Fig. 3.2.4.22, are small nearly everywherg, Fig. 3.2.4.23, is small compareddg,. The
global relative errors, Fig. 3.2.4.24, are seemingly labge as the value af,.,. is much smaller than
that of o, ., the absolute values of the errors are like those.of 0., Fig. 3.2.4.25, is positive in the
whole middle region and has negative values at the uppeecriihe errors, Fig. 3.2.4.26, are small
except at the left and right edges, which is not visible atsttede of the plotse,.., Fig. 3.2.4.27, has
the largest positive value in the middle of the left edge dmdlargest negative value in the middle
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sigma-zz
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Figure 3.2.4.21:Stress component,, [N/mm?].
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Figure 3.2.4.22:Error estimate for, . .

of the right edge. There are also the largest relative erfags 3.2.4.28, which seem to be large, but
are in absolute value like those fer. ando .

Table 3.2.4.2 shows the maximal values of the variablesheaif imaximal global relative error
estimates and of the mean error estimates for tefl his table tells us that there where the mean
errors are much smaller than the max. errors these max.sarerconfined to a narrow region. It
tells us also that the error seems to be large where the valhe wariable is small relative to that
of the other variables of the same type, e.g.d#owhich is two orders of magnitude smaller thgn
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sigma-rr
- 1.1E+00
23.10 - -6.6E-01
L -2.5E+00
- -4.3E+00
B -6.1E+00
23.05 - -7.9E+00
- -9.7E+00
- -1.1E+01
P -1.3E+01
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Figure 3.2.4.23:Stress componeat,. [N/mm?].
error-sigma-rr
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Figure 3.2.4.24:Error estimate fob,.,..

or for o, that is much smaller thas,,. This comes from the fact that we show relative errors. The
absolute values of the errors, that are decisive, are ofaine size.

Fig. 3.2.4.29 shows th&-module for time ste@5. From the program output we get the values
Epmae = 188781 N/mm? and E,;, = 3373 N/mm?. The distribution of the values aF in
Fig. 3.2.4.29 shows that the low values are in the middleoregind in the lower left and right
corners. From Fig. 3.2.4.11 and 3.2.4.12 we see khit small for large straim. The large values
of E occur in a relatively small region close to the left and right, there the strain must be small.
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sigma-¢¢
4.1E+02
23.10 3.5E+02
2.8E+02
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Figure 3.2.4.25:Stress component,,, [N/mm?].
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3.4E-02
3.1E-02
2.7E-02
2.4E-02
2.0E-02
1.7E-02

23.10

23.05

1.4E-02
1.0E-02
6.8E-03
3.4E-03

23.00

22.95 |-

22.90

22.85

oogo Bt b e b b bl 10N
0 2 4 6 8 10 12 14 16 18 20 22

Figure 3.2.4.26:Error estimate fotr,, .

So the elastic/plastic equations comprise a wide regioheaftmodule, i.e. of hard and soft steel.

So far we have discussed the last converging step of thec#dastic equations before the tube
“explodes”. This solution is the starting solution for thesteady “dough” equations (3.2.4.67)—

(3.2.4.70) and (3.2.4.8) and (3.2.4.9). In this system oERMeE-module[N/mm?] is replaced by
the -module[N s /mm?]. As our approach to simulate the bursting steel tube is dytaeademic”

attempt, we do not have values fBr Note that we are “numerical engineers” and not metalltsgis
and we do not know if in the literature this approach is piitdis However, even if it has been
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sigma-rz
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Figure 3.2.4.27:Stress component,.. [N/mm?].
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Figure 3.2.4.28:Error estimate fob,.,.

published we could not find there the correct valuefofor our stainless steel. So our idea is to
“play” with F" until we have found a value that reproduces the manufagtymincess of the IWKA.
Thus the numerical simulation replaces the measurements.

Our goal is now to compute in time direction, starting frora tlalues of the elastic/plastic st2f
see Table 3.2.4.2. As we want to have a fully implicit solotinethod that includes the displacement
of the computational grid, we also make a grid iteration aheime step, i.e. we recompute the
solution on the shifted grid until the stopping criterion23.62) is fulfilled withey,.;,q = 1073.
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Table 3.2.4.2:Maximal values of the variables, of the max. relative errstireates and of the mean
relative error estimates for time step.

no. | variable | max. value| max. relat. errorj mean error
1 v, 0.3006E-4 0.12 0.20E-1
2 vy 0.1167E-2 0.14E-1 0.42E-2
3 Oss 569.3 0.14E-1 0.46E-3
4 Orr 8.31 0.21 0.23E-2
5 T 476.7 0.93E-2 0.43E-3
6 Ors 63.45 0.16E-1 0.28E-3

172332
160921
149510
138099
126688
115277
! 103866
LIl 92456

\ 81045

I 69634

1 58223
1 46812

23.10
23.05

23.00

35401
23990
12580

22.95

22.90

22.85

.
20 22

Figure 3.2.4.29:E-module[N/mm?] for time ste5.

Thus we have a solution on the ngwid within the prescribed stopping criterion. Howevee tirid
iteration diverges if we do not prescribe a sufficiently drtiale step sizeAt. As a too large time
stepAt needs many grid iterations or even causes the grid iteratioliverge and a too small time
step proceeds very slowly in time direction, we programmed a

time step size contr@At control): If the number of grid iterations exceeds
Ngridmaz = 20, We SetAt < At/2 and we restart this time step. Aft20
time steps we seht < 2 - A¢. ThatAt does not become too large we
limit At < Aty02 = 0.05 ms.

These values resulted from many numerical experiments.

In Table 3.2.4.3 we can see the values and error estimateg o&nd v, for step26, computed
with At = 0.01, i.e. for the first time step for the unsteady “dough” equatidfor three different
values ofF'. Clearlyw,. is smaller for larget (harder steel). Compare the results to Table 3.2.4.2.
From these results we decided to use for the unsteady eaplosimputation the valug = 10°.
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3.2 Simulation of the manufacturing of metal bellows

Table 3.2.4.3:F-test: variables and error estimates for different value$'dor step26 with At =

0.01 ms.
F Opp | EIMOro,, Uy erroru,
10% | 476.8 | 0.12E-1 | 0.1574E-2| 4.32
10% | 476.8 | 0.12E-1 | 0.1207E-2| 0.56E-1
10° | 476.8 | 0.12E-1 | 0.1171E-2| 0.56E-1

For the following unsteady computation we selected the¥dhg parameters:

Atsiart = 0.01 ms, Atpae = 0.05 mes,

Ngrid;max = 20,
F=10° Ns/mm?.

Table 3.2.4.4:Values of the variables, of their maximal and of their mean global reativror estimates

for time step26.
no. | variable | max. value| max. relat. error, mean error
1 U, 0.3021E-4 0.31 0.48E-1
2 v, 0.1171E-2 0.56E-1 0.12E-1
3 O 569.3 0.18E-1 0.25E-3
4 Orr 8.31 0.18 0.24E-2
5 Ty 476.8 0.12E-1 0.22E-3
6 Ors 63.45 0.22E-1 0.22E-3

Table 3.2.4.4 shows the values of theariables, of their maximal and of their mean global rekativ
error estimates for time st&p, i.e. the first time step with the “dough” equations. If we guare the
values of the variables to those of Table 3.2.4.2, i.e. tdebiestep of the elastic/plastic equations, we
see only minor changes that come from the increased times shiuws that the “dough” equations
give the expected results. However, the max. errors haveased by factors betwedn(for v,.)
and1.25 (for 0., ando,,). So the transition from the quasisteady elastic/plagiigations to the
unsteady “dough” equations is satisfactory. Observe thatmax. error ofv, is 5.6% and the
mean error is.2%. This is explained by the “waves” of Fig. 3.2.4.16 that resddeady from the
elastic/plastic equations and thus are transferred todbedh” equations.

We then started the computation in time direction for theu@glt’ equations, withAtg..+ =
0.01 ms, F = 10° Ns/mm?. We hoped that the metal sheet is pressed into the form byitemal
pressure and then the tool closes to form the wave of thevheNve needed one and a half year
of painful time to recognize that this is not possible witisthystem of equations. The reason is:
The system of “dough” PDEs is unstable in tinlénstable means that small disturbances increase
with time and destroy the solution. We attributed the falat first to our program code, then to the
computational parameters and/or to the solution algotitNeither finer step sizes in space or time
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could change the basic behaviour, nor smaller tolerancdgkédayrid iteration, nor other values of the
F-module. The algorithm is fully implicit in time, includintipe shifting of the grid, i.e. the solution
is that on the nevgrid. Thus our numerical method proves the instability & tHhough” equations
empirically in time. A theoretician could make a linearizZédurier analysis in time, he would get
the same conclusion. From our initial experiments with theasponding elastic/plastic equations
we can conclude that the total derivative in time of theseagiqos leads also to unstable equations
in time.

Table 3.2.4.5:Function values and max. global relative errorssgf, andv, for time stepsi5 — 465
(every20'" step) andAt of that step. Some of the maximal values have negative sign.

time step| o,, | Max. error,, Uy max. errorv, At
45 477.2 0.12E-1 0.1246E-2| 0.53E-1 0.01
65 478.0 0.12E-1 0.1407E-2| 0.47E-1 0.02
85 479.7 0.12E-1 0.1731E-2| 0.38E-1 0.04
105 481.7 0.12E-1 0.2142E-2| 0.31E-1 0.05
125 483.7 0.11E-1 0.2558E-2| 0.28E-1 0.05
145 485.7 0.12E-1 0.2979E-2| 0.52E-1 0.05
165 487.9 0.18E-1 0.3406E-2 0.10 0.05
185 489.5 0.63E-1 0.3794E-2 0.58 0.05
205 503.1 0.12 0.4166E-2 0.63 0.025
225 524.0 0.34 0.4415E-2 1.72 0.0125
245 546.5 0.49 0.7054E-2 2.47 0.16E-2
265 556.6 0.52 0.5603E-2 1.83 0.16E-2
285 599.6 0.90 0.7062E-2 2.52 0.31E-2
305 689.2 1.27 0.8418E-2 2.36 0.16E-2
325 661.1 1.29 0.8450E-2 2.42 0.78E-3
345 677.4 1.31 0.9966E-2 2.63 0.78E-3
365 716.3 3.33 0.1359E-1 19.7 0.39E-3
385 718.5 6.69 0.1599E-1 37.6 0.39E-3
405 736.6 11.8 -0.1611E-1 62.2 0.78E-3
425 799.8 16.1 -0.2005E-1 73.2 0.20E-3
445 837.4 19.0 -0.2143E-1 84.3 0.98E-4
465 871.1 22.3 -0.2227E-1 100.7 0.98E-4

Table 3.2.4.5 shows the max. function values and max. glelaive error estimates of,,, and
v, for time stepsts — 465 every20™ time step. There is also shown the actual time step sizeghat i
controlled by the grid iteration as explained above and hagger limit of0.05 ms. Up to stepl 25
the max. relative error of, is below3%, this means that the mean error is belti, compare to
Table 3.2.4.4. So we have still a “good” solution. Howevesydnd sted 25 the max. global relative
error estimate above far, starts growing and has at steg5 a value of247% which means the
solution is nonsense. In Figs. 3.2.4.30 to 3.2.4.36 are slibe/values of,. and a blow-up between
z = 2 andz = 4 for time stepsl 25 — 245 every20'" step. These figures show drastically how small
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3.2 Simulation of the manufacturing of metal bellows

disturbances of,. that are already visible in Fig. 3.2.4.16 at first grow slowhd then grow very
fast and destroy the solution. Even the most sophisticatkedien method like ours cannot suppress
the growing of the disturbances because the system of PDirsagently unstable in time direction.
Only PDEs with damping terms could cure the situation.

v (125)

2,8E-03

2,4E-03

2,0E-03 -

1,6E-03 4

1,2E-03

8,0E-04

4,0E-04

0,0E+00 T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22

Blow-up of v | (125)

1,8E-03 M
1,6E-03 - %

o] %

1,2E-03 4

<

1,0E-03 T
2,0 2,4 2,8 3,2 3,6 4,0

Figure 3.2.4.30:v, and a blow-up for time stef25, stars: upper, squares: lower surface.

All attempts failed to damp the oscillations by smoothing siolution: We used the nodes of the
nearest neighbor ring, attributed to the value of the céntrde a weightv and to the values of the
remaining nodes a valu@ — «), with different values oév. However, this smoothing is an additional
disturbance of the solution, the errors increased and tlii@o became nonsense quite earlier than
without smoothing. Also repeated smoothing steps did nigt. HEhis demonstrates that one cannot
do better than to solve the equations without addition&rir@ntion.

What does this result mean? The real physical steel tubddéag’ into the form. This process
is surely described by model equations of “dough” type. We“aumerical engineers”, no metal-
lurgists. According to our assumption dissipative terngsraissing in the equations. If we get from
whomsoever the correct unsteady PDESs that describe theséomplforming, we will solve them with
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v, (145)
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Blow-up of v , (145)

2,2E-03
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2,0 2,4 2,8 3,2 3,6 4,0

Figure 3.2.4.31:v, and a blow-up for time step45, stars: upper, squares: lower surface.

error estimate. There is the physical phenomenon that #e stbe explodes into the form, thus
there must be a system of model equations that describertiiegs. Their numerical solution with
error estimate then gives the simulation of the manufaeguprocess in the computer and allows the
optimization of the process surely better than by trial amdre
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v, (165)
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Figure 3.2.4.32:v,. and a blow-up for time step65, stars: upper, squares: lower surface.
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v, (185)
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Figure 3.2.4.33:v, and a blow-up for time step’5, stars: upper, squares: lower surface.
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v, (205)
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Figure 3.2.4.34:v,. and a blow-up for time step05, stars: upper, squares: lower surface.
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v, (225)
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Figure 3.2.4.35:v,- and a blow-up for time step25, stars: upper, squares: lower surface.
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v, (245)
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Figure 3.2.4.36:v,- and a blow-up for time step45, stars: upper, squares: lower surface.
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3.2.5 Concluding remarks to Section 3.2

The intention of the cooperation with the IWKA was the nuroarisimulation of the manufacturing
of metal bellows. The IFU of the University of Stuttgart skibdeliver the PDEs that describe this
process, empirical parameters in these equations showdtbemined by measurements at the IFU.
Our part was to solve these equations with FDEM with a rediasfor estimate.

However, the IFU did not have the PDEs for elastic/plastifoheation. They themselves made
computations for metal forming processes, but they usedrengial FEM codes where the equa-
tions that describe the forming process are hidden in ati@me formulation. Therefore the IFU
developed a fundamental theory for the PDESs of plastic d&ition. Unfortunately all attempts to
solve problems with this set of PDEs failed. These fruitledempts consumed a large part of the
project time. Then the IFU simplified the model PDEs until adhble” system of PDEs for elas-
tic/plastic problems was developed. At that time the coafpar project time ended and we were left
alone without further support by the IFU. Up to that time IFildWKA believed that the forming
of the metal bellows was basically hydroforming until therafly the tool closed and there was final
force-forming. As mentioned above we tried one and a halfs/esimulate numerically this process
until we had to recognize that the metal tube exploded iréatdlbl. As we are no metallurgists we
invented by phantasy model equations that could eventdaligribe this explosion forming. How-
ever, we had now to recognize that these equations are imstdaime because they had no damping
terms.

At this point we had to give up because our financial and pats@sources were exhausted. To
solve the original problem we needed a cooperation partatrcan deliver the stable PDEs for this
explosion forming process.

Our part in the common research project with IFU and IWKA wasiémonstrate that FDEM
can solve the PDEs that describe the numerical simulationes&l bellow manufacturing. We have
demonstrated that FDEM can solve all types of PDEs that wédrguot the IFU. What nobody else
can do was possible by FDEM: to give for all these differepetyof solutions an error estimate. So
we are not happy that we could not simulate the manufactymiogess, but we are quite satisfied by
the fact that FDEM can simulate all processes for which tlaeeethe corresponding PDEs. If we
should simulate the manufacturing process of metal belkamebody must give us the PDEs and
we will solve them, —with error estimate.

3.3 Simulation of the lubrication gap of a Diesel High Pressu re Injection
Pump

3.3.1 The Piston and the Housing

In modern Diesel High Pressure Injection Pumps there isathtbh pressure end a pressure of
2000 bar or 2 - 108 N/m? = 200 N/mm?. The width of the lubrication and caulking gap between
piston and housing is only a few micrometers. Under the higissure the housing is widened and
the piston compressed so that the gap widens and changesnits The housing is for simplicity
taken as a tube. So we have symbolically the configurationgf33.1.1.

If we look at the effect of the pressupe at the high pressure end we have the situation of
Fig. 3.3.1.2: by the effect of the pressurepof= 200 N/mm? at the high pressure end the hous-
ing extends and the piston shrinks. Although we have a ortalliy symmetric configuration so that
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| -honsing
-~

Figure 3.3.1.1:Symbolic Configuration. In reality the gap is extremely thin

we could use cylindrical coordinates we use cartesian ooaesz, y, 2 that we can treat also un-
symmetric configurations, e.g. the piston not in the centéh@tube or an arbitrary housing. We
have3 domains: the piston, the housing (which is in our case a tabd)the lubrication gap. We
will treat at first the3 domains separately to gain experience for the needed gargp and where
there are problems we treat at first the 2-D case because 3F¥ime grid is very expensive w.r.t.
computation and memory. Then we will combine 8hdomains to a single domain with two dividing
lines (that are in 3-D in reality dividing plains) betweenusimg and lubrication gap and between
piston and lubrication gap. Then we will get a global soltiwer the whole domain although in the
different domains hold different PDEs.

s
p=0 =0 p=200
—— R s 7’,; ,,,,,
Z
\rX

Figure 3.3.1.2:Effect of the pressure @00 N/mm? at the high pressure end.
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We now want to discuss the separate solution of the elastgjtiation for the piston and the
housing. We denote the displacement: |y, z-direction byu, v, w. The normal stresses are denoted
by o, oy, 0. (in Section 3.2.1 they were denoteddy,, 0y, 0..), the shear stresses are denoted by
Tays Tyzr Taz With 7, = 7, €tc. (in Section 3.2.1 they were denotedoy, 0y, 0,..). The elasticity
equations for isotropic material that can be obtained frafj [n the same way as in Section 3.2.1
are with the elasticity modul& and Poisson’s ratio:

%(Uz —Voy —V0,) — % =0, (3.3.1.1)
%(—yam +oy —vo,) — Z_Z =0, (3.3.1.2)
%(—1/0m —voy+0;) — %—Z =0, (3.3.1.3)
HTVT“/ _ %(g_;‘ . %) 0, (3.3.1.4)
LEVTW _ %(% n g_z)) ~0, (3.3.1.5)
- %(% + g_:) 0. (3.3.1.6)

The equilibrium equations are
(?;; 3(;231 agzz — 0, (3.3.1.7)
ag;y % % o, (3.3.1.8)
a;;z agzz 3;; —0. (3.3.1.9)

We use the values

E =2.1-10" N/m? = 210 000 N/mm?, v =0.3. (3.3.1.10)

In Table 3.3.1.1 we give the sequence of the variables arrésmonding equations for the interior
nodes for the generation of the matrix.
Before we discuss the BCs we give the stress vector with itgpoments

oen® + Tpyn¥ + Tpn? x-component
o = | Tn®+oynY+T7.n* |- y-component (3.3.1.11)
TuN" + Tyn¥ 4 0.n° z-component B
surface normal in x- Y- z-direction

If we denote byn the normal and by the tangential vector in the, y-plane(n* = 0) we have

(see Fig. 3.2.1.3)
n= (Zj) . = (Z) = (_7121,) . (3.3.1.12)
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Table 3.3.1.1:Sequence of variables and equations.

no. | variable | equation
1 u (3.3.1.1)
2 v (3.3.1.2)
3 w (3.3.1.3)
4 Ou (3.3.1.7)
5 oy (3.3.1.8)
6 o, (3.3.1.9)
7 Toy | (3.3.1.4)
8 Tyz (3.3.1.5)
9 To- | (3.3.1.6)

We get in this notation with the 2-D restriction efthe normal stress,, and tangential stress in
thex, y-plane.

on =0l -n=0,(n")? 4 2r,yn"nY + o, (n¥)?, (3.3.1.13)
or =0l -t = —an"nY + 1.((n%)? — (n¥)?) + oy,n*nY. (3.3.1.14)
|
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Figure 3.3.1.3:Dimensions of housing, piston and lubrication gaprim.
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Fig. 3.3.1.3 shows the dimensions of the computational domanm. The width of the lubrica-
tion gap is2.5 um = 0.0025 mm. We want at first to discuss the BCs of the housing. Fig. 33.1.
shows a view of the housing with thiefixed nodes on the bottom. At these nodes we admit only
radial displacement: We have at node

1+42:v=0, w=0, (3.3.1.15)
3+4:u=0, w=0.

Figure 3.3.1.4:View of the housing with thd fixed nodes, computational domain.

At the bottom we assume the presspre: 200 N/mm?, i.e. the normal stress is, = —p. The
normal vector of the bottom is* = n¥ = 0, n* = —1, thus witho from (3.3.1.11) we get

The tangential stress irr andy-direction is zero. The tangential vectorsiinandy-direction are

1 0
t*=1(o], t#=1[1],
0 0
thus the stresses are
Op =0 -t"=—Tp, =0, ow=0-tY=-71,,=0.
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

For the other components we must use appropriate PDEs. &Cthéor the bottom are

u: PDEFE (3.3.1.6), |special values(3.3.15) for
v: PDEFE (3.3.1.5), | nodes1-4of Fig. 3.3.1.4
. PDE (3.3.1.3), |
oy: PDE (3.3.1.1),
oy: PDE (3.3.1.2),
o,: 0,=—p(p=200N/mm?),
Toy: PDE (3.3.1.4),
Tyz + Tpz = 0,
Tzt Tyz = 0.

(3.3.1.16)

As shown in Fig. 3.3.1.1 the housing and piston must be fixagldpntinuation of the material that
take over the forces created by th# N/mm? at the bottom. We restrict the computational domain
as shown in Fig. 3.3.1.3. Therefore the “lid” (upper boundalrthe computational domain) is an
“artificial” boundary where no values are prescribed. Thngse hold the PDEs of Table 3.3.1.1, i.e.
the same equations like in the interior of the domain. Therosthell (without the nodes of bottom
and lid) is a free surface where the stresis zero. Because there we have the normal inzthe
plane, i.e.n® = 0, this means that we retain in (3.3.1.11) in each row the fivstterms which then
are zero, e.go,n" +7,yn? = 0. This can be used as equation #gror 7,,,. However, wherex* = 0
we cannot use this equation fey and wheren¥ = 0 we cannot use it for,,. Therefore we must
use different BCs depending i andn¥. So the BCs for the outer shell (without bottom and lid
nodes) are:

for [n® = [n¥| [n®| < |n¥|
u: PDEFE (3.3.1.1), PDE (3.3.1.4),
v: PDE (3.3.1.4), PDE (3.3.1.5),
w: PDEFE (3.3.1.6), PDFE (3.3.1.6),

Oz 0zn" 4 Tyn? =0, PDFE (3.3.1.1), (3.3.1.17)
oy: PDE (3.3.1.2), Toyn® + oyn? =0,

o.: PDE (3.3.1.3), PDE (3.3.1.3),

Ty o Tayn® + oyn? =0, oxn® + Tyn? =0,

Ty. . PDE (3.3.1.5), Tpn® + Tyn? =0,

Tez: Te® + 7y2n¥ =0, PDE (3.3.1.6).

At the inner shell we have the normal stress component equhktnegative hydrostatic pressuyre
(opposite ta of the fluid) which means with equ. (3.3.1.13)

(3.3.1.18)

0z (n®)? + 27,yn"nY + 0, (n¥)* + p = 0.

There is no tangential stress because there is no circumtifdréorce acting on the inner shell.
Therefore we put the tangential stress to zero which is wjth €3.3.1.14)

—0 ™Y + 7oy (%) — (n¥)?) + aynn? = 0. (3.3.1.19)
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In the z-direction we have the frictional force by the fluid in the fidation gap. This force is
very small relative to the other forces so that we can negle&o we put the stress component in
z-direction to zero which is with (3.3.1.11) and with = 0 (shell is orthogonal to the-axis)

Ten" + Tyon? = 0. (3.3.1.20)

If we want to use these relations (3.3.1.18) to (3.3.1.2B@s we can e.g. not use (3.3.1.18) as
equation foto,, or 7, if we haven® = 0 or (3.3.1.19) not for,, if n* = n¥. These restrictions are
shown in Fig. 3.3.1.5 Therefore we subdivide the “disk” ie thy-plane in3 sectorsl, I1,I1] as
shown in Fig. 3.3.1.6. We use in the sectors the equatiorteifotiowing way

Sector | (3.3.1.18) for oy,
(3.3.1.19) for 7y,
(3.3.1.20) for 7.,
Sector Il (3.3.1.18) for oy,
(3.3.1.19) for oy, (3.3.1.21)
(3.3.1.20) for 7.,
(3.3.1.18) for oy,
(3.3.1.19) for 7y,
(3.3.1.20) for 7.

Sector Il

equ.(3.3.1.18) @ not for O,

{} not for &,
equ.(3.3.1.19) {} not for o,
€> not for &,
equ.(3.3.120) Lty notfor 7y
{} not for T,
<% not for 7y,

Figure 3.3.1.5:Usage of equs.(3.3.1.18)—(3.3.1.20).
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

I:|nY |<|n™ |tan22.5°
II:|n¥ |2/n™ |tan22.5°
and
iny I<|n*™ | tan 67.5°
Fx

II:]nY [»/n* | tan67.5°

Figure 3.3.1.6:Sectors I-111.

Therefore we have for the inner shell of the tube (withoutdratand lid nodes) the following
BCs:

for Sector | Sector Il Sector llI
w: PDE(3.3.1.1), PDE (3.3.1.1), PDE (3.3.1.4),
v: PDE (3 3.14), PDE (3.3.1.2), PDE (3.3.1.2),
w: PDE(3.3.1.6), PDE (3.3.15), PDE (3.3.1.5),
Oxt equ. (3 3.1.18), equ.(3.3.1.18), PDF (3.3.1.1), (3.3.1.22)
oy: PDE (3.31.2), equ.(3.3.1.19), equ.(3.3.1.18),
o.: PDE (3 3.1.3), PDE (3.3.1.3), PDE (3.3.1.3),
Tey @ €qu. (3.3.1.19), PDE (3.3.1.4), equ.(3.3.1.19),
Ty : PDFE (3.3.1.5), equ.(3.3.1.20), equ. (3.3.1.20),
oot equ. (3.3.1.20), PDE (3.3.1.6), PDE (3.3.1.6).

Fig. 3.3.1.7 shows the piston with the two fixed nodes. Thexdave at fixed nodes:

w = 0. (3.3.1.23)

v =0,

The BCs for the bottom are the same as for the tube (3.3.1bl6)now with the special values
(3.3.1.23) at the bottom. At the lid (artificial boundary)dhthe equations of Table 3.3.1.1. The BCs
for the outer shell of the piston (without nodes of the bottama lid) are the same as for the inner
shell of the tube (3.3.1.22).
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Figure 3.3.1.7:The piston with the two fixed nodes, computational domain.

For the numerical solution of the elasticity equations .(88—(3.3.1.6) we have the following
values of theF-module £ and Poisson’s ratio:

E =210 000 N/mm?(= 2.1 -10* N/m?), v =0.3. (3.3.1.24)

Because 3-D is very expensive in computation and storageade at first 2-D experiments with
a cross section orthogonal to theaxis in Fig. 3.3.1.1 or 3.3.1.3. This is an annulus with imaelius
r; = 4.0025 mm and outer radius, = 10 mm. Itis exposed to an inner pressyre= 200 N/mm?
and an outer pressufe see Fig. 3.3.1.8. For this configuration the exact solusagiven in [13],
p. 60, equ. (46), which is in our notation, but with polar ainatesr, ¢:

2 2
e D s
= — =), 3.3.1.25
Or 7’3 _ TZQ( 7“2) ( )
2 2
T DPi Ta
— 1+ -2
Te r2 — 7“-2( + r2)

The value ofo,, = 0 because of the symmetry. The max. stregsoccurs at the inner ring,
r = r;. There we have for our configuratian, = 276.3039 N/mm?. We compute in cartesian
coordinates. Therefore at nodeo, = o, or similarly at node3 o, = 0,. Forr = r; we get from
(3.3.1.25)0,. = 200 N/mm?, i.e. the BC of the inner pressure.

The 2-D model results from the PDEs and BCsdo= 0, = 7, = 7. = 0 and% = 0. We have
made numerical experiments with different grids for thesistency order; = 6. In Table 3.3.1.2
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

we present for each grid the displacemer@nd the stress, of nodeA of Fig. 3.3.1.8 together with
the estimated global relative error E.

These results are very instructive. As we know the exacevialur, = 276.3, we can compare the
numerical value to the exact value and see the correspoediimgated error. It should be mentioned
that this problem is a 1-D problem in polar coordinates, beicempute in cartesian coordinates that
we can treat arbitrary unsymmetric configurations. If wemagartesian coordinates ip-direction
around the annuluss,, o, change continuously so that we need a corresponding findagriigh
accuracy.

If we go down the first column in Table 3.3.1.2 we can see thagjete¢he exact value far, for
the grid159 x 21, but the error estimate &% for v and20% for o,,. This means that the grid is not
yet fine enough for the consistency orget 8 that is used for the error estimate, i.e. the orger 8
is still “overdrawn”. If we refine the grid further in circumfential direction, the solution becomes
worse and the error estimates are valueless. This showsiilbhélself-control of the error estimate.
If we go from159 x 21 to 159 x 41 the error estimates increase, thus the finer grid in the nieisk
direction of the annulus does not improve the solution. Trherestimates for the gri@l9 x 41 are
better than those of its upper and left neighbor. Finallyghid 319 x 81 gives error estimates for
u as0.24% and foro as0.85% so that we can well trust the solution. However, if we wantdo g
from the 2-D annulus to the 3-D tube we cannot use such a fidebgdause the storage becomes
prohibitively large for a full LU solution of the linear sysin. Therefore we will restrict to the grid
159 x 21, but we cannot expect a usable error estimate because $ardaise grid the order= 8
for the error estimate is overdrawn.

From Table 3.3.1.2 we can learn some interesting points.useless or even harmful to refine the
grid only in one direction. The grid must be “balanced” intbdirections. The error estimates, even
if they are very large, indicate which grid is better. So thereestimate helps to select better grids.
Finally, if we have a small error estimate, we know that odutsan is in the corresponding range of

AV
p,=0
B
00 L I

N ”

Figure 3.3.1.8:2-D annulus.
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Table 3.3.1.2:Results for noded of Fig. 3.3.1.8 for different grids. The first value of thedygives
the number of nodes in circumferential, the second in radiiaktion, E is the estimated
global relative error. Consistency ordge= 6. The exact value is, = 276.3.

Var. solution errork solution error E solution errork
grid 79 x 21

u | 0.6413102 0.31

oy 277.0 1.13
grid | 159 x 21 159 x 41

w | 064111072 | 0.9-107! || 0.6412102 0.33

oy 276.3 0.20 276.2 1.12
grid | 319 x 21 319 x 41 319 x 81

u | 0.6426102 1.50 0.641010=2 | 0.9-10~! || 0.6410-1072 | 0.24102
oy 277.0 6.27 276.3 0.17 276.3 | 0.85102
grid | 639 x 21

w | 0.6710102 1480

oy 5376.0 1794

accuracy. In almost all cases the error is overestimated.

The values of Table 3.3.1.2 are computed with the consigterderq = 6. We made experiments
with the orders; = 4 andg = 2, but the errors were considerably larger. To obtain sahstiwith
comparable accuracy the grid must be very fine. Before whdudiscuss the treatment of housing
and piston, we will discuss the equations for the flow in theitation gap.

3.3.2 The fluid flow in the lubrication gap

We solve in the lubrication gap, see Fig. 3.3.1.1, the inaasgible Navier-Stokes equations with
the velocity components, v, w, the pressure and constant values for densityand dynamical
viscosityn, see e.g. [14]:
ou ou ou ou 109p
77(82u ?u  0%u

S G i R 3.2.1
o2 t o +52) =0, (3.3.2.1)
ot ox oy 0z  pdy
n, 0% 0% 0%
_;(@ + 7 + @) =0, (3.3.2.2)

ow ow  w  ow 10p
ot ox Uay Y52 p Oz

n, 0w 0w  Pw
_;(8x2 + e + 522 ) =0, (3.3.2.3)
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

and the continuity equation
ou Ov Ow

9z oy " Bz
For FDEM it would be no problem to include the energy equatarihe temperaturé for the heat
conduction or to solve the compressible equations withts unknown. There aré equations for
the 4 variablesu, v, w, p. Which equation should be used for which variable in therdiszation
process? For the configuration of Fig. 3.3.1.1 we selectedolfowing sequence

= 0. (3.3.2.4)

no. variable equation

1 w o (3.321)
2 v (3.322) (3.3.2.5)
3 w o (3.3.24)
4 p  (3323)

Fig. 3.3.2.1 shows the fluid region. At the inner and outertleane. the border to the piston and
housing, we have for the velocities the no-slip conditian= v = w = 0. For the pressure there is
no prescribed value, therefore we take fioequ. (3.3.2.3). The problem are the inlet with the high

PP,
Figure 3.3.2.1:Fluid region.

pressurep; = 200 N/mm? and the outlet witlp, = 0. These are “artificial” boundaries because
the computational domain of Fig. 3.3.2.1 has been cut ottefshole fluid flow. What we find at
the inlet atz = 0 is determined by the conditions from where the fluid comed veimat we get at the
outlet atz = z. depends in a certain sense also from the conditions thatfad the exit, although
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in a quite less degree than at the inlet. Therefore the dondithat we describe at inlet and outlet
are artificial ones. In this sense we prescribe at the {alet 0):

u =0,

v =0

’ 3.3.2.6
w = parabola withw;,,4., ( )
p = p1 = 200 N/mm?,

wherew is a parabola of Fig. 3.3.2.2 with zero valuesat, andw,,,. in the middle. We establish

Jkr

> Wmax

h 4

Figure 3.3.2.2:Parabolic form ofw at the inlet.

w asw(r), but then express by z, y. At the outlet we want to let to the fluid as much freedom as
possible and thus we prescribe for

U % =0,

v
v: =0,

02 (3.3.2.7)
w : %—z;’ =0,

equ.(3.3.2.3).

The last condition fop is unexpected. We would expect that we have at thegexit po = 0 as
shown in Fig. 3.3.2.1. However, we have joonly first derivatives and we prescrilpe= p; at the
inlet. Then from the inlet to the outlet there is a pressumpdrhich results from the solution of the
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

Navier-Stokes equations, i.e. by the friction at the wallew can we get the desired valpe= 0 at
the outlet?

The pressure drop is determined by the velocity componeint the lubrication gap and this in
turn is determined bw,,...., see Fig. 3.3.2.2. lfv,,... is too large, the pressure drop is too large and
the exit pressure is negative. df,,,.. is too small, the pressure drop is too small and the pressure
at the exit is too large. But what meaps= 0 at the exit? The exit is the lid of the computational
domain of Fig. 3.3.1.2, the velocity at the exit and thus tkié gressure depends on the location.
How to solve this problem? The method that we propose andwbatall “w,,...-iteration” is the
following: We select an initial valuev,,,, and solve the fluid equations. Then we select a control
node in the middle of the exit and take the pressure from thiEenWe know (without computation)
that for exit pressur@, = pi, N0 pressure dropy, .. = 0. SO we have two pair@,,q:, peric and
can extrapolate a third value far,,,, and compute it®..;; by the solution of the PDEs with this
value ofw,,., at the entry. From now on we hadepairs of w,,q:, periz @and can with a parabola
through these values start a Newton iteration to determing, for exit pressure to be zero. This
explanation means that we can fulfil the pressure condjijos 0 at the exit (in a “mean” pressure
sense) only by an iterative procedure. The basic reasoraisritihe Navier-Stokes equations the
pressure has only first derivatives, thus is of an initialggbroblem type fop. For the numerical
solution of the Navier-Stokes equations the following ¢ansparameters are prescribed:

dynamical viscosity n = 2 - 1072 Pa - s,
density p = 800 kg/m3.

As we take the length scale inm we have

n=2-10"2 Ns/mm?,
p=28-10"" kg/mm?3, (3.3.2.8)

1=25. 1073 mm?/s. See Erratum on page 151.

3.3.3 The combination of piston, housing and fluid flow

The problem that we want to solve is a fluid-structure intéoacproblem. As shown in Fig. 3.3.1.2
the pressure widens the lubrication gap (the fluid domairthethigh pressure end. The compu-
tational domain is the whole domain combined of housing, gag piston, see Fig. 3.3.1.1. In
the three domains hold different PDESs: in the housing anipikold the elasticity equations with
9 variables, see Table 3.3.1.1, in the fluid gap hold the N&&iekes equations with variables, see
(3.3.2.5). As we must have in the whole domain the same nuofhariables, we add in the fluid
domain5 dummy equations of type: variabte 0 (in the interior and at the boundary). So e.g. in the
domain of the housing and piston varidldas the meaning of the displacemenand in the fluid
domain variable has the meaning of velocity, variable4 has the meaning,. and fluid pressure,
variable9 is ., and0, respectively.

This seems to be strange, but the different domains areategdny dividing lines (DLs) which
are in 3-D in reality dividing areas as mentioned in the geheart of FDEM. The DLs are internal
boundaries over which will not be differentiated. As we halso sliding dividing lines (SDLSs)
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which allow a sliding of the domains relative to each othex,may have non-matching grids at the
SDLs (at DLs the grids must match).

The solutions in the different domains are coupled acras®tts or SDLs by coupling conditions
(CCs). Inour case of housing, gap and piston we have thenfisitpsimple CC: at the inner boundary
of the housing and at the outer boundary of the piston the alostness is given by the negative
fluid pressurep, see (3.3.1.18) and (3.3.1.22). Thus we have a “one-sidealilimg: the structure
couples to the fluid, but the fluid does (seemingly) not cotiplthe structure, i.e. the fluid has no
explicit coupling with a structure variable. However, thés a much more complicated (hidden)
back-coupling of the fluid to the structure: The fluid pressaiidens the housing and compresses the
piston. This widens the gap and thus changes the flow. Thegeharthe flow on its part changes
the fluid pressure that changes the structure etc.

This results in a “grid iteration” we iterate, starting with the grid for the constant gap, lefte
part of Fig. 3.3.1.2, until we have obtained a final grid, sgatrpart of Fig. 3.3.1.2. For each
intermediate grid we must iteratively determing,,.., as discussed in Section 3.3.2, thus we have
a nested iteration: the innermost iteration is the Newteratton to solve the global equations for
the whole domain, the next outer iteration is thg,,-iteration to obtain the zero exit pressure and
the outermost iteration is the grid iteration until the stwe has reached its final position. This last
iteration can also be controlled by,...: If the relative change ab,,.... from one grid to the other is
below a given limit, we stop.

The whole algorithm will be described in detail in SectioB.8.below for matching grid in cylin-
drical rotationally symmetric coordinates. The 3-D altfurn has not been implemented because our
available supercomputer has not sufficient memory for tikecse. Nevertheless we now want to
explain how the “breathing” of the fluid domain by the movemehhousing and piston would be
implemented in 3-D for arbitrary non-matching grid. As inist possible to show the procedure by
figures for a 3-D tetrahedral grid, we explain it at first fob2and then expand it to 3-D.

Fig. 3.3.3.1 shows how the nodes at the boundary of the hgusid piston move by the fluid
pressure and take thus the nodes of the fluid boundary with.tHéne shifted grid of housing and
piston is shown by dashed lines, the shifted grid of the flsiigat indicated to avoid confusion in the
figure.

Fig. 3.3.3.2 illustrates the situation if the piston movaéfen the computational domain of the
piston has fixed size, but moves. The computational domaiheofiuid is the space between piston
and housing and changes with the movement of the piston. &thend position 1 is fixed, the
right end position oscillates with the piston between thgitmns 2 and 3. However, in the present
investigation we consider only fixed piston.

Now we want to explain the “breathing” of the fluid grid by thisglacement of the boundaries
to housing and piston as illustrated schematically in Fi§.381. Fig. 3.3.3.3 shows our procedure.
The solid lines are the boundaries of piston and housing, i@ve by the displacement caused by
the pressure to the positions indicated by the dashed lkm@she displacement, of a node on the
piston boundary we take the fixed poition the opposite housing boundary, for the displacenignt
of a node on the housing boundary, we take the opposite fixied foon the piston boundary. For
nodes in the interior we take an intermediate displacemeutgotional to its distance from the fixed
point as illustrated in Fig. 3.3.3.4. This is made for thetiisements of piston and housing and both
displacements are added, i.e. the two displacements aegpmged. If the piston would move, the
grid of the fluid would move as shown in Fig. 3.3.3.2 which itssin a similar axial displacement
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Figure 3.3.3.1:Shifting of the grid by the fluid pressure.

that would also be superposed.

Fig. 3.3.3.5 shows the situation for non-matching grid. &oodeC of the fluid grid orthogonal to
the axis the fixed poinB on the piston and the corresponding pdihbn the housing are determined
as points of intersection between the orthogonal directmthogonal to axis of piston) and the

computational domain

o of housing, fixed
/ ~ o N
( i -~
i _
) - housing
@ 6) @, fluid
S B 7
:l | piston
— : . . - e
i
computational domain

of piston, moves with piston

Figure 3.3.3.2:Situation if piston moves. The left end 1 of the fluid domaifixed, the right end moves
with the minimal position 2 and maximal position 3 of the pist
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Figure 3.3.3.3:lllustration for the change in the width of the fluid channel.

straight line between the neighboring contour nodes. Therdisplacementiz is known and we
can proceed as shown in Figs. 3.3.3.3 and 3.3.3.4. In thewayé, can be determined for node
and the two local displacementsdhare superposed.

As mentioned above the illustration for the 3-D case is mucdnendifficult. Fig. 3.3.3.6 shows
the basic principle. It extends Fig. 3.3.3.5 to 3-D. Eachenad this case nod€’, must store the

displacement
A
A
da
or
ds
. distance from
0 s 7 fixed point
(fxed mediate e
. int
point) piont point)

Figure 3.3.3.4:lllustration for the computation of intermediate displamnt.
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housing
. - T S
~— U+ .
I
|
! fluid
Cy
|
|
fixed point piston

Figure 3.3.3.5:1llustration for non-matching grid.

information for the two relevant boundary triangles on tbardaries of piston and housing. Here the
orthogonal line (radial from axis of piston) must be inteted with the triangles. Note that in 3-D
we use tetrahedrons, therefore the boundary is composedii@ngles which are the “footprints” of

Fix triangle on
*B piston

Figure 3.3.3.6:lllustration for 3-D case.
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the tetrahedrons. If the poinf3 and/orD drop out of the triangles that have been stored as relevant
neighbors, by a search process the suited triangles musitbandned. The displacement, edy

is determined as the mean value of the interpolation polyaisnfrom the3 corners of the triangle
extrapolated to the poinD and taking the mean value. As the extrapolation is compuiéd the
same consistency order as the difference formulas, thestensy order is maintained.

These 3-D algorithms have not (yet) been implemented bediwsmemory of the presently for
us available supercomputers is not large enough for thas@@blems. However, these algorithms
are closely related to the algorithms for the 3-D SDLs to meie if a node is a free surface node
or a SDL node. So the basic algorithmic building blocks areaaly available.

3.3.4 Solution in axisymmetric cylindrical coordinates

The investigations which grid is heeded for 2-D simplifioa of the housing in order to obtain an
accuracy belowt % error showed that im, y-coordinates in a plane = const, a grid 0f319 x 81 in
circumferential and radial direction is needed only for tlogising, see Table 3.3.1.2. The extension
to 3-D in thez-direction resulted in a very large sparse matrix. Howether,condition of the matrix
for this discretization (ordef = 6) is so bad, that even the most robust iterative CG solver APR
in the LINSOL program package converged so slowly or failethpletely that it could not be applied
for this type of matrices. Therefore only full LU preconditing can be used for this type of linear
equations. However, this results in heavy fill-in betweandhtermost diagonals (which are reduced
by a “parallelized” bandwidth optimizer) and the factér&andU do no longer fit in the memaory.

In order to show that the fluid-stucture coupling problemgdiston, fluid gap and housing works
for FDEM with global solution and global error estimate, wezidled to solve the given problem in
axisymmetric cylindrical coordinates, i.e. in 2-D, see.F&3.4.1. Here the final configuration is

AT
fj housing
pe200 = [ p=0 fud
N i
mm?Z '\) piston
2

Figure 3.3.4.1:Configuration of problem.

shown with the fluid gaps at the left entry widened by the infegeof the pressure @0 N/mm?
or 2000 bar. The starting dimensions are those of Fig. 3.3.1.3.

Now we want to discuss the equations for the structural corapts housing and piston. As we do
not know if we can get directly the solution for the entry paep = 200 N/mm?, we design the
algorithm for incremental procedure: we assume we have atedpthe stresses and displacements
for an entry pressurg,;, index “old”, and we want to compute the solution for a highegssurep,,
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thus we use as in Section 3.2.4 incremental equations. Béaty equations of Section 3.2.4 can
directly be used for the housing and piston with the follagvohanges: we now use isotropic steel
with a singleF andv, we use directly thdisplacement = At - displacement velocity as variable
(and not displacement velocity) and we use the notation:

coordinates: z,r,
displacements: w (z-direction), u (r-direction),
stresses: o, 0., 0, and shear stress. (= 7., ).

Then we get from equations (3.2.4.4)—(3.2.4.9) the folilmwequations witkG = E/(1 + v), see
[12](3.81):

1 ow
E[Uz — Oz0ld — V(Uso - U<p,old) - V(UT - Ur,old)] - % = 07 (3341)
l[—V(U —Opold) —V(0y — 0y 01d) +0r — O ]—@—O (3.3.4.2)
B © p,old z z,old r r,old Or = U +9. 4
1 U
E[_V(UZ - Uz,old) + Op — Oyp,old — V(Ur - Ur,old)] - ; = Oa (3343)
1+v 1 ou Ow
T(Trz - Trz,old) - 5(& + 5) =0, (3-3-4-4)
do, Om, 1
— — = .3.4.
o + . + T(O'r o,) =0, (3.3.4.5)
01y, 00,  Trs
— =0 3.3.4.6
or 0z * r ’ ( )

These ar& equations for thé variablesw, v, o, 0., 0, 7... We use in the interior of the domain
the following equations for the variables:

no. variable equation

1 w o (3.3.4.1)
2 u  (3.34.2)
3 0. (3.3.4.6) (3.3.4.7)
4 o, (3.34.5)
5 o, (3.343)
6 7. (3.3.4.4)

Before we discuss the boundary conditions we note like ini@e8.2.4 the stress vector

z r _
o= o,n° + Trm z-component (3.3.4.8)
T + opn” r-component

and normal and tangential stress

oy, = O'Z(nZ)Q + 27,,n°n" + Jr(nr)Q, (3.3.4.9)
or = —o.nn" +7..((n%)% = (n")?) + opnn’, (3.3.4.10)
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@ free surface N
Un= 'p,eﬂ @ @ ’//,;'
@ Un= 'pﬂu"d aﬂlﬂc’al
AT, boundary
w=0

Figure 3.3.4.2:lllustration to boundary conditions for the housing.

with n*, n" the components of the normal vectoto the outside of the surface.

Fig. 3.3.4.2 shows thd boundaries for the housing. At bounddry we assume the normal
pressurer,, = —pf, With pc r, the given entry pressure. Boundaryis an “artificial” boundary, it
is the limit of the computational domain to the continuatidthe housing. The conditiobu/0z = 0
gives horizontal tangent of the grid at the boundaryHere we assume = 0, i.e. here the domain
is “fixed”. BoundaryO is the limit to the fluid domain, here the normal stress is igikg the fluid
pressureps,iq- We neglect the tangential stress by the friction of the fhedause it is very small
relative to the other stresses. Boundarys a free boundary, it is assumed to be force-free. For all
variables for which no condition is prescribed we take aesURDE.

Table 3.3.4.1 shows the assignment of variables and eqgdtio the four boundaries, but exclud-
ing the corners. For the four corners we have the followingddmons:

Upper left corner

w (3.3.4.1)

u  (3.3.4.2)

Oz On = —Dleft, normal_to left
or op = 0,normal upwards
(3.3.4.3)

oy = 0,normal to left

Tr,z

Upper right corner

w =20

Ou/0z=0

(3.3.4.1)

on, = 0,normal upwards
(3.3.4.3)

o+ = 0,normal upwards

(3.3.4.11)

One has to observe for the formulas &9y (3.3.4.9) und; (3.3.4.10) which normal is to be used in

the corner.
Lower left corner
w  (3.3.4.1)
u  (3.3.4.2)

Oz On = —Dleft, normal_to left

Oy  On = —Dfluid, NOrmal downwards
(3.3.4.3)

o; = 0, normal to left
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Lower right corner

w =20

Ou/0z=0

(3.3.4.1)

On = —Dfluid, NOrmal downwards
(3.3.4.3)

oy = 0, normal_downwards

(3.3.4.12)
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Table 3.3.4.1:Assignment of variables and equations for the boundariésgpf 3.3.4.2, excluding the

corners.

no. | var. | Bd. O Bd. O Bd. O Bd. O

1 w | (3.3.4.1) w =70 (3.3.4.4) (3.3.4.4)

2 u | (3.3.4.4) Ou/0z=0 | (3.3.4.2) (3.3.4.2)

3 | 0. | on=—prest | (3.34.1) (3.3.4.1) (3.3.4.1)

4 | o | (3.3.4.2) (3.3.4.2) Opn = —Dfluid | Orn" +0opn” =0
5 | o, | (3.34.3) (3.3.4.3) (3.3.4.3) (3.3.4.3)

6 | 7y | 0+ =0 (3.3.4.4) o =0 o,n*+1,n" =0

Fig. 3.3.4.3 shows similarly the boundaries for the pistbhe boundary conditions without the
corners are shown in Table 3.3.4.2.

on P :
@ 4
Tn= Prest @ @ ?
r o
1.z €] _ \ >
F w=0 \

artificial boundary

Figure 3.3.4.3:lllustration to boundary conditions for the piston.

At the axis we have at boundaty the valuer = 0 which causes difficulties for the ternyr. We
expandu in a power series for:

ou 10
Or  20r?

r=0

2
U u(r)—k%r—i—%%—k...
,

r

because for =0 w(r = 0) = 0. Thus we use in the equation (3.3.4.8) Table3.3.4.2

I — (3.3.4.13)

rlr=0  Or’

In (3.3.4.6) we have,../r. This term must be regular on the axis, which only holdsrgr= 0 on
the axis.
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Table 3.3.4.2:Assignment of variables and equations for the boundariésgpf 3.3.4.3, excluding the

corners.
no. | var. | Bd. O Bd. O Bd. O Bd. O
1| w | (3.34.1) w=0 (3.3.4.4) | (3.3.4.4)
2 | u | (33449 Ou/0z=0|u=0 (3.3.4.2)
3 | 0. | on=—Diest | (3.34.1) (3.3.4.1) | (3.34.1)
4 | o, | (33.4.2) (3.3.42) | (33.4.2) | 0p=—pfuid
5 | o, | (3.3.4.3) (3.3.4.3) (3.3.4.3)" | (3.3.4.3)
6 | 7y | 0+ =0 (3.3.4.4) Try = 0* o =0
*) see text

The boundary condition at the four corners for the piston are

Upper left corner Upper right corner
w (3.3.4.1) w=0
u (3.3.4.2) Ou/0z =0
0.  Op = —Dleft, NOrmal to left (3.3.4.1) (3.3.4.14)
o On = —DPfluid, NOrmal upwards o, = —pyiq, NOrmal upwards
o, (3.3.4.3) (3.3.4.3)
Tr. op =0, normal_to left oy = 0, normal upwards
Lower left corner Lower right corner

w (3.3.4.1) w=20

U u=0 u=0

o, On = —Pleft, NOrmal to left (3.3.4.1)

o (3.3.4.2) ! (3.3.4.2) (3.3.4.15)

oy (3.3.4.3)* (3.3.4.3)*

Tr.z oy = 0, normal to left Try = 0%,

*) see text

With these boundary conditions the definition of the probfenthe structural parts housing and
piston is terminated. As we proceed incrementally, we meeethe entry pressure at the left end by
an initial incrementAp; and then in steps by an incremehp, until finally p = 200 N/mm? or
a higher value has been reached. The displacements (3-8313l4.4) are in realitdw und Au
that must be added to the “old” coordinates. Therefore wet ishift the nodes of the grid in the
following way after each pressure step:

&= Zod +w, (3.3.4.16)
rT= Toq+ u. T

Now we want to discuss the PDEs and boundary conditions &fitiid region, i.e. for the lubri-
cation gap. The Navier-Stokes equations in axisymmetrardinates can be found in [14]. They
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

are the transformed equations (3.3.2.1)—(3.3.2.4), egtit 2-D. If we denote bw, u the velocity
components in-direction (axial) and--direction (radial), see Fig. 3.3.4.1, the steady equatane

ou ou 10p n,0°uv 10u u O*u
A e ST VL s S 3.3.4.17
u8r+w82 pOr p(87"2 r Or r2+822)’ ( )
ow ow 10p n 0*w 10w 0O*w
— — =t (=t + — 3.4.1
“or +w82 p Oz p(8r2 ror 022 ) (3.3.4.18)
ou u Ow
T 0 3.4.1
or r + 0z 0 (3.3.4.19)

The values op and are given in (3.3.2.7).
Fig. 3.3.4.4 shows the computational domain for the fluidhiinterior we arrange the variables

housing

piston

»Z

Figure 3.3.4.4:lllustration to boundary conditions for the fluid.

and equations as follows:

no. variable equation

1 w  (3.3.4.19)
2 u o (3.3.4.17) (3.3.4.20)

3 p  (3.3.4.18)

As explained in Section 3.3.2 the boundariésnd O are artificial boundaries. At boundary we
prescribe

w as parabola with max.value,, ... in the center of the gap,
(3.3.4.21)

u =0,
D = Dleft-

Herep;. s, denotes the actual prescribed pressure at the entry sd@at value in an incremental
pressure step procedure280 N/mm?. At the exit, boundary], we prescribe as explained in the
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context of equation (3.3.2.6)

. Ow _
forw: %7 =0,
foru: 9% =0, (3.3.4.22)

forp: (3.3.4.18).

At the boundaries] and0 we have for the velocity components the no-slip conditios. there is
no prescription fop, we take an appropriate PDE:

w: w=70,
u: u=0, (3.3.4.23)
p: (3.3.4.18).

As explained in Section 3.3.2 the desired conditigp;; = 0 can be fulfilled only by an appro-
priate choice ofw,,,, at the entry. This leads to theu;,,.-iteration”, that has been explained in
Section 3.3.2. We define as “exit pressure” the value of tkegure at the center of the gap of the
boundary(l in Fig. 3.3.4.4.

The combination and coupling of tlledomains: piston, housing and fluid has been discussed for
the 3-D case in Section 3.3.3. In the 2-D case with axisymmeytindrical coordinates we use for
simplicity a matching grid as shown in Fig. 3.3.4.5 for thi¢idth position for entry and exit pressure
zero. Such a grid can be generated easily “by hand” and allextbility for accuracy tests with

Al

housing

fluid

piston

>

Z

Figure 3.3.4.5:Type of grid used for the solution. In reality the fluid gap erythin, see Fig. 3.3.1.3.
The diagonals that make from quadrilaterals the trianglesat shown.

different grids. As this is a matching grid, we have betweaitfand housing or piston a “normal”
dividing line (DL) and not a SDL which would be needed for moatching grid.

As explained in Section 3.3.3 we have a direct coupling ofsirauand piston to the fluid only
by the normal stress which is equal to the fluid presgyig;;, see boundaryl in Table 3.3.4.1
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3.3 Simulation of the lubrication gap of a Diesel High Presste Injection Pump

and boundary] in Table 3.3.4.2. There is no direct coupling of the fluid te ttousing and piston,
however, the grid of the structure and thus the width of thiel fjap changes with (3.3.4.16). This
changes on its turn the fluid flow.

The displacement of the nodes of the fluid grid is determinethb displacement of the nodes of
the housing and piston at the boundary to the fluid, see Fi§s3.2—3.3.3.4 and the corresponding
context. As we now have matching 2-D grid, the boundary nodlesusing and piston are explicitly
known for each node of the fluid domain. Thus it is easy to campw: and Ar for each node.
This results is the new fluid grid. Fig. 3.3.4.6 shows the ewstructure of the solution process.

pressure incrementation

grid iteration

W,..-iteration

Newton-iteration

Figure 3.3.4.6:1llustration to nested character of the solution process.

For the computation of the global solution for housing, grisand fluid we must execute a Newton
iteration. Herew,,., and grid are fixed. For this solution the “exit pressure” isakted andv,, .

is corrected as explained at the end of Section 3.3.2 by adiyplewton iteration. This defines the
Winaz-iteration. Noww,,.. is fixed for this grid and from the solution we know the disjglaents
for the boundaries] andO of Fig. 3.3.4.4 and we can compute the new fluid grid according
Figs. 3.3.3.3 and 3.3.3.4.

Now we start for the new grid (housing, piston, fluid) the saracess with starting value, ;.
of the previous grid and we must again adap},,. for exit pressure zero in@,, .. -iteration. Finally
we have a new solution for this grid that determines a new fgridhousing, piston and fluid. This
can be repeated and this defines the grid iteration in Fig4.8.3If the grid is changedy,,,.. will
change. Therefore we uss,,.; to control the grid iteration and we stop the grid iteratibn i

Wmazr — Wmazx,old < Egrid- (33424)

wmax
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Now we have the solution and grid for the actual presgwg of Figs. 3.3.4.2-3.3.4.4. If we
increase the pressupg s in an incremental procedure Byp; andAp, we start the whole procedure
for piese = piefoia + Ap2 @and repeat until we have reached the prescribed entry pegssyy =
200 N/mm? (2000 bar) or a requested higher value.

Here we have described the “fully coupled” solution. Thisame that in eachu,,..-iteration
step the equations for housing, piston and fluid are solveoweder, we do not make use of the
displacements of housing and piston during thg,.-iteration because the grid is fixed. Only after
the stopping of this iteration the displacements are agptiehe old grid, giving the new grid. To
save computation time we therefore defined the “pseudoupied” solution: We solve separately
the PDEs for the 3 domains housing, piston and fluid. Durireth,..-iteration only the fluid
equations are solved. After the stopping of thg,.-iteration the displacements are computed by
the solution for housing and piston, using the actual fluespure as BC. Then we get a new grid
and start a new,, .. -iteration, if the stopping criterion (3.3.4.24) is not yelffilled. This pseudo-
uncoupled procedure gives the same result as the fully edigalution, but it avoids the unnecessary
repeated solution of the structural equations and thussaueh computation time.

Here we want to discuss briefly how the algorithm would be ataxtif the piston moved/oscillated.
Then we have a sliding dividing line (SDL) instead of a simple because the grid of the fluid do-
main changes, see Fig. 3.3.3.2. The changes of the grid ahd @tiid pressure depend on the time
incrementAt. Basically we have the same nested algorithm like in Fig.4363 However, for small
At one could fix in the optimal case to one Newton iteration, @pg..-iteration and one grid itera-
tion, a pressure iteration in this case is not needed. Thesditat are generated by this cutting of the
iterations are)(At) and one can see by numerical experiments with differeniegatdiA¢ how the
solution changes with¢. In the same way one could see how the solution changesri§ Newton
steps are prescribed. Eventually then a larfyéiis possible so that the overall computation time is
reduced. The same check can be made for more thamwgpg-iteration or grid iteration. This is a
complicated optimization problem for thegparametera\¢, n—it yewton, n—it n—it griq, Where
n—it denotes the number of iterations.

Wmax?

3.3.5 Results for the axisymmetrical cylindrical coordina tes

We have solved the fluid-structure interaction problem afding, piston and fluid with the pseudo-
uncoupled method that gives the same result as the fullyledupethod. However, we could get a
solution only up tol500 or 1600 bar. There are extreme differences in scale between housing and
piston that are in the range af» at the one side, and between the lubrication (fluid) gap thatthe
range of micrometer at the other side. We made numericalriexpests with different length scales
betweenm andmm and looked at the errors fd500 bar. We could see that for the scale dm
we got the best results. Here the error estimate told us whheibest length scale for this problem
that includes also extreme coefficieptsind ) that vary in a wide range between andmm. So
we solved the PDEs in the length scale. Therefore the displacements arein, the velocities in
cm/s, the stresses iV/em? and the volume flow imm? /s.

The volume flow is determined from the prescribed entry paleatyith w,, ... for the velocityw,
see Fig. 3.3.4.4:

e ap o oy, @13 3y G2 4 4
vol = 277/ w(r)r dr = 2TWmay [7 (re —ri) + 3 (ry —r7) + n (rg — ri)] , (3.351)
T

i
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with ag, a1, as are the coefficients of the parabalg + a7 + a»r? of the prescribed entry profile
and with r;, r, the inner and outer radius of the fluid gap. These values avevkrduring the
computation.

But why could we not get results for entry presspre 1600 bar? We were really desperate. After
long investigations we finally could find the cause: during ¢hid iteration at the inner and outer
boundaries of the housing and at the outer boundary of therpiiy waves in the size of a fraction
of a micrometer built up. This made the fluid channel “rougt€e Fig. 3.3.4.4. As a consequence
the Newton iteration for the fluid diverged. In the structugquation there are no damping terms,
thus the roughness could build up. This roughness is in tgeraf the discretization errors of the
structural equations. We at first tried to solve the problgnalfiner grid which helped a little and
brought us up td800 bar, but then the same effect occured. So what to do now?

The idea that solved the problem was to smooth the inner Wéikechousing and outer wall of the
piston. The smoothing is made in the following way, see Fig§.531: We determine the parabola for
node B with the two neighbor noded andC.

smoothed
parabola

Figure 3.3.5.1:1llustration for the smoothing of the surface.

This has the form
rpar(2) = ag + a1z + as2? (3.3.5.2)
and its second derivative is
Tpar = 20z . (3.3.5.3)
Now we determine a new parabola with

T;)/ar, new — ﬁrgar = [ 2az, (3.3.5.4)
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i.e. a parabola that is far < 3 < 1 more “flat”, see dashed parabola in Fig. 3.3.5.1. Now we
determine the new “smoothed” nodéas the intersection of the normal to the old parabola with the
new smoothed parabola. End points of the boundaries renxaid. fif we do this smoothing for all
nodes of a boundary we have executed one smoothing sweepwi@an execute further sweeps.
We denote by

Nsmooth, e NUMber of smoothing sweeps. (3.3.5.5)

With the smoothing parametefs= 0.5 andng,.otn = 2 We could solve the coupled problem for
arbitrary entry pressunewithout problems. We have computed with consistency ayder2 (higher
order caused problems for the used grid). The grid for then3aiios was:

housing: 401 (z-direction) x80 r-direction),
piston: 401 x 40,
fluid: 401 x 81.

We have used our distributed memory supercomputer HP XC&@80tanium 2 processors, 1.5 GHz,
2-processor nodes with Quadrics interconnect. We comput@arallel on 16 processors. If we
solved the pseudo-uncoupled problem directly for the eptegsure2000 bar, without writing the
information for the result pictures to disk, we needed 33&d. dn this timing is the part for the
linear equation solver LINSOL 3296 sec, i.e. most of the tissgpent in LINSOL. We used full LU
preconditioning.

For the result table and result plots we computed With = 1500 bar andAps = 500 bar for the
values1500, 2000, 2500 and3000 bar for the geometry of Fig. 3.3.1.3. Additionally (for curiogi
we solved the problem f&000 bar for the housing with twice the wall thickness, il mm instead
of 6 mm, or 32 mm outer diameter instead @b mm. Table 3.3.5.1 shows the maximum value, the
maximum relative error and the mean relative error for allittan components in the 3 domains
housing, piston and fluid, and the volume flow.

Table 3.3.5.1:Maximum value, max. relative error and mean relative eroottfie solution components
in the three domains, and the volume flow through the gap,iftardnt entry pressures.

p = 1500 bar
Housing

max. solution max. error mean error
w cm 0.3101E-02 0.51E-04 0.80E-05
u cm 0.5685E-03 0.35E-03 0.84E-04
sigma-z N/cm™2 0.1677E+05 0.21E-02 0.79E-05
sigma-r N/cm™2 0.1500E+05 0.31E-02 0.20E-04
sigma-phi N/cm™2 0.2079E+05 0.69E-03 0.71E-04
tau-rz N/cm™2 0.6591E+03 0.29E-01 0.47E-04
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Piston

max. solution max. error mean error
w cm 0.1611E-02 0.27E-04 0.20E-05
u cm 0.1143E-03 0.63E-03 0.27E-05
sigma-z N/cm"2 0.1633E+05 0.27E-02  0.50E-05
sigma-r N/cm"2 0.1501E+05 0.32E-02  0.22E-05
sigma-phi N/cm”2 0.1501E+05 0.12E-02 0.23E-05
tau-rz N/cm™2 0.5803E+03 0.33E-01 0.40E-04
Fluid

max. solution max. error mean error Volume [cm"3/s]
w cm/s 0.1722E+04 0.69E+00 0.13E-01 1.05
u cm/s  0.1391E+00 0.16E+03 0.19E+01
p N/cm™2 0.1500E+05 0.62E-01 0.43E-02
p = 2000 bar
Housing

max. solution max. error mean error
w cm 0.4143E-02 0.10E-03 0.11E-04
u cm 0.7584E-03 0.32E-03 0.82E-04
sigma-z N/cm™2 0.2244E+05 0.30E-02  0.12E-04
sigma-r N/cm™2 0.2000E+05 0.28E-02 0.22E-04
sigma-phi N/cm™2 0.2772E+05 0.65E-03 0.67E-04
tau-rz N/cm™2 0.9837E+03 0.24E-01 0.87E-04
Piston

max. solution max. error mean error
w cm 0.2096E-02 0.19E-03 0.18E-04
u cm 0.1524E-03 0.97E-03 0.86E-05
sigma-z N/cm"2 0.2196E+05 0.37E-02  0.19E-04
sigma-r N/cm™2 0.2001E+05 0.33E-02 0.30E-05
sigma-phi N/cm”2 0.2001E+05 0.16E-02 0.32E-05
tau-rz N/cm™2 0.9253E+03 0.28E-01 0.43E-04
Fluid

max. solution max. error mean error Volume [cm"3/s]
w cm/s 0.3339E+04 0.87E+00 0.14E-01 2.40
u cm/s  0.3810E+00 0.96E+02 0.10E+01
p N/cm™2 0.2000E+05 0.94E-01 0.60E-02
p = 2500 bar
Housing

max. solution max. error mean error
w cm 0.1047E-02 0.12E-02 0.69E-04
u cm 0.1900E-03 0.39E-02 0.39E-03
sigma-z N/cm"2 0.2817E+05 0.10E-01 0.39E-04
sigma-r N/cm™2 0.2500E+05 0.24E-02 0.28E-04
sigma-phi N/cm™2 0.3467E+05 0.18E-02 0.63E-04
tau-rz N/cm™2 0.1393E+04 0.16E-01 0.29E-03
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Piston
max. solution max. error mean error
w cm 0.4589E-03 0.43E-02 0.40E-03
u cm 0.3818E-04 0.53E-02 0.16E-03
sigma-z N/cm™2 0.2771E+05 0.98E-02 0.74E-04
sigma-r N/cm”2 0.2502E+05 0.14E-02 0.58E-05
sigma-phi N/cm™2 0.2502E+05 0.36E-02 0.71E-05
tau-rz N/cm™2 0.1382E+04 0.15E-01 0.49E-04
Fluid
max. solution max. error mean error Volume [cm"3/s]
w cm/s 0.5255E+04 0.13E+01 0.17E-01 454
u cm/s  0.8386E+00 0.12E+03 0.91E+00
p N/cm™2 0.2500E+05 0.23E+00 0.17E-01
p = 3000 bar
Housing
max. solution max. error mean error
w cm 0.1052E-02 0.25E-02 0.13E-03
u cm 0.1905E-03 0.11E-01 0.67E-03
sigma-z N/cm"2 0.3391E+05 0.17E-01 0.80E-04
sigma-r N/cm™2 0.3000E+05 0.40E-02 0.37E-04
sigma-phi N/cm™2 0.4164E+05 0.37E-02 0.93E-04
tau-rz N/cm™2 0.1868E+04 0.27E-01 0.52E-03
Piston
max. solution max. error mean error
w cm 0.4323E-03 0.11E-01 0.11E-02
u cm 0.3824E-04 0.12E-01 0.39E-03
sigma-z N/cm2 0.3355E+05 0.15E-01 0.15E-03
sigma-r N/cm™2 0.3004E+05 0.20E-02 0.13E-04
sigma-phi N/cm”2 0.3003E+05 0.59E-02 0.15E-04
tau-rz N/cm™2 0.1929E+04 0.23E-01 0.84E-04
Fluid
max. solution max. error mean error Volume [cm"3/s]
w cm/s 0.7042E+04 0.54E+01 0.45E-01 7.39
u cm/s  0.1547E+01 0.60E+03 0.23E+01
p N/cm™2 0.3000E+05 0.61E+00 0.40E-01

Housing with diameter 3,2 cm, p = 2000 bar

Housing

max. solution max. error mean error
w cm 0.3931E-02 0.10E-03 0.10E-04
u cm 0.6655E-03 0.11E-02 0.22E-03
sigma-z N/cm”2 0.2099E+05 0.90E-02 0.24E-04
sigma-r N/cm™2 0.2000E+05 0.37E-02 0.76E-04
sigma-phi N/cm™2 0.2286E+05 0.27E-02 0.15E-03
tau-rz N/cm™2 0.8061E+03 0.45E-01 0.15E-03
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Fluid domain 1500 bar

z [cm]

Figure 3.3.5.2:Fluid domain with the computational grid fa600 bar, bold lines: original channel.

Piston
max. solution max. error mean error
w cm 0.2122E-02 0.89E-04 0.90E-05
u cm 0.1524E-03 0.83E-03 0.45E-05
sigma-z N/cm"2 0.2185E+05 0.31E-02 0.97E-05
sigma-r N/cm"2 0.2001E+05 0.32E-02 0.23E-05
sigma-phi N/cm™2 0.2001E+05 0.14E-02 0.24E-05
tau-rz N/cm™2 0.8511E+03 0.31E-01 0.39E-04
Fluid
max. solution max. error mean error Volume [cm"3/s]
w cm/s 0.2884E+04 0.43E+00 0.16E-01 1.95
u cm/s  0.2708E+00 0.68E+02 0.13E+01
p N/cm”2 0.2000E+05 0.10E+00 0.78E-02

The figures for the results, Fig. 3.3.5.2-3.3.5.19, arekdad-white plots in the printed version
and they are colored plots in the online version of the paper. the entry pressured;00, 2000,
2500 and3000 bar are shown the fluid channel and its grid (omitting the diadpttzat make from
the squares the triangles) and in bold lines the originalsizhe channel (for entry pressure zé4io)
and contour plots of the velocity in z-direction. Then follow for housing and piston 2000 bar
contour plots for the stresses, o, o, andr,.. Finally follow for 2000 bar the fluid channel and
contour plot of velocityw for housing with32 mm diameter, i.e. double thickness of the wall. The
scale forz andr is in cm.

Here we want to make some comments to the results. Fig. 3.8h6ws drastically how the fluid
gap widens under the influence of the entry pressung@ bar. It is interesting to see the form of
the gap. Itis clear that the housing widens at the entry,ishike upper side of the fluid channel.
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However, at the exit we have the pressere) and nevertheless the housing widens, here not by
the influence of the local fluid pressure but by the stressatsetkert their influence from the high
pressure side: If the housing is widened at the left sids,dhuses also a widening at the right end,
independent of the fluid pressure at the exit. Clearly thopigs compressed and therefore shrinks
at the high pressure end. However it widens at the low pressud. Why? This is a volume effect,
Material is pressed to the right, but there we have displacgem = 0 and pressure zero and thus
the material escapes into a larger diameter. Here it shauleédalled that the right end of housing
and piston are “artificial boundaries”. Here ends the comtjmrial domain, but the housing and
piston do not end here but continue to the right in an unknawwmf If we could include the right
continuation in the computation, the form at the right enthefgap may be (slightly) different.

If we then look at the fluid gap f&000 bar, Fig. 3.3.5.4, foR500 bar, Fig. 3.3.5.6, an8000 bar,
Fig. 3.3.5.8, we see how the gap with initially 2.5 micromgtéold lines) is blown up. The man-
ufacturing tolerances may be in the range of a fraction of@enieter, but then the pressure makes
these tolerances obsolete. This demonstrates drasttballproblems which engineers must solve
under such high pressure conditions.

Just for curiosity we also solved f@000 bar the equations for the outer housing diameter of
32 mm which means doubling the thickness of the wall for the hayigiom 6 mm to 12 mm.
We expected a significant reduction of the widening of thedfigap. However, if we compare
Fig. 3.3.5.4 20 mm diameter) and Fig. 3.3.5.18% mm diameter) we recognize that there is not
much difference in the form of the gap. From Table 3.3.5.1 axehthe volume flow foR000 bar
for 20 mm diameter2.40 cm3 /s and for32 mm diameterl.95 cm?3 /s which is not much difference
for doubling the wall thickness. This shows that the seyaitthe problem cannot be reduced just
by simply doubling the wall thickness.
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Figure 3.3.5.3:Contour plot of the velocity in z-direction for1500 bar.
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Fluid domain 2000 bar

0.4014

rcm]

1 1 1 ]
0 1 2 3 4
z [cm]

Figure 3.3.5.4:Fluid domain with the computational grid fap00 bar, bold lines: original channel.

Here are some concluding remarks to this example of a fluigitstre interaction. Seemingly the
problem for high entry pressure abol&0 bar were the fluid equations (Navier-Stokes equations),
because the Newton iteration diverged for the fluid domaioweéiser, the reason were the equations
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Figure 3.3.5.5:Contour plot of the velocityw in z-direction for2000 bar.
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Fluid domain 2500 bar

1 1 1 ]
0 1 2 3 4
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Figure 3.3.5.6:Fluid domain with the computational grid fas00 bar, bold lines: original channel.

for the structural components housing and piston. The tstraicequations, i.e. the elasticity equa-
tions, do not have damping terms. This property leads inrdmad of our solution algorithm, i.e. by
the grid iteration, to “tiny” oscillations of the displacemisw, u at the surface. This does no harm
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Figure 3.3.5.7:Contour plot of the velocity in z-direction for2500 bar.
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Fluid domain 3000 bar

1 1 1 ]
0 1 2 3 4
z [cm]

Figure 3.3.5.8:Fluid domain with the computational grid f8000 bar, bold lines: original channel.

to the solution of the structural components. However, ttadesof the fluid domain is by a factor
1/1000 smaller, thus these “tiny” oscillations of the structurahonents (outer surface of piston,
inner surface of housing) are “large” oscillations of thedldomain: the wall becomes “rough” in a
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Figure 3.3.5.9:Contour plot of the velocity in z-direction for3000 bar.
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Figure 3.3.5.10:Contour plot for the stress componentfor the housing foR000 bar.
very bad manner. In the appropriate scale the fluid surfadehws in the discretized form a poly-

gon, looks like a sawtooth curve and causes the Newtonitersdr the fluid to diverge. We needed
a rather long and frustrating time to recognize these iek&tions. We investigated many different
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Figure 3.3.5.11:Contour plot for the stress componentfor the housing foR2000 bar-.
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3.3 Simulation of the lubrication gap of a Diesel High Presske Injection Pump

methods to cure this situation: finer grids, more iteratietts, but nothing helped. Finally, as ex-
plained above, smoothing of the surface cured the probléiis. i¥ a typical example how problems
with quite different scales like housing and piston at the side and fluid domain at the other side
cause completely unexpected difficulties. Again our erstingate showed us merciless the quality
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Figure 3.3.5.13:Contour plot for the stress componen for the housing foR000 bar.

147



Applications

of the solution. When the oscillations occured the errortheffluid domain became large. The nat-
ural action in such a situation is to refine the grid for thedfldomain, but this did not help because

the errors were caused by the oscillations of the elastgjtyations. This shows also drastically how
“dirty” computational mathematics may be.
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Figure 3.3.5.14:Contour plot for the stress componentfor the piston for2000 bar.
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Figure 3.3.5.15:Contour plot for the stress componentfor the piston for2000 bar.
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Piston sigma-phi [N/cm 2] 2000 bar
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Figure 3.3.5.16:Contour plot for the stress componen for the piston for2000 bar.
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Figure 3.3.5.17:Contour plot for the stress componey for the piston for2000 bar-.
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Figure 3.3.5.18:Fluid domain with the computational grid f@000 bar for housing diametes2 mm,
bold lines: original channel.
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Figure 3.3.5.19:Contour plot of the velocity in z-direction for2000 bar for housing diamete32 mm.
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Erratum

In (3.3.2.8) we gave the valug/p = 2.5 - 1072 mm?/s. Dr. Martin Petry of Bosch told us that this
value is wrong! In the transformation &f andkg we did an error. The correct value is

n_ 2
1 =25mm?/s.

So the value in (3.3.2.8) is by a facto@® too small. However, we computed imn (not in mm)
as explained above, because for this scale the errors weesstallest. We used in then scale the
valuen/p = 2.5-102 mm? /s = 2.5-10~* cm? /s which is by a factor 0100 too small. The correct
value isn/p = 2.5-10~2 em?/s. So the computations for the results of Section 3.3.5 wergcted
with n/p that is by a factoi 00 too small. Then we repeated for= 2000 bar the calculations with
the correct value ofj/p. The values corresponding to Table 3.3.5.1 are

p = 2000 bar, corrected values

Housing

max. solution max. error mean error
w cm  0.4140E-02 0.57E-04  0.20E-05
u cm  0.7583E-03 0.46E-03  0.23E-04
sigma-z N/cm2 0.2238E+05 0.22E-02  0.29E-05
sigma-r N/cm’"2 0.2000E+05 0.41E-02  0.55E-05
sigma-phi N/cm™2 0.2771E+05 0.93E-03  0.20E-04
tau-rz N/cm™2 0.9259E+03 0.36E-01  0.21E-04
Piston

max. solution max. error mean error
w cm  0.2116E-02 0.12E-03  0.28E-05
u cm  0.1524E-03 0.70E-03  0.18E-05
sigma-z N/cm"2 0.2186E+05 0.32E-02  0.37E-05
sigma-r N/cm"2 0.2001E+05 0.41E-02  0.81E-06
sigma-phi N/cm™2 0.2001E+05 0.13E-02  0.87E-06
tau-rz N/cm"2 0.8619E+03 0.39E-01  0.12E-04
Fluid

max. solution max. error mean error Volume [cm"3/s]
w cm/s 0.3767E+04 0.14E-01  0.39E-02 2.63
u cm/s  0.4028E+00 0.32E+02  0.21E+01
p N/cm™2 0.2000E+05 0.10E+00  0.94E-02

The values of Table 3.3.5.1 were computed witmodes in radial direction in the fluid. However,
for this grid we got rather large errors for the correct vadfie)/p. In order to get a maximal error
in the 1% range, see the table above, we neeéielnodes in radial direction in the fluid, i.e. we
computed withl01 x 641 nodes in the fluid domain.

The volume flow for the wrong/p was2.40 cm? /s, the value for the correat/p is 2.63 cm?/s.
This means that the increase mfp by a factor100 changes the volume flow 9.6% relative to
the old (wrong) value and b§.7% relative to the new (correct) value. This unvoluntary expent
shows that the volume flow depends only marginally on theevafy /p. Therefore we did not repeat
all the examples of Section 3.3.5. The volume flows givendiséiould be increased by roughly%
to get a better value.

The Figs. 3.3.5.4 for the fluid domain and 3.3.5.540are basically the same for the correct value

of n/p.
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3.4 The simulation of the oxygen diffusion in a PEM fuel cell

The PEM (proton exchange membrane) fuel cell is a “cold”, éelkontrast to the “hot” SOFC (solid
oxyde fuel cell). In its simple form it uses hydrogen and axydair) as propellant. The manufacturer
Freudenberg (Weinheim, Germany) produces non-woven @Jaeaterial that is used as GDL (gas
diffusion layer) in PEM fuel cells. As mentioned in Sectiad 8reudenberg was primarily interested
in the gas diffusion properties of the GDL. Therefore thebpem was reduced to the simulation of
the oxygen diffusion in the GDL of a test fuel cell.

In the Addendum ALl there are 19 slides (in German) that daesthie problem and give the PDEs
and BCs. In the Addendum A2 there is again a summary of thdgaroand above all there are given
the values of the material coefficients for the simulatiohe Values are given in the standard units
kg, m, s, K and in grey background i, mm, s, K. We use the latter scale for the computation.

1
11 I 11 $
111 111 oo
IV Y > x

< 15 >

Figure 3.4.1: Definition of the GDL, which is the computational domain. @b& the strongly exagger-
ated opening | to the channel and of the GDL withp;, = 150 um = 0.15 mm.

Fig. 3.4.1 shows the computational domain which combineditjures A1, Folie 1+3. On Folie 4
the used model is described. The unknown functions are (§e¢€dlie 10):

Uz, uy:  velocity components in- andy-direction,
p.  pressure,
0. total density,
T: temperature,
Co,: mass concentration of oxygen.

On A1, Folie 3-8 the 6 equations for the 6 unknowns are deavedcompiled on Folie 9, with the
definition of the used symbols on Folie 10-11. On Al, Foliell2the BCs for the boundaries I-1V,
see Fig. 3.4.1, are compiled, with the used additional sysntno Folie 18.

The sequence of the 6 variables and equations in the intefrittre computational domain is as
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follows

Variable equation
(A1, Folie9)
ug; x-momentum (Impuls),
uy y-momentum (Impuls),
p constitutive equation,
0 mass conservation
(products differentiated),
T energy equation,
Co, O transport equation.

The BCs for boundary |, see Fig. 3.4.1, the opening to a gasnethaare given in Al, Folie 13.
However, as there are given only 3 BCs, we must take addiljoBaf the PDEs. The setting is as
follows:

uz. x-momentum, fromp = px = const.,
see below, followg)p/dz = 0, thusu, = 0,
y-momentum equation,
p = pk, channel pressure,
constitutive equation,
thermal condition,
see 2. on Folie 13,
Co,: diffusive O, transport iny-direction,
see 3. on Folie 13.

NS

The BCs for boundary I, the upper wall, are given in Al, Fdlie Again we need additionally
3 PDEs:

ug: x-Mmomentum equation,
uy:  uy = 0, impermeability condition,
p.  from they-momentum equation
follows with u,, = 0 the BCOp/0y = 0,
0. constitutive equation,
T: heat conduction equation,
see 2. on Folie 14,
Co, : impermeability forO, givesdCo, /0y = 0,
see 3. on Folie 14.

The BCs for boundary lll, side walls, are given in Al, Folie. 18gain we need additionally
3 PDEs:
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uz. Uy = 0, impermeability condition,
u,. y-momentum equation,

p.  from z-momentum equation follows
with u, = 0 the BCOp/0x = 0,
constitutive equation,
isolated wall,0T"/0x = 0,
see 2. on Folie 15,

Co, impermeabilitydCop,/0x = 0,
see 3. on Folie 15.

N

The BCs for boundary 1V, membrane with catalytic layer areegiin A1, Folie 16 and 17. Here
we also need additionally 3 PDESs:

uz. x-momentum equation,
u,: equation of point 1. on Folie 16,
balancing of species density transport
in y-direction of water vapor and oxygen,
p.  y-momentum equation,
0. constitutive equation,
T: equation of point 2. on Folie 17,
heat conduction caused by the exothermal catalytic ragctio
Co, : equation of point 3. on Folie 17,
instantaneous irreversible reaction
at catalytic layer.

All the necessary coefficients of the PDEs and BCs are givéherAddendum A2. We use the
values in the unitg, mm, s, K.

Of principal interest is also the mass concentration of meeor Cr,0. As we have 3 species,
09, H,O and N5, we have

Co, + Cr,0 +Cn, = 1.

We haveC'y, = v = const. = 0.7, see last line on A2, Folie 5, so we have

CHQO =1- COQ =7

thusC'y,0 can be easily computed@p, is known.

Fig. 3.4.1 shows the computational domain. We used for teetlst computations a triangular
grid of 101 x 21 nodes inz- andy-diretion and consistency order= 2. The error estimates for the
velocitiesu,, u, were in the range a30%, those of the other variables bel@®)1%. More nodes
in the y-direction did not significantly change the results. Morele® in thez-direction changed
significantly the values of,;, u, but did not improve the error estimates. The other valuesinesal
unchanged. This is a clear indication for a singularity ia telocities. The large errors occured at
the left and right end of boundary |, see Fig. 3.4.1, i.e. whbe BC of boundary I, the channel
opening, changes to the upper wall, see Fig. 3.4.2.
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boundary 11 I II
[ 2 S5 6 7

f,f )

Figure 3.4.2:lllustration to BCs.

Atnodes 1, 2, 6, 7 we have the BCs of boumdary Il, at nodes 3ig<e of boundary I. At nodes 2
and 6 we have,, = 0 (impermeability), at the neighboring nodes 3 and 5 we hagg-momentum
equation, i.e.u, = —(K,/n)0p/0y # 0 which causes the fluid flow through the opening. The
basic reason for this incompatibility is Darcy’s law, see, &blie 5, for the momentum equations
that allows such a jump.

If we look at Fig. 3.4.2. we see that the nodes 2 and 3 or 5 andn@ aboser together if we refine
the grid in thez-direction. This means that the “length” of the opening vehere apply the BCs
of boundary |, changes with the grid spacing. The solutiothisf problem would be to “collapse”
nodes 2 and 3 or 5 and 6 and to apply at the same geometricatimdenditions of the channel for
the inside of the channel and the conditions of the wall abtltside. This possibility is included in
FDEM by the concept of the dividing lines. In Fig. 3.4.3 theeiation is depicted.

Here the geometrical nodes 2 and 6 are split up into two lbgiodes each, where f&' and
6” the BCs of the wall and fo2” and6’ the BCs of the channel are applied. In the interior of the
computational domain we need coupling conditions for the lkwgical nodes that result from one
geometrical node, e.@’,8” and9’,9” in Fig. 3.4.3. Because in the interior the solution goes @& th
z-direction continuously through the dividing line we use toupling conditions:

boundary 11 I 7
1 2273 4 5 66 7

dividing lines

Figure 3.4.3: lllustration with dividing line.

variablg. s = variable.;gp,

< 8variab|e> B < 8variab|e>
O left Ox right .
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Table 3.4.1:Results for 6 different grids. Error denotes the max. edeohglobal relative error of the
solution component. Solution is the max. absolute value.

Var. | solution| error || solution| error | solution| error

grid 101 x 21 201 x 21 401 x 21

Uy 0.776 0.256 0.852 0.238 0.999 0.270
Uy 15.7 8.54E-2 8.83 0.189 5.45 0.242
p 1.40E5 | 3.78E-5| 1.40E5 | 2.33E-5|| 1.40E5 | 1.28E-5
0 1.22E-6| 1.04E-4| 1.22E-6| 5.22E-5|| 1.22E-6| 2.91E-5
T 348 3.15E-8 348 1.48E-8 348 1.90E-8

Co, | 8.73E-2| 1.43E-3|| 8.74E-2| 6.51E-4|| 8.74E-2| 3.87E-4

grid 101 x 41 201 x 41 401 x 41

Uy 0.778 0.274 0.860 0.241 1.02 0.266
Uy 31.3 0.114 17.5 0.180 10.7 0.226
p 1.40E5 | 3.83E-5| 1.40E5 | 2.32E-5|| 1.40E5 | 1.28E-5
0 1.22E-6| 7.07E-4| 1.22E-6| 2.29E-4|| 1.22E-6| 7.09E-5
T 348 9.84E-7 348 3.03E-7 348 8.45E-8

Co, | 8.73E-2| 1.34E-2| 8.74E-2| 4.33E-3|| 8.74E-2| 1.23E-3

In Table 3.4.1 we present the results for 6 different gritie max. absolute function values and
the max. estimated global relative errors. We solve withstiancy ordery = 2 and expect from
half the grid size an error reduction by a factoy2)? = 1/4. If we go in Table 3.4.1 to the right we
have a doubling of the meshes, i.e. a halving of the meshisizle z-direction, if we go down we
have a halving in thg-direction, in the diagonal we have halving in both direc§oHowever, if we
look at Table 3.4.1 we cannot find a convergent sequence ofifumvalues foru, andu, and the
estimated errors are relatively large and do not decreatbefiwer grid. For the other variables the
function values are practically the same for all grids areldtror estimates are very small, but do
not decrease in the expected way. This behaviour is a cldamaiion that there is a singularity for
the velocities in the problem.

If we look in Fig. 3.4.3 at nodeg’ and2”, we have a®’ for u, the impermeability condition
uy = 0 and at2” Darcy’s lawu, = —(K,/n)0p/dy. Similarly we have foru, at2’ Darcy’s law
u, = —(K,/n)0p/0z and a” we have from Darcy’s law and constanin the opening that, = 0.

So we have a jump in, andu, betweer2’ and2”. The same holds fd¥’ und6”.

This inherent singularity cannot be removed by any measiutizecnumerical method. If for the
momentum equations a Navier-Stokes model with zero védscitt walls had been used, there were
no singularities.

In order to attenuate the singularities we have changed @sea®’ und6” for p from dp/dy = 0
to Op/dz = 0 so that from Darcy’s law follows:, = 0 which fits to the channel condition, and24t
and6’ we similarly change fromp = px to dp/0dy = 0 which gives from Darcy'’s law.,, = 0. Note
that these measures do not remove the singularity causeaizy’®law, they can only attenuate it.
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Table 3.4.2:Results with modified BCs for 6 different grids. Error dersotike max. estimated global
relative error of the solution component. Solution is thexnabsolute value.

Var. | solution| error || solution| error | solution| error

grid 101 x 21 201 x 21 401 x 21

Uy 0.715 0.352 0.673 0.388 0.598 0.462
Uy 0.170 0.698 0.285 0.651 0.435 0.541
p 1.40E5 | 3.78E-5| 1.40E5 | 2.33E-5|| 1.40E5 | 1.28E-5
0 1.22E-6| 1.04E-4| 1.22E-6| 5.22E-5|| 1.22E-6| 2.91E-5
T 348 3.15E-8 348 1.48E-8 348 1.90E-8

Co, | 8.73E-2| 1.43E-3|| 8.74E-2| 6.51E-4|| 8.74E-2| 3.87E-4

grid 101 x 41 201 x 41 401 x 41

Uy 0.715 0.358 0.673 0.396 0.598 0.473
Uy 0.170 0.710 0.285 0.654 0.436 0.542
p 1.40E5 | 3.87E-5| 1.40E5 | 2.36E-5|| 1.40E5 | 1.27E-5
0 1.22E-6| 7.07E-4| 1.22E-6| 2.29E-4|| 1.22E-6| 7.15E-5
T 348 9.83E-7 348 3.02E-7 348 8.39E-8

Co, | 8.73E-2| 1.33E-2|| 8.74E-2| 4.31E-3|| 8.74E-2| 1.22E-3

Table 3.4.2 shows the results for these modified BCs in the $amm as Table 3.4.1. The function
values and error estimates for the last 4 variables areipaigtthe same in both tables, obviously
these variables are not affected by the singularity of tHecities at the ends of the channel. For
the velocitiesu,, andu, the situation is quite different from that of Table 3.4.1.Table 3.4.2 the
function values of., undu, and even the error estimates do not change witlyiad, the function
values are quite different of those of Table 3.4.1 and theygk in a different way with the-grid.
The error estimates tell us again that the values are notatecuNote that we discuss here only the
maxima.

The results of Table 3.4.2 show that also with the modified BQObe end nodes of the channel
opening the basic singular behaviour (caused by Darcy’s isstill present. The solution method
with the error estimate merciless shows the consequeneeindiccuracy of the velocities, and
uy. At the same time the error estimates show the accuracy afttiex 4 variables in spite of the
inaccuracy of the velocities. So the error estimates tethaswe must look for a better, singularity-
free model for the velocities, but this was not the task for us

Here we must discuss the results of Table 3.4.1 and 3.4.2iia dedail. What we see in the tables
is not the whole information: these are the maximal absalatees of the solution components and
of the global relative error components (max. error compbmeer the domain divided by max.
solution component over the domain). The velocities havegutarity at nodes 2 und 6 of Fig. 3.4.2
or nodes?’, 2" and6¢’, 6” of Fig. 3.4.3. There, at these singular nodes, the functaloes are
“arbitrary” (at a singularity there is no unique value), andte naturally there are also the maxima
of the errors. If we look at nodes that are some grid spacingy &rom the singularity, the function
values do no longer change with the grid, and the errors aresmondingly smaller. Obviously,
by the internal structure of the PDESs, the values of the Wgl@omponents at the singularities do
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not affect the solution ofi, andu, in the interior of the domain which is visible by the smaller
errors there. As the maximal values of the other variablesthe maximal values of their errors
occur away from the singularity in the interior, these valage not affected by the values of,

u, at the singularity. So only the “whole” information abouetbolution and the errors reveals the
ultimate behaviour of the solution. Without the knowleddah® error estimate the explanation of
Tables 3.4.1 and 3.4.2 would be difficult.

In order to give an information about the computation timeBgrocessors of our IBM SP with
Power3 processors of 375 MHz we have executed the2fridx 41 of Table 3.4.2 in batch mode
(the other results have been computed in interactive madeives a little larger timings). The CPU
time of the master processor 188.3 sec. In this timing the part of the linear solver LINSOL for the
computation of 2 Newton corrections and of the error estm@t201 x 41 x 6 = 49446 unknowns
is 86.5 sec. So most of the solution time is used for the linear solverclhs in this case our CG
solver PRES20 with full LU preconditioning.

Tables 3.4.1 and 3.4.2 have been computed with consistedeyp= 2. We know from our ex-
perience that higher order gives worse results if thereiagifrities in the solution because higher
orders are much more sensitive with respect to singularifiderefore we did not expect better re-
sults for higher order. We solved the PDEs of Table 3.4.2Herdrid401 x 41 with consistency
orderqg = 4 andq = 6. Forq = 4 we gotu, = 0.670, u,, = 0.543, but the error estimates were 56.9
and 18.2. The values of the other variables were the same asf@®, but the error estimates were
roughly by a factor of 10 larger. Far = 6 the result was nonsense and the error estimates of the
velocities were 1500. This confirms our experience thatdriginder is not useful in the presence of
singularities.

For the illustration of the solution we show the results facle variable and als6'y,o in two
figures: at first as a greyscale plot and then as contour ptahéogrid 201 x 41 of Table 3.4.2.
Observe the differeng-scale.

In conclusion to this problem of oxygen diffusion at the cath side of the test configuration of
a PEM fuel cell we can say that FDEM worked immediately withanay problem of the numerical
method. The built-in error estimate revealed mercilesssthgularity of the used model for the
velocities. It showed the inaccuracy of the velocities dreldccuracy of the remaining 4 variables.
Better results for the velocities can be obtained only byteebsingularity-free model.

Originally it was intended to simulate a whole PEM fuel cblif Freudenberg had not the corre-
sponding model equations with the values of the necessafficdents available. We had discussed
such a model. The problem here is the modeling of the catalggmbrane between anode and
cathode. There are two possibilities: either to model thenbrane as an infinitely thin layer and to
model this by a single dividing line with a jump in some vat&lor to resolve the membrane by a
grid of a certain thickness and to separate it by two dividings from the two gas diffusion layers
on both sides. For both models of equations there would bereldlgm for FDEM to compute a
global error estimate over the gas diffusion layers and tamhrane.

As PEM fuel cells are combined in a stack to deliver corredpagly more power, FDEM could
compute the global solution over a whole stack, with glolvedreestimate. With such a model one
could “play” with different configurations and optimize tiaole stack. The error estimate tells us
if we can trust our numerical results and shows eventual yeaks in the model as we have seen it
above. In this sense FDEM is a unique tool for the simulatioREM fuel cells. Quite naturally the
same arguments hold for SOFC, the “hot” fuel cells.
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Remarks to a User’s Guide

4 Remarks to a User’'s Guide

When we started this research project we had a “black-bdxés&DEM with which we could solve
arbitrary non-linear systems of elliptic and parabolic RDEth error estimate on an arbitrary 2-D or
3-D domain for which a discretization by triangles or tetdions was available. Then we got from
the IWKA the problem to simulate the manufacturing of metlldws, from Bosch a problem from
the area of high pressure Diesel injection pumps and fromdemberg the fuel cell problem.

For the IWKA problem we had to design a program that describélde tiniest details the manu-
facturing process in its different stages. The grid moveh tiie deformation, the equations change
between elastic and plastic and a moving tool forces thelmabtet into the form. The algorithm,
that simulates this process, is closely interleaved wg¢hRBEM code. Nobody else than the devel-
oper of the FDEM code could generate this code. However, F&Nf is such a complicated code,
that it would not be “suitable” to explain the code in the reszey details to a general user of FDEM.
In this case an interested user must be personally instrbgtéhe developer how to use the code for
different parameters of different problems of the same.type

The Bosch problem is only a cutout of the larger problem, narttee simulation of a whole
injection pump. It could be seen in the early talks with Bogabhat on the available supercomputers
this problem could not be solved with satisfying accuradye Partial problem for which we finally
agreed is a fluid-structure interaction problem for which effered a global solution with global
error estimate. However, in the detailed analysis of thélpra it turned out that the solution of
the seemingly simple problem needed-fold nested iteration (Fig. 3.3.4.6) where FDEM was the
innermost core iteration. Again it would not be “suitable”dxplain this code to a general user of
FDEM so that for an interested user only a personal instads useful.

The Freudenberg problem of the solution for the oxygen siiffa in a fuel cell, see Chapter 3.4,
could be solved basically with the standard version of FDBMI for this problem we will describe
in detail in the form of a user’s guide how to use FDEM. This @ problem.

4.1 Structure of the grid files

One of the key parameters for the solution of PDEs with FDEMesstructured or unstructured FEM
grid. In 2-D we use linear triangles, in 3-D linear tetralwedy. As explained above in the general
part this grid serves only for the structure of the 2-D or 3gac, i.e. by the grid the neighboring
nodes are known. We generate from the nodes difference fasnfwe do nouse a FEM for the
solution).

For the simple geometries that we use in our examples we aentbie grid explicitly “by hand”,
i.e. by an own explicit grid generator. However, we could-d-ave did it also in some examples—
use a commercial grid generator. As at the time of the easlgldpment of FDEM at our computer
center an I-DEAS grid generator was available, we strudtorg data according to the rules of that
(older) I-DEAS grid generator (we do not know if actual vers still accept the data in this form).
As the computer center later changed to the PATRAN grid geaerwe wrote also a program that
translated PATRAN data to I-DEAS data. With the hand-geeerd-DEAS data we can flexibly
change the number of nodes for accuracy tests which wouldenpbssible with a commercial mesh
generator. In the following we describe the used data sirect

All lists with the grid data are stored imparts on the processors of a parallel computer. The
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data have on the processor a local number and they have alsglttbal number. For the nodes we
have two lists;nnr (global node number) angbord (coordinates)nl is the local number of the last
(local) node { is local node number):

i | nnr(i)

1 216

2 312

3 24

nl 754

— 3-D

i | coord(i,1) | coord(i,2) | coord(i,3)
1 first second third
2 coord. coord. coord.
3
nl

For the elements we have also two listgnr (global element number) aneek (global node num-
ber),nel is the local element number of the last (local) elemeéi [ocal element number):

i | nenr(i)

1 25

2 101

3 37

nel 871

— 3-D

i | nek(i,1) | nek(i,2) | nek(i,3) | nek(i,4)
1 238 240 261 231
2 global node number of
3 first second third forth

node
nel
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We have three types of boundaries:

1. external boundaries,
2. internal boundaries of DL (dividing line) type,

3. internal boundaries of SDL (sliding dividing line) type.

A boundary may be a single node if there are given special B@s,at a corner of the domain.
It is important to know that later a list can be supplied thetiedmines which boundary overwrites
which other boundary, e.g. at a corner where two boundarest,reee below.

For each of the three types of boundaries there is a list. €lligts are of the same structure and
they are named

e bnod for type 1,
e tnod for type 2,

e snod for type 3.

As example we show thigod list, nbl is the local number of the last boundary node of typéis (
local node number):

i bnod(i, 1) | bnod(i,2)
1 238 1
2 240 1
3 321 2
: | global node :
nbl number nexb

bnod(i,2) is the number of the boundaryezb is the max. boundary number. The arrays thood
(type 2) andsnod (type 3) have the same structure.

If we have a coupled domain that consistsngkct (sub)domains, there is a listod that tells
which node belongs to which domaini¢ local nhode number):

i | mod(i,1) | nod(i,2)
1 256 1
312 3

global node| number of
number domain
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Because nodes of internal boundaries belong to two or maraihs, there are more thau rows in

this list.

In the same way we have a list that tells which element belongs to which domains(local

element number):

el(i, 1) el(i,2)
25 1
250 2

global element number of
number domain

The data set for the entering of the grid data has in the sfitleed-DEAS structure the following

shape:

start of a list

identifier for nodes

15t row of nnr list, here 216

15t row of coord list (2 or 3 values)
2nd row of nnr list

2nd row of coord list

end of a list

start of a list

identifier for elements

1% row of nenr list

1%t row of nek list (3 or 4 values)

end of a list

[Now follows data for the boundaries. Each boundary has aml@tbetween-1 and—1, bound-
aries have a number and a name. Below are given the rulessforatnes of boundaries.]
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-1 start of a list
791 identifier for boundaries
{number of the boundaty usually1,2,3,...
{name of the boundaty rules for names for FDEM see below,

characterizes type of boundary

{el} 1% element ofl*! row of bound list,
i.e. the node number

{fl} 3 valuegThese values (forces etc.) are not

{g1} 3 values needed for FDEM, we store zeros

{h1} 6 valuegin the required format

{e2} 1% element o2 row of bnod-list

{f2}

{92}

{h2}

-1 end of list

-1 start of list
{next boundary

-1 end oflist

-1 end of list
{until all boundaries are listéd

[Now follows data for the (sub)domains. At first there is timformation for the nodes of the
(sub)domains. A (sub)domain has a number and a name. Betogiaan the rules for the names of
domains.]

-1 start of a list

2417 identifier for domains

{number of the domai{number of nodes in the domgin

{name of the domainstarts withVO for nodes, see rules below.

7256726872437 212 [row with 4 node numbers, with a 7 befoth aade number]
{further rows with 4 node numbeérs

{last row, eventually with zeros as node numbers if there lig @memainde}

{same type of node lists for further domains, starting Withmber of the domain until all nodes
of all domains are listed
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[Now follows in the same style the information for the elensanf the (sub)domains. A (sub)domain
has a number and a name, see rules below for names.]

{number of the domai{ number of nodes in the domgin

{name of the domainstarts with EL for elements, see rules below

821843824831 [row with 4 element numbers, with an 8 befoch element number]
{further the rows with 4 element numbers for this donjain

{last row, eventually with zeros as element numbers if threomly a remaindeér

{same type of element lists for further domains, startindnvistumber of the domain until all ele-
ments of all domains are list¢d

-1 identifier to denote the end of the domain list

For FDEM there are rules for the names of boundary and donsaires. We have, as mentioned
above 3 types of boundaries: external, DLs and SDLs. Correspomhdihgre are3 types of names:

EXname for external boundaries, i.e. the first 2 letters afxernal boundary name are EX.
INname for DLs, internal boundaries, i.e. the first 2 lettefra DL boundary name are IN.
SLname for SDLs, sliding DLs, i.e. the first 2 letters of a SRiubdary name are SL.

For domains we have types of lists: lists for nodes and lists for elements. Gspomdingly there
are2 types of names:

NOname for lists with node numbers, i.e. the fizdetters of a domain list with node
numbers are NO.

ELname for lists with element numbers, i.e. the fitdetters of a domain list with
element numbers are EL.

At the corner e.g. of a rectangular domain we have the intBaseof 2 boundaries. So the corner
belongs to2 boundaries. When we generate the matrix and r.h.s. of tge gparse linear system
for the computation of the Newton correction, the valuestha corner depend on the sequence
which boundary is treated as last one, because the last @merites the values of the first one
at the corner. As we treat boundaries according to their muptimundaries with higher boundary
number overwrite those with lower boundary number. NotédhH®oundary” may be a single node,
e.g. a corner, if there are given special BCs. In order to geerfiexibility we have introduced the
possibility to change this standard rule by adrdler list so that we can prescribe which boundary
overwrites which other one. The number of rows in this listhis number of external boundaries
plus2 times the number of DLs (a DL is doubled by the program, eagly belongs uniquely to one
of the domains that are separated by the DL) plus the numi&bbs. The structure of the barder
list is the following one:
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i | bd-order(i,1) | bd_order(i,2)
1 boundary boundary
number type

boundary type has the valuefor external boundarieg for DLs, 3 for SDLs. The boundaries with
lower position in the list (largef) overwrite boundaries with higher position (smaflerThe bdorder
list belongs to the list of entry parameters that controlgkecution of FDEM. If there is no bdrder
list, the standard rule holds that boundaries with largemblary number overwrite boundaries with
lower boundary number.

As we want to use the grid file on parallel computers, for thaltel reading of the file there must
be done some preparation. The file is generated and storadrgely by a single processor. The
preparation program reads the file sequentially but storeasck as a direct access file. Before the
file is stored back a header is generated that contains th#edkinformation which data are stored
where in the direct access file. When the file is used on a pamputer, processor 1 reads the
header and broadcasts it to the other processors. Thenahebatl p processors read their part of
the lists, i.e. processdrthe firstp!” part, processo? the secongt part etc.

4.2 Entering the PDEs into the program frame

As mentioned above we want to take as example the PDEs ob88&cti, the oxygen diffusion in a
fuel cell.

The PDEs must be entered in the program frame of the subeoEDEMUL. The PDEs and
variables for a system ofi PDEs are

Plu Ul

Pou U2
Pu = . =0, u= . ,

PLu Um

i.e. we arrange the PDEs so that the r.h.s. is zero. In Tablé the variables and equations as
prescribed in SectioB.4 are compiled. In the Addendum A4l the subroutines for the entering
of the PDEs, BCs and the corresponding Jacobian matricegriated. For the PDEs we look at
the subroutine FDEMU1. All the constants that appear in tpgatons are defined in a module
“probconst” that is accessed by the USE statement. At “sfacalculation” there is a part that is
active only ifljac is true. This is used for the Jacobi test that is describedlatea section. The
entering of the PDEs starts with the loop

do 1=1, mv

wheremu is the maximal local node number. “local” means here on theahgrocessor of a (dis-
tributed memory) parallel computer. As mentioned in thempart of this report the data are dis-
tributed (with their overlap data) onto the processors ab¢lach processor can compute its part of
the r.h.s. of the discretized system, which is jHst, completely independent of the other processors.
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Table 4.2.1:Numbering of variables and equations.

no | var | name| equation on Al, Folie 9 name
1| w Uy r-momentum Piu
2 | us Uy y-momentum Pyu
3 | us P constitutive equation | Psu
4 | uy p mass conservation | Pju
5 | us T energy equation Psu
6 | ug | Co, O, transport equation| Psu

The first PDE z-momentum on Addendum A1, Folie 9 is

K, 0
Plu:uw—k—w-—p:O
n Ox
This is entered in our notation as
p(i,1) = u(i, 1) + K_x x ux(i,3)/ns.

Herei denotes the (local) node number,zifi, 1) the “1” denotes the first equation of thelock
and inu(i, 1) the “1” denotes the first solution component, see Tablel.2.1. Similarly 9p/0z is
denoted byuz (i, 3), which means the-derivative of the solution componens. Below the row for
p(i,1) (and similarly below all other entering rows) is a row thatriarked by “I” as comment and
containsf, f2, fx, f2x, etc. These rows are used for the test problem that is exguldierlow. The
second equation is entered @3, 2) in a quite similar way. The third equation is the constitetiv
equation, see Table2.1. Itis

p— pT(RHQO(l -7 — COQ) + RNQ’Y + ROQCOQ) =0
which is entered as

p(i,3) = u(i,3) — u(i,4) xu(i,5) * (RR-H20 x (1 — gamma — u(i,6)) +
+RR_N2 % gamma + RR_O2 x u(i, 6)).

Now it should be clear, at least with the printout of FDEMUa&whthe PDEs are entered in FDEM.

4.3 Entering the BCs into the program frame

In Fig. 3.4.1 are depicted the four boundaries of the contioutal domain. The BCs are entered
into the program frame of the subroutine FDEMU2. Which eiquest are used for which variable
at which boundary has been reported in Section 3.4. In FDEsfté2 “start of calculation” at first
there is the part for the Jacobi tester which is used onlydt = true. The proper calculation
starts with the computation @0 auxiliary variablesp1(i) to p20(:) that cover all the functions of
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the variables that appear in the BCs. These are computee iirsh do-loop after the Jacobi tester.
The do-loop runs from = 1 to nb, wherenb is the (local) number of boundary points for the actual
call of FDEMUZ2. If we havet boundaries+®{exb = 4) FDEMU2 is called4 times. At the first call
the variableirand that denotes the boundary, has the valuewd = 1, i.e. it is for boundary 1 or
boundary I in Fig. 3.4.1. For the second call for boundaryd variableirand = 2 and similarly for
boundariess and4 resp. Il and IV. The valuexb is usually different for each call.

The computation of all the auxiliary functions for all bowmis as it is programmed in FDEMU2
by our student programmer is not an economic way becausedenta@n boundary values are com-
puted that are not needed for that boundary. This proceduoaly justified by the fact that this
demonstration program was executed only a few times. If tlldide used many times, e.g. for
parameter variations, one should compute only those véhaesre needed for the actual boundary.
The auxiliary variables again are accompanied by the egjmmes inf, fx, /2, f2z etc. for the test
PDE and they are marked as comment by a “!”.

The proper part of delivering the BCs now is quite simple drstiarts with

I zum Kanal (to the channel)

if (irand ==1) then
do i=1, nb
p(i, 1) = p14(z)
p(i,2) = p2(i)

Because ofirand == 1) these are the BCs for boundaryor /. In p(, 1) the “/” is the number of
theit” block of equation, the “1” denotes the first equation in thexk of m equations for a system
of m PDEs. Similarlyp(i,2) denotes the second equation in tHeblock etc., see the print-out of
the code in A3.

The BCs for boundarg or /7 in Fig. 3.4.1 start with
I neben dem Kanal (oben) (besides the channel(at the top))
if (irand ==2) then
do i=1, nb
p(i, 1) = p1(i)
p(i,2) = pl0(i)
Thus the BCs for boundar/are entered into the program frame of FDEMUZ2. After the stetats

if (irand == 3) then
if (irand == 4) then

the BCs for the boundariegsand4 are entered in the same way.
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4.4 Entering the Jacobians for the PDEs into the program fram e

The next problem that we will discuss is the entering of trmoB&an matrices for the PDEs in the
interior of the domain which is done by the subroutine FDEMUBe Jacobian matri® Pu/du, is
shown in equ. (2.4.6). If we hava x m elements in each Jacobian matrix for nade.g.

OPu . aPZ’,iequ . .
( du )Z a <3uz’,z'com> = puld),

whereiequ denotes the number of the equation in the blocknogéquations, e.giequ = 2 denotes
the second equation, amnchm denotes the solution component, eighm = 3 denotes the variable
u(i, 3) in our notation.pu(i) denotes the corresponding component in the terminologyD&WU3.
FDEMU3 is called foriequ = 1 to m and for eachiequ for icom = 1 to m, thusm? times. At each
call thepu(i) is stored by FDEMU3 in the right position of a correspondimgg In the same way
the other Jacobians are treated:

o0Pu _ 8Pm'equ . uac(z)
aux i B aum,i,com - P ’

OPu . aPZ’,iequ _ ()
OUzy i B au:mt,i,com - puERy,
and similarlypuy (i), puyy(i) etc.
In the printout Addendum A3 in FDEMUS at

I*** start of calculation
do i=1mv
auxiliary variables for the Jacobians are computed. At
if (iequ==1) then
are computed all Jacobians for the first equation (of thekobfen equations). At
if (icom==1) then
do i=1,mv
pu(i) = pl-1(7)
enddo
endif

are computed for all nodesthe 0P; 1 /0u; 1, wherepl_1(i) is one of the precomputed auxiliary
variables. Here it should be repeated that all the arraythédacobians are pre-assigned with zeros
and only nonzero elements must be entered. In a later pdregdrintout we have

if (iequ==4) then
if (icom==1) then
do i=1,mv
pux(i) = pd_1x(i)
puli) = pi1(3)
enddo
endif
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Here are enteredP; 4 /Ou, ;1 andoP; 4 /0u; 1. So by then? repeated calls of FDEMU3 by the main
program of FDEM all the nonzero elements of the Jacobianicestfor the PDEs in the interior of
the domain are stored in a corresponding array of FDEM.

4.5 Entering the Jacobians for the BCs into the program frame

The Jacobians for the BCs are entered by the subroutine FDEMWe havenexb exterior bound-
aries, FDEMU4 is callediexd - m - m times, namely for all boundariésand, all equationsequ and

all solution componentscom. In the printout Addendum A3 in FDEMU4 at “start of calcutatl
again auxiliary variables are computed. The computatioth@felements of the Jacobian matrices
starts at the comment lines.

| *kkkkhkk

IRand 1 (boundary 1)

| *kkkkhkk

IZum Kanal (to the channel)

if (irand ==1) then
if (iequ==1) then

do i=1,nb
pu(i) = pl4-1(i)
enddo
endif
endif

This gives for boundary 0P, ;/0u; ;. The meaning of the remaining text of the program code of
FDEMU4 should now be clear. At

if (irand == 2) then
the Jacobians for boundayare entered etc.

4.6 Entering the coupling conditions (CCs) at dividing line s (DLs) into the
program frame

The CCs for the DLs are entered by the subroutine FDEMUS. \Wleras that we haveinb (n inner
boundaries) DLs. For FDEMUS we do not include a printout forexample, therefore we explain
the entering here. In the list of formal parameters thetié fer the number of the actual Dl¢qu
andicom for equation and component as in the other subroutines iledcabovenk the number
of components in the system (that we usually denotenkfgr a system ofn PDES),nt the number

of nodes on the actud) L, andmlt that is equal tout if there is no crossing of DLs, but has vector
information if there are crossing DLs that e.g. generatadguae nodes, this parameterit is not
explained here. Like for the exterior boundaries FDEMUb5&aHed for each DLib. However, in
contrast to the exterior boundaries each node is “doubket,Fig. 2.6.1, so that we need two CCs
in each node. A DL separates two domains and the two domafisa(ld right, or upper and lower)
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are denoted by “1” and “2". If we have e.g. for a DL that is phalalo the y-axis the conditions
Uleft = Urights Uz left = Uz right, W€ have for DL with numbet (first DL) the code

if (ib==1) then (forfirstDL)
do j=1,nk (forall components)
do i=1,nt (forall nodes of DL)
p(iaj> 1) = u(ihja 1) - u(iaj> 2)
p(i,7,2) = ux(i,j,1) — ux(i, j,2)
enddo
enddo
elseif (ib==2) then (forsecond DL)

In the parentheses of the assignments the “1” and “2” in thiedasition denote the two sides of the
DL.

The Jacobian matrices for the DLs are entered in the programef of the subroutine FDEMUG.
For the Jacobians we have novinb - m? calls for ninb DLs and a system ofn PDEs. Which
equation is called and to which component is derived is tmeestype of information as for the
Jacobians for exterior boundaries. For the example of C@fsishgiven above thg in p(i,j,1)
denotes the equatioizqu and thej in u(i, j, 1) denotes the componeittorn, so we have in this
example entries only falequ = icom. Therefore the code for the Jacobians is

if (ib==1) then
if (iequ == icom) then
do i=1,nt
pu(i,1,1) = 1.d0
pu(i,2,1) = —1.d0

puz(i,1,2) = 1.d0
puz(i,2,2) = —1.d0
enddo
endif

elseif (ib==2) then

Here in the index parenthesespoaf the second position denotes the “left” (1) or “right” (2) iadie,
the third position denotes the first (1) or second (2) cogptiondition.

This completes the explanation how the PDEs, BCs, and CCthairdlacobian matrices must be
entered in FDEM by writing the corresponding Fortran code jsrescribed program frames of the
subroutines FDEME

4.7 Test problem

In Section 2.10 we have discussed how we generate from obigmnoPu = 0 a test problem
Pu — Pu = 0, equ. (2.10.2), and we have explained this in more detaihénequs. (2.10.3) to
(2.10.11).
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In this example of fuel cell simulation we have theariablesu, to ug, see Table 4.2.1. Far, we
use the test functioif, for u, we usefs, for ug we usefs etc. The derivatives of the test functions
are denotedfz, f2z, f3z, ..., fy, f2y, f3y, ..., fzx, f2xx, f3xz, etc. For this 2-D case they
are functions ofr;, y; for node:, and because such test functions might be used also foraglyste
problems, they depend also orfalthough the fuel cell problem is steady). In the print-ofithe
subroutine FDEMUL for entering the PDESs of interior nodeshaee the code segment

1
p(i,1) = u(i, 1) + K_x x ux(i,3)/ns
— (f(2(2),y(0),t) + K2 * f3u(z(i),y(i),t) /ns

Here we have in the first assignment row tAe: and in the second row th&, z, which is in this
case changed to comment by the indicator “!", so we wouldestie physical problem. If we want
to solve the test problem, we only have to erase the “!". lasyeto see how one gets froRu the
Pu. This can be seen also in the subroutine FDEMU2 for the BCerdlthePu terms are already
included in the auxiliary variables so that at the assigrtsnfam Pu there is not visible if the physical
or the test problem is solved. It should be recalled that&élceldian matrices are not changediy,
because this is an explicit function of .

The choice of the test functiong f2, f3, ... is made by the choice of the corresponding subrou-
tines at the binding of the problem. Usually we select for ffeepolynomials of ordee, 4,6, 8 or
the sugar-loaf function as presented in the examples ofd®e2110.

We recommend never to use FDEM without at first testing the $DEa test problem. The test
problem not only tests if the PDESs are entered correctly,jttalso shows you the basic properties
of the solution. Often for technical problems it is diffictdtsee what are the correct BCs so that the
problem is well-posed. Then the test PDE shows immediatbgrvithere is no solution.

4.8 The Jacobi tester

The basic idea to check the Jacobi matrices by a differenctent has been explained in the context
of equ. (2.10.12). In FDEM there is an entry paraméfer. If l[jac = true the Jacobi tester is
switched on, ifljac = false it is switched off. If it is switched on the testing of the Jacmatrices
is running integrated in the solution process which is stobib there is detected an assumed error
in the Jacobis. Here we recall that the Jacobi tester givesthct value of the derivative only for
linear functions ofu, else it gives the derivative only up to an ertfz).

We want to explain how the Jacobi tester works. The PDEs fgstes ofm PDEs are:

U1 U,z Uty U1,yy
Pl ) b )
pP=|: : (4.8.1)
u1 U1,z U1,y U1,yy
Pm 7 ) 7
Um U,z Um,y Um,yy
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We have e.g. the following Jacobis:

or oP
Oui’ " " Oum
oP
OPp, 9P,
Oui ’° " "7 Oum
oP Py
8P laul,z Tt 8um,x
au — : (4.8.3)
8u1,z [ 8um,x

and similarlyoP/0ou,, ... ,0P/0u,,. If we change according to (2.10.12) in (4.8ul) — u; + ¢
we check the first column of (4.8.2), if we changg — u.,, +¢, we check the last column of (4.8.2).
Similarly, if we changeu; , — u; , + € we check the first column of (4.8.3) etc.

In the printout of the subroutine FDEMUL in the Addendum A3 kewe after * x x x x start of
calculation” a code segment wiflz(. . .). The elements of the vectgex are the:'s for the checking
of the corresponding Jacobians as described above. Inaté&s“@” is the number of components in
the system ofn PDESs which is in this case also equal to the value/oin the j-loop. If [jac = true
the Jacobi tester caltsx m times FDEMU1 with the appropriate componentfef:(...) = ¢ and the
other components zero. The basic call of FDEMU1 for the smubf the PDES is executed with all
components ofez(...) equal to zero. So faljac = true the Jacobi tester acts as control program
that is integrated into the regular solution algorithm.

In Section 4.3 we have presented how the BCs are entered tsubveutine FDEMU2 and in
Section 4.6 how the CCs, the internal BCs, are entered. Ttie obthese subroutines starts like
FDEMUL1 with the fex(. . .) assignments and thus the Jacobians for the BCs and the CCseated
in the same way as for the PDEs in FDEMUL. Thus the Jacobrtisstevery sophisticated program
part that is elegantly interleaved with the solution of thzER itself.

4.9 Remarks to LINSOL

The linear solver LINSOL [7] has been developed initiallgether with the FIDISOL program
package, see [2], and since that time has been continuanghpved and extended, see the references
given in [7]. LINSOL was originally a pure iterative solveiittvseveral generalized CG (conjugate
gradient) methods. The essential improvement was the imgieation of an (I)LU (incomplete LU
factorization) preconditioner, together with (effectigetwo bandwidth optimizers. All these codes
were optimized for sparse matrices on distributed memonrglieh computers. Unfortunately, it
turned out that all the hard industrial problems that aretiopad in this report have for the needed
large number of unknowns so badly conditioned matricesah&G solvers, even the most robust
ones, do not converge. These problems need full LU, all gtenvith ILU with different types of
dropping strategies failed. However, full LU for sparse meas means fill-in between the outermost
diagonals for our algorithm, therefore a bandwidth optemis essential. Full LU increases for large
problems, above all in 3-D, considerably the needed stamagecomputation time. In 3-D problems

180



4.10 Computational parameters

the storage for the factors andU ultimately limit the size of a problem that can be solved on a
given compulter.

FDEM is a black-box solver. In the PDE operator (2.4.1) tfarseappear all possible derivatives,
e.9.u,y. However, if in the actual system of PDEsu,,, does not occur, the corresponding Jacobian
m X m matrix 0P/0u,, has only zero elements. In the process of the generatioreahtirix 4
of the linear system for the computation of the Newton cdiva¢ see (2.4.10), the elements of
the difference formulas fou,,, in this case are multiplied by zeros and added to the cornetpg
position inQ4. If there is no contribution of other terms of the PDEs to fhusition, there remains a
zero. These zeros are denoted as “computed zeros”. Thexr@gtis handed to LINSOL (in reality
each processor hands its part of the matrix to LINSOL by itsafd INSOL) with the computed
zeros and in a first step LINSOL takes out of the matrix thesesze

For the full LU preconditioning a “Gauss factor” tells LIN&QOthat the user expects a storage
space forl, + U that is “Gauss factor” times the storage®@j; (including the computed zeros). If
the selected “Gauss factor” is too small, th& factorization stops when the storage limit is attained
and tells to which row o), it has proceeded up to then. We usually needed severalatesao find
out the appropriate “Gauss factor” for a new problem. Belouhe list of parameters of FDEM are
also mentioned the parameters for the call of LINSOL. Theey tare explained only very shortly.
For a detailed understanding the user must consult the deaton of LINSOL [7]. It should
be mentioned that in our examples of industrial problems3@\l needed®0 to 95% of the total
computation time so that the efficiency of LINSOL is decidiwethe solution of the PDEs.

4.10 Computational parameters

As FDEM is not “frozen” but still in continuous developmettige list of entry parameters may still
change. Therefore it is advisable to check the actual siuatAbove all the parameters for the
selection of the nodes for the difference formulas may chdmegause some internal parameters may
become external parameters and thus become directly ddeessthe user. The situation that is
described below is that of Septemiagn4.

The computational parameters are entered by at least twoatay andé optional files. The
mandatory files are the basic parameters of FDEM and the jpéeasrfor the use of LINSOL.

Fig. 4.10.1 shows the structure of the basic inputftilgm_input with example parameter values.
Here we explain only those parameters whose meaning is reatlgi visible from the comment in
Fig. 4.10.1. The firsB parameters (in the text of nfmax “bound.” means “boundary”) are used for
the declaration of the corresponding arrays if grid refinsseused, “load” istrue. if a computation
is continued from a previous computation, “store”fisue. if at the end of a computation all data
are saved so that the computation can be continued. “mnigsghe number of simultaneously
solved systemd/ - A = I (2.2.6) for the computation of the polynomial coefficients in (2.2.4)
for the difference formulas. Each system is small and réauso that vectorization is inefficient.
If mnls systems (in the examplenlis = 100) are solved simultaneously, the computation is fully
vectorizable, see Section 13.3 in [4].

“idoku” is a mixture of FDEM and LINSOL parameters:
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for FDEM: idoku > 0: only processor 1 prints information,
idoku < 0: all processors print information.
for LINSOL: idoku= 500 means that in LINSOL every 58Diteration step the LINSOL
defect is printed.
13000 i n_max ->max. number of grid points on one processor
26000 i ne_max ->max. number of elements on one processor
1000 i nb_max ->max. number of bound. points on one processor
14 i nexb -> number of external boundaries
2 i ninb -> number of internal boundaries
0 i nslb -> number of sliding boundaries
10 i Iv_max ->max. number of refinements per element
false | load -> |oad an old computation
false | store -> save computation at the end
2 i dim -> dimension of the problem
6 i nk -> number of equations and sol. components
100 i mnls -> number of simultaneous solved small systems MA=I
500 i idoku -> output control parameter
5 i initsol -> initial solution parameter
0.1 dp is_fac -> error of initial solution (only if initsol = 3)
0 i maxit -> max. number of Newton iteration steps
false I mref -> mesh refinement on/off
false I ordctr -> order control on/off
2 i pd -> consistency order
2 i pd2a2 -> order surplus for order 2
2 i pd2a4  -> order surplus for order 4
2 i pd2a6  -> order surplus for order 6
226 i isort -> kind of sorting nodes and pivot search
300 i nle_3 -> max. number of nodes to collect for central node
1.0d-2 dp tol -> requested tolerance
1.d0 dp s_grid -> safety factor for mesh refinement
1.d0 dp s 24 -> safety factor for order control
0.01d0 dp s_46 -> safety factor for order control
1.d-1 dp eps_piv  -> reference pivot element for pivot search
1.d-1 dp alpha -> reference pivot element for pivot search
1 i cycle -> number of cycles for mesh ref. and order control
1.d+6 dp ten -> ten-factor for Newton iteration
true. | ell -> elliptic/parabolic problem?
true. | inso -> initial solution given?
false. | gridsave -> save refinement meshes?
4.d0 dp S_0 -> safety factor for overlap
0.1d0 dp redfac ~ ->reduce factor for Newton it. (only lean version)
false. | llean -> compute solution with lean version?
false. | ljac -> test Jacobian matrices?
false. | Itest -> only statistics for difference/error formulas
true. I Iphys -> physical problem?
false. | Irefg -> refine whole subdomain?
ideas c interf -> mesh generator (not used)
fdem [ collect  ->way to collect points (not used)
stdout c output file name

Figure 4.10.1:Example for the use of the entry parameterfilem.input.
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“initsol” determines the initial (starting) solution. Thalue has the following meaning:

1. start with solutionl.0 for all nodes and all components,

2. start with the exact solution for test PDE,

3: start with the disturbed solution for test PDE, the dis&unce factor iss_fac, e.g.
is_fac = 0.1 for 10% disturbance,

4. start with zero solution,

5: special value.

“maxit” is the maximal number of Newton iteration steps. Hpecial valu® means that there is
no limit.

“pd2a2”: pd2a = Aq — 2, where/\q is explained in Section 2.2. If we have consistency order
g = 2 we usually have\q = 4 which means that we selected nodes that are sufficient farrther
2 +4 = 6. Because for the ordewe need error formulas of order+ 2 = 2 + 2 = 4 and we
want to have sufficient nodes of two orders highe6, we havepd2a = 2. S0/\q gives the surplus
to ¢, pd2a the surplus to the error formula ordgr+ 2. Therefore we havpd2a = Ag — 2. In the
parameter list we can give different surplus values for thieis2, 4, 6 by pd2a2, pd2a4, pd2ab.

“isort” is a key parameter that contains three keys in thedfpositions. These keys determine for
the selection of the nodes the arrangement, the sortingrendeiarch as described in the text after
equ. (2.2.16).

For the arrangement we have thpossibilities:

arrangement: 1. 2. 3.
keyvalue: 1 2 3

for the sorting we have thgpossibilities

sorting: a. b. ¢
keyvalue: 1 3 2

for the search we have tlxepossibilities

search: 1. 2.
key value: 6 7

Therefore the valu@26 for isort in Fig. 4.10.1 means arrangementsorting c., search 1.

“nle_3" is a guess for the declaration of some arrays for this caatjmn of the difference formu-
las. If the value is too small the arrays are deallocated aalliocated with a larger value. “tol” is
the requested relative global tolerance in (2.5.12)grid” is the safety factor for mesh refinement in
(2.5.18). “s24” and “s46” are the safety factors for order control that are use@ib.16), (2.5.17)
and there are namef._.4, f16.

“eps.piv” is the valueey;¢ Used in (2.2.11) and (2.2.16) for the generation of the wiffee
formulas, and likewise “alpha” is the value used in (2.2.16ycle” is the max. number of cycles for
mesh refinement and order control if the accuracy requirémmgrol is not attained in less cycles.
“ten” is a parameter that controls the stopping of the Nevitiration. In (2.5.4) there is the safety
factor0.1. This value now has been generalized foen. If we haveten = 10, the safety factor is
0.1, if we haveten = 10, the safety factor i$0~°.
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If “ell” is .true. the problem is elliptic, if it is. false. it is parabolic. If “inso” is.true. an initial
solution is selected by an interpolation from the boundaiyes.

“s_0” is the safety factor for overlap that is nameg.,;,, in (2.8.1). “redfac” is the reduction
factor for the residual control in the Newton iteration fbetlean version, because there we do not
compute error estimates that are used in (2.5.4) to stop ¢hdv iteration. In the lean version the
Newton iteration is stopped jf(Pu)4|| < redfac||(Pu)4|o, where||(Pu)q||o is the initial residual
norm. If “lean” is .true. the solution is computed with the lean version, without eestimate, else
the standard version is used.

If “liac” is .true. the Jacobi tester is switched on, see Section 4.8, elsewiticed off. If “ltest”
is .true. then for the test polynomial the maximal difference betwtgenexact and the numerical
derivative is computed which is the exact error for lineamtén «» andO(e) for non-linear term and
compared to the estimated error. The result is deliveretténfarm of a table. Further a table is
printed with the information about the size of the cofficgaf the difference and error formulas.

If “lphys” is .true. the physical problem is solved, if it igalse. the test PDEs are solved. “Irefg”
.true. means for the mesh refinement process: if in a sudomain atdeasode is refinement node,
the whole subdomain is refined. If “Irefg” igalse. individual refinement is made. This closes the
explanation of the mandatory parameter filem_inpuit.

The other mandatory file is theol_input file that is shown for an example in Fig. 4.10.2. This
file controls the use of LINSOL and consequently most of theup@ters correspond to the param-

7 * i * ms -> method selection

75 * i * msprec ->method of preconditioning

1 * i * msnorm ->normalization method

100000 * i * maxmvm ->max. number of matrix-vector-multiplications
0 * i * misc

11001 * i * optim

1 * i * bwoalg ->bandwidth optimizer algorithm
true. * I * lilu -> Newton iteration with (I)LU?
0.d0 * dp * thresholdl

0.d0 * dp * threshold2

0.do * dp * Idrop

-300.d0 * dp * gaussfac

0.d0 * dp * memfac

0.d0 * dp * epsmat

1.d0 * dp * pivot_threshold

1 * i * mfor GPBICG(m,I)

4 * i * |for GPBICG(m,l)

1.d0 * dp * LINSOL_MATRIX_FACTOR

1.d0 * dp * LINSOL_INDEX_FACTOR

1.d0 * dp * LINSOL_INFO_FACTOR

Figure 4.10.2:Example for the use of the entry parameter fis _input.

eters that are presented in the User’s guide of LINSOL, setidde4.9 and above all the section
“Parameters” in the User’s Guide. “memfac” is not used. fe@t exists only from Version 1.1 of

LINSOL on and has the following meaning: before the treatneéthe matrix all elements with ab-

solute value less or equal ¢gpsmat are eliminated. This serves above all to eliminate the “astexb
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zeros”. “pivotthreshold” (also from Version 1.1 on) has the following nmiegn

pivot threshold= 1.0: takes max. absol. value of a row as pivot,
= 0.0: no pivoting,
= 0.5: accepts pivot if it is< 0.5 times max. pivot (analoguously other
values0 < value< 1).

The last three parameters lisol_input, LINSOL_MATRIX _FACTOR, LINSOLINDEX_FACTOR
and LINSOLINFO_FACTOR, correspond to the parameters MATRFEXCTOR etc. described in
the User’s guide of LINSOL and are needed for parallel cormpart for the program that calls LIN-
SOL.

Finally there is the parameter “lilu”. This is a FDEM paraeretlf it is .true. the solution of the
linear system in the Newton iteration takes place with (1)iflit is . false. without (I)LU. This ends
the discussion of the mandatory input figel _input.

There are further optional parameter input files. Thelfileorder gives the rules for the overwrit-
ing of boundaries, e.g. in corners, as described at the eSdaifon 4.1. An example input is

WNNEFEL,BA~DN
P NEFEPDNDN

This list must be read from below: boundeadyf type 1 overwrites bd.2 of type 2 that overwrites
bd.1 of type1 that overwrites bd4 of type2 that overwrites bd2 of type2. Note that the numbering
for each of the3 types of boundaries (external, DLs, SDLS) is frarto max. number of boundaries
of that type. If this file does not exist the standard rule hdltht boundaries with higher number
overwrite boundaries with lower number.

With the input filefdem_epsp for a domain withnd subdomains, for each subdomain different val-
ues fore ;0 for the generation of the difference formulas and also sephrfor the error formulas
and different values ofr can be selected, wheeg,;,,, anda are the parameters in (2.2.16). An
example file fomd = 3 domains would look like this:

1.E-2 ** epspiv formula domain 1
1.E-2 ** epspiv error domain 1
1.E-2 ** epspiv formula domain 2
1.E-2 ** epspiv error domain 2
1.E-2 ** epspiv formula domain 3
1.E-2 ** epspiv error domain 3
3.E-2 **alpha domain 1

3.E-2 **alpha domain 2

3.E-2 **alpha domain 3
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If this file does not exist, the values filem_input are used everywhere.

The input filecouple_.domain is needed if there are dividing lines. The solutions of tHeedint
subdomains are coupled by CCs (coupling conditions). Favididg line in 2-D there result from
one geometrical node two logical nodes that belong eachuahiqo one of the coupled domains.
Consequently there must be two equations (CCs) for each. nBdeh CCs have two sides: side
“one” and side “two”. In the filecouple_domain is determined, which domain is side “one” and side
“two” in the first equation and in the second equation. Thpetgf distinguishing information results
from the fact that FDEM is a black-box solver with flexible geal properties. Below is an example
of couple_.domain:

2 O 0OOO OO OOOODO

12 *domain 1is “one”, domain 2 is “two”
21 **domain 2 is “one”, domain 1 is “two”
32 *domain 3is “one”, domain 2 is “two”
23 **domain 2 is “one”, domain 3 is “two”

o0

o4

SICARORIONIE

Figure 4.10.3:Domain with3 subdomains anti4 external boundaries (one node may be a boundary).

Because in the first place of the first row is a “2” foll@wdouble rows for2 dividing lines with
domain numbers “one” and “two” for equatidrand equatior2. If e.g. in the second position of the
first row, where triple nodes or lines are noted, wouldl@nstead of 0) for one triple node, then
there could be e.g. the triple row:
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12 **domain 1is “one”, domain 2 is “two”
23 **domain 2 is “one”, domain 3 is “two”
31 *domain 3is “one”, domain 1 is “two”

for the3 CCs of the triple node. In the third position of the first romated the number of quadruple
nodes with4 CCs etc. This is a very sophisticated allocation of domairexjuations in the CCs.

Fig. 4.10.3 shows a domain wihrsubdomains antl4 external boundaries, note that a single node,
e.g. acorner, may have its own BC and so it is an own “bounddiyére are two internal boundaries,
i.e. DLs. Because the right end nodes of these DLs are notedeéin separate boundaries, they
belong by definition to the DLs. In the filextbound is defined which boundary belongs to which
domain. For the example of Fig. 4.10.3 the fikbound looks like this:

3* pos.l, i.e.bdl, belongstodomain3
3*  pos.2, i.e. bd2, belongs to domain 3
3* pos.3, i.e.bd3, belongstodomain3
2*  pos.4, i.e. bd4, belongs to domain 2
1* pos.5, ie.bd5  belongstodomainl
1* pos.6, i.e. bd6, belongs to domain 1
1* pos.7, i.e.bd7, belongstodomainl
2*  pos.8, i.e. bd8, belongs to domain 2
3* pos.9, i.e.bd9, belongstodomain3
3* pos.10, i.e.bd10, belongs todomain 3
3* pos.11l, i.e.bdll, belongstodomain 3
1* pos.12, i.e.bdl2, belongstodomainl
1* pos.13, i.e.bdl3, belongstodomain 1
1* pos.14, i.e.bdl4, belongstodomainl

A special remark must be made to boundafiésand12. These are single geometrical nodes that
lie on a DL. Therefore from nodgl result two logical nodes, one belongs to domaiand one to
domain2. The notation irextbound thatbd11 belongs to domail means that there are given BCs
for the upper logical node and thus the lower logical nodengs tobd8 and has the BCs afd8.
Similarly the resulting upper logical node &f12 belongs tohd8 and for the lower logical node of
bd12 there are given BCs becausesitbound is noted thabd12 belongs to domait. Quite naturally
the file extbound is needed only if there are DLs. Without DLs all boundariel®ihg to the single
domain.

If there are SDLs (sliding DLs) there are two further inpues$iidl _assoc andslibound that are not
explained here.

4.11 Licensing conditions

At the time of writing this report the future of the FDEM pragn package (60 000 lines of Fortran
code) is not finally fixed. The University of Karlsruhe doed imdend to maintain the program
package for a long time. Therefore we will install the codéhat “Institut fur Wissenschatftliches
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Rechnen” (IWR, Institute for Scientific Computing) at ther§@hungszentrum Karlsruhe where it
will be maintained.

Presently we are looking for partners who have problemsdhaanot be (efficiently) solved by
their standard software. In common research projects why &IpEM to these problems. Some
examples have been presented in this report. FDEM is a dgnemose black-box solver. In such
a cooperation we design from this base code a special codleeqroblem of our research partner.
Basically the partner then can install the code on his coerphiit this needs a corresponding training
for his staff. Predominantly we solve the problem for thetpar on the computers that are available
to us. When the partner himself cannot deliver the PDEs d ghartner will be needed that cares for
the PDEs that we then solve.

It should be mentioned that the numerical solution of hactineal problems needs often excep-
tional numerical experience that cannot be replaced by tine application of even the best code.
Therefore we consider it to be the most efficient way that vieesihe problems for our partners that
then can profit directly from our experience.
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I;Freudenberg
Freudenberg

ForschungsDienste KG

Berechnung der Kathodenseite einer Test-BSZ
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11l
Kanal

CAE / Strémungsberechnung und Rheologie Folie 1

I;Freudenberg
Freudenberg

ForschungsDienste KG

Berechnung der Kathodenseite einer Test-BSZ
e Zielstellung der Berechnung:

e Konzentrationsverteilung des Wasserdampfs in der GDL

e Bereiche mdglicher Kondensation erkennen
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e zunachst 2-dimensionales Modell der FFD

e Simulation mit der FDE-Methode (Finite Difference Element Method)
durch Prof. Schénauer Universitat Karlsruhe

CAE / Strémungsberechnung und Rheologie Folie 2
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Geometrie der Test-BSZ

15 mm
1,5mm

dGDL

e Dicke der GDL d, variiert je nach Verpressung und bestimmt die
Permeabilitat der GDL. Werte zwischen 140um und 240 um.

Kanallange (Dimension in z-Richtung) ist 310mm.

CAE / Strémungsberechnung und Rheologie Folie 3

I;Freudenberg
Freudenberg
ForschungsDienste KG

Modellierung der Kathode

e Zweidimensionales Modell (Annahme: Gradienten in Kanalrichtung
werden vernachlassigt)

e stationér
e Gemisch idealer Gase (Sauerstoff, Stickstoff und Wasserdampf)

e Membran und Katalysatorschicht als Randbedingungen modelliert,
werden nicht aufgeldst

e Freie Kanalstromung wird nicht mitberechnet sondern als
Randbedingung modelliert

e Polarisationskurve wird nicht ermittelt

e Entstehendes Wasser in GDL nur gasférmig (zunachst keine
Kondensation)

CAE / Strémungsberechnung und Rheologie Folie 4

193



Addendum Al

I;Freudenberg
Freudenberg
ForschungsDienste KG

Impulsbilanz (Darcy-Gesetz)

K
u=-—Vp

n

e Gesamtdruck p
e massengemittelte Geschwindigkeit u
e dynamische Viskositat des Fluids 77

e Permeabilitat des porésen Mediums K

kann allgemein auch richtungsabhangig (tensorielle GréBe) und
Feldfunktion sein

CAE / Strémungsberechnung und Rheologie Folie 5

I;Freudenberg
Freudenberg
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O2-Transport
pu-vC, =V-(pD-vC, )
e Massenkonzentration des Sauerstoffs C,_

e Dispersionstensor D kann allgemein auch richtungsabhéangig
(tensorielle Gr6Be) und Feldfunktion sein

e Gesamtdichte p von Sauerstoff und Wasserdampf

Bilanz der Masse

V-(pu)=0

CAE / Strémungsberechnung und Rheologie Folie 6
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Energiebilanz

pc,u-VT = V-(1-VT)

e Temperatur T

e Effektive Warmeleitfahigkeit A der GDL kann allgemein auch
richtungsabhéngig (tensorielle GréBe) und Feldfunktion sein

e spezifische Warmekapazitat ¢, von Gemisch aus Sauerstoff, Stickstoff
und Wasserdampf

CAE / Strémungsberechnung und Rheologie Folie 7

I;Freudenberg
Freudenberg
ForschungsDienste KG

Fehlende Gleichung zur Lésbarkeit des Systems: Konstitutive Gleichung
(Gemisch idealer Gase)

p= ,oT(RHzo (1 -7 —Co, )+ Ry, 7+ R, Co, )= fn(p,T, Co, )

® aus p=py +pg + Py, und Co, +Cyyo +Cy, =1

e Massenkonzentration des Stickstoffs im Querschnitt als konstant
angenommen: CN2 =const. =y, =7

e individuelle Gaskonstanten Ry o.Ry R, mit R. =£und R,M.
2 2 2 1 Mi 1

universelle Gaskonstante, Molmasse Komponente j

CAE / Strémungsberechnung und Rheologie Folie 8
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Zusammenfassung der Gleichungen im x,y-Hauptachsensystem
Kx ap U = Ky ap

e Impuls u_ =-— — =
N
0
e Masse 8(pux)+ (puy)=0
ox Oy

0C,, 0C,, 0 0C,, 0 0C,,
e O:-Transport ,O(MX . +u, P J=§(Dxp . j+5[Dyp o
R el S e N o
e Konstitutive Gleichung p=,0T(RH20(1—7/—C02 )+RN2}/+R02CO2)

e 6 PDEs fir die 6 Unbekannten u,u , p, p, T,C02

CAE / Strémungsberechnung und Rheologie Folie 9

I;Freudenberg
Freudenberg
ForschungsDienste KG

Gesuchte GroéBen

Symbol | Einheit
Geschwindigkeit
x-Komponente U, ulE)
Geschwindigkeit
y-Komponente uy WS
Gesamtdruck p Pa
Gesamtdichte P kg/m3
Temperatur T K
Massenkonzentration C
des Sauerstoffs 0,

CAE / Strémungsberechnung und Rheologie Folie 10
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Materialdaten

CAE / Strémungsberechnung und Rheologie

Freudenberg
ForschungsDienste KG

Symbol Einheit
Permeabilitét
x-Komponente K 5 pm?
P, K, |
e D, |m
yomporente. D, |ms
ckompanente A, | we
iomponang A, | e
dynamische Viskositéat 77 Pas
gadlij\;iiil\ggueﬂeﬁzs-konslante RO2 IR
gtii(i:\;isii(\:fifdueﬂeﬁzs-konslante RN2 JgK)
;’r:gglslg\g;l;gfl e.Gas-konstante RH20 Wk
spezifische Wérmekapazitat Cp Ji(gK)

Massenkonzentration Stickstoff im
Querschnitt
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Randbedingungen
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Rand J : Ubergang zur freien Kanalstrémung

Rand JJ : Elektrodenwand

Rand []] : Seitenrander, Dichtung

Rand Jv : Membranseite/Katalysatorschicht:

CAE / Strémungsberechnung und Rheologie
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e Rand | :
1. Mechanische Randbedingung ist die Druckrandbedingung

P =Dk

2. Thermische Randbedingung ist der Warmestrom

oT
A a_:_aK(T_TK)

B
3. Stoff-Randbedingung ist die diffusive Stoffstromdichte in y-Richtung

0
D)- & = _ﬂK (Co2 - COZK )

Oy
CAE / Strémungsberechnung und Rheologie Folie 13
I;Freudenberg
Freudenberg
ForschungsDienste KG
e Rand JJ :
1. Mechanische Randbedingung ist die kinematische Randbedingung

u, = 0

2. Thermische Randbedingung ist der Warmestrom
oT
Crve ~ay (T~ T
3. Stoff-Randbedingung ist die Undurchlassigkeit der Wand
aC,

Oy

=0

CAE / Strémungsberechnung und Rheologie Folie 14
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e Rand]]I:
1. Mechanische Randbedingung ist die kinematische Randbedingung
u =0
2. Thermische Randbedingung ist adiabatische Isolierung
oT
=0
ox
3. Stoff-Randbedingung ist die Undurchlassigkeit der Wand
oCo, _,
ox
CAE / Strémungsberechnung und Rheologie Folie 15
I;Freudenberg
Freudenberg
ForschungsDienste KG

e Rand JV:
1. Bilanz der Stoffstromdichten von Wasser und Sauerstoff in y-Richtung

oC, M oC
u,Co —D, % % (u}_ Cyuo—D, —Hzoj
Oy 2M H,0 oy

aus der Reaktionsbilanz an der Kathode: 2mol Wasser pro 1 mol Sauerstoff.
Voraussetzung: kein Wassertransport durch die Membran. Umformung ergibt:

aC‘O RHO RHO
u,C, —D, 2l-——|= —(1—y)u,
( y 70, Y ay ] 2R02 ( 7/) y

CAE / Strémungsberechnung und Rheologie Folie 16
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e Rand JV:
2. Thermische Randbedingung ist der abgefihrte Warmestrom aus der
exothermen Reaktion an der Katalysatorschicht

oT
4, -==4B.pCo,

3. Stoff-Randbeding)l)Jng ist die Stoffstromdichte
ac,
D}‘ oy B ﬂr (Coz _COZ)
die Annahme einer instantanen und irreversiblen Reaktion
in der Katalysatorschicht liefert die Bedingung C; =0

CAE / Strémungsberechnung und Rheologie Folie 17
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Daten zur Modellierung der Randbedingungen

Symbol Einheit
Gesamtdruck im Kanal Pk Pa
Temperatur im Kanal Ty K
Massenkonzentration )
des Sauerstoffs im Kanal 0,K
Warmeubergangskoeffizient
Kanal-GDL ay | Wm
Stofflibergangskoeffizient
Kanal-GDL Py | ms
Temperatur der Elektrode TC K
Wérmeubergangskoeffizient o
Elektrode-GDL Qw | Wm
Stofflibergangskoeffizient der
Reaktionsschicht ﬂr 1%
Reaktionswarme q JKkg

CAE / Strémungsberechnung und Rheologie Folie 18
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Addendum A2

Slides of Freudenberg
ForschungsDienste KG

Material Parameters

for the Cathode Part of
a PEM Fuel Cell

(in German)

202



Freudenberg
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Berechnung der Kathodenseite einer Test-BSZ
Tabellen der Zahlenwerte

il

v

I

Folie 1

I; Freudenberg

CAE / Strémungsberechnung und Rheologie

Freudenberg
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Geometrie der Test-BSZ

15 mm
1,5mm

dopy. =150um

T

e Dicke der GDL d;,variiert je nach Verpressung und bestimmt die
Permeabilitat der GDL. Werte zwischen 140um und 240 um.

Kanallange (Dimension in z-Richtung) ist 310mm.

Folie 2

CAE / Strémungsberechnung und Rheologie

203



Addendum A2

I;Freudenberg
Freudenberg
ForschungsDienste KG

Zusammenfassung der Gleichungen im x,y-Hauptachsensystem
Kx ap U = Ky ap

e Impuls u_ =-— — =
N
0
e Masse 8(pux)+ (puy)=0
ox Oy

0C,, 0C,, 0 0C,, 0 0C,,
e O:-Transport ,O(MX . +u, P J=§(Dxp . j+5[Dyp o
R el S e N o
e Konstitutive Gleichung p=pT(RH20(1—7/—C02 )+RN2}/+R02CO2)

e 6 PDEs fir die 6 Unbekannten u,u , p, p, T,C02

CAE / Strémungsberechnung und Rheologie Folie 3
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Gesuchte GroéBen

Symbol | Einheit
Geschwindigkeit
x-Komponente U, ulE)
Geschwindigkeit
y-Komponente uy WS
Gesamtdruck p Pa
Gesamtdichte P kg/m3
Temperatur T K
Massenkonzentration C
des Sauerstoffs 0,

CAE / Strémungsberechnung und Rheologie Folie 4
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Materialdaten Zahlenwerte

Grosse Symbol Zahlenwert Einheit Quelle
Permeabilitadt x-Komponente bei GDL-Verpressung von 250 auf 150 um K\. 2,50E+00 pm?2 Messung FFD
Permeabilitat y-Komponente bei GDL-Verpressung von 250 auf 150 pm K_‘, 2,50E+00 pm2 Messung FFD
Dispersion (hier Diffusion) x-Komponente D,{ 2,90E-05 m2/s [7], S.651
Dispersion (hier Diffusion) y-Komponente D_‘, 2,90E-05 m?/s [7], S.651
effektive Warmeleitfahigkeit x-Komponente Z-( 4,00E+00 W/(Km) [1],S.3
effektive Warmeleitfahigkeit y-Komponente ﬂ‘, 4,00E+00 W/(Km) [1],S.3
dynamische Viskositat n 2,00E-04 Pas [6], S.432
individuelle Gaskonstante Sauerstoff R02 2,60E-01 JI(gK) [5], S.422
individuelle Gaskonstante Stickstoff RN2 2,97E-01 J/(gK) [5], S.422
individuelle Gaskonstante Wasserdampf RH,O 4,62E-01 JI(gK) [5], S.422
spezifische Warmekapazitat des idealen Gases bei konstantem Druck C, 1,08 JI(gK) [5], S.424
Massenkonzentration des Stickstoffs v 0,7 o [5], S.207

CAE / Strémungsberechnung und Rheologie Folie 5

nber
Freudenberg | Freude (!]
ForschungsDienste KG

Materialdaten Zahlenwerte Einheitensystem mm, g, s, K

Grosse Symbol Zahlenwert Einheit im System g mm s K

Permeabilitdt x-Komponente bei GDL-Verpressung von 250 auf 150 um K\. 2,50E-06 mm?
Permeabilitat y-Komponente bei GDL-Verpressung von 250 auf 150 um K_v 2,50E-06 mm?
Dispersion (hier Diffusion) x-Komponente D!{ 2,90E+01 mm?/s
Dispersion (hier Diffusion) y-Komponente D_‘, 2,90E+01 mm?/s
effektive Warmeleitfahigkeit x-Komponente ﬁ-( 4,00E+09 g mm/(s®K)
effektive Warmeleitfahigkeit y-Komponente ﬂ‘, 4,00E+09 g mm/(s®K)
dynamische Viskositat n 2,00E-04 g/(mm s)
individuelle Gaskonstante Sauerstoff R02 2,60E+08 mm/(K s?)
individuelle Gaskonstante Stickstoff RN2 2,97E+08 mm/(K s?)
individuelle Gaskonstante Wasserdampf RH20 4,62E+08 mm/(K s?)
spezifische Warmekapazitat des idealen Gases bei konstantem Druck (&% 1,08E+09 mm/(K s?)
Massenkonzentration des Stickstoffs V 7,00E-01 -

CAE / Strémungsberechnung und Rheologie Folie 6
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Freudenberg
Freudenberg
ForschungsDienste KG

Randbedingungen

33
S5 SS]
e esnas
s
S
| e
111
e Rand J : Ubergang zur freien Kanalstrdmung
e Rand JJ : Elektrodenwand
e Rand JJJ: Seitenrander, Dichtung
e Rand Jy : Membranseite/Katalysatorschicht:
CAE / Strémungsberechnung und Rheologie Folie 7
I;Freudenberg
Freudenberg
ForschungsDienste KG
e Rand | :
1. Mechanische Randbedingung ist die Druckrandbedingung
P = DPx
2. Thermische Randbedingung ist der Warmestrom
oT
A, —=—a (T-T;)
Y ay
3. Stoff-Randbedingung ist die diffusive Stoffstromdichte in y-Richtung
oC,.
Dy 6y = _ﬂK (Coz - COZK )
CAE / Strémungsberechnung und Rheologie Folie 8
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I;Freudenberg
Freudenberg
ForschungsDienste KG

e Rand JJ :
1. Mechanische Randbedingung ist die kinematische Randbedingung

u, = 0

2. Thermische Randbedingung ist der Warmestrom

oT
ﬂva_:_aw(T_Tc)

Y
3. Stoff-Randbedingung ist die Undurchlassigkeit der Wand

oCo, _ 0
Oy
CAE / Strémungsberechnung und Rheologie Folie 9
I;Freudenberg
Freudenberg
ForschungsDienste KG
e Rand]JJJ:
1. Mechanische Randbedingung ist die kinematische Randbedingung
u =0
2. Thermische Randbedingung ist adiabatische Isolierung
oT
=0
ox o
3. Stoff-Randbedingung ist die Undurchlassigkeit der Wand
oCo, _,
ox
CAE / Strémungsberechnung und Rheologie Folie 10
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I;Freudenberg
Freudenberg
ForschungsDienste KG

e Rand JV:
1. Bilanz der Stoffstromdichten von Wasser und Sauerstoff in y-Richtung

oC M oC
u)' Coz o D)' > - > [My CHzo - Dy —HZOJ
Oy 2M 0 Oy

aus der Reaktionsbilanz an der Kathode: 2mol Wasser pro 1 mol Sauerstoff.
Voraussetzung: kein Wassertransport durch die Membran. Umformung ergibt:

oC R R
u,Co —D,—2 | 1-—20 |= - 1O 1y )y
: dy 2R, 2R,

CAE / Strémungsberechnung und Rheologie Folie 11
Freudenberg
Freudenberg
ForschungsDienste KG
e Rand JV:

2. Thermische Randbedingung ist der abgefihrte Warmestrom aus der
exothermen Reaktion an der Katalysatorschicht

oT
ﬂ’y a = _q ﬂrp COZ

3. Stoff-Randbedingung ist die Stoffstromdichte
oC,
D,—%=p, (co.-Cp)

die Annahme einer instantanen und irreversiblen Reaktion
in der Katalysatorschicht liefert die Bedingung Cg =0

CAE / Strémungsberechnung und Rheologie Folie 12
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Freudenberg
ForschungsDienste KG

Dfreudenberg

Zahlenwerte zur Modellierung der Randbedingungen

Grosse Symbol Zahlenwert Einheit Quelle
Gesamtdruck im Kanal Py 1,40E+05 Pa FFD
Temperatur im Kanal TK 7,50E+01 C FFD
Massenkonzentration des Sauerstoffs im Kanal CO:K 1,90E-01 FFD
Warmelbergangskoeffizient GDL-Kanal Oy 1,50E+01 W/(K m?) [1],S5
Stoffibergangskoeffizient Kanal-GDL ,BK 2,00E-03 m/s [2],S.8
Temperatur der Elektrode Tc 7,50E+01 °C FFD
Warmelbergangskoeffizient GDL-Elektrode Ay 1,10E+04 W/(K m?) [1], 8.5
Stoffubergangskonstante der Reaktionsschicht ﬂr 6,00E-04 m/s [2],S.8
Reaktionswarme 8,50E+03 J/(gK) [1],8.5
CAE / Strémungsberechnung und Rheologie Folie 13

Freudenberg
ForschungsDienste KG

Dfreudenberg

Zahlenwerte zur Modellierung der Randbedingungen im mm, g, s, K System

Grosse Symbol Zahlenwert Einheit im System g mm s K

Gesamtdruck im Kanal Dk 1,40E+05 g/(mm s?)
Temperatur im Kanal TK 3,48E+02 K
Massenkonzentration des Sauerstoffs im Kanal CO:K 1,90E-01 =
Warmelibergangskoeffizient GDL-Kanal ag 1,50E+04 9/(s® K)
Stofflibergangskoeffizient Kanal-GDL ﬂK 2,00E+00 mm?s
Temperatur der Elektrode TC 3,48E+02 K
Warmelbergangskoeffizient GDL-Elektrode Ay 1,10E+07 g/(s® K)
Stofflibergangskonstante der Reaktionsschicht ﬂ, 6,00E-01 mm/s
Reaktionswarme q 8,50E+12 mm/(K s?)

CAE / Strémungsberechnung und Rheologie
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Dfreudenberg
Freudenberg
ForschungsDienste KG
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Addendum A3

Program Code for the Subroutines

to Enter the PDEs and BCs and
their Jacobian Matrices
(FDEMU1 to FDEMUA4) for the

Example of the Fuel Cell
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subroutine FDEMU1(isect,t,x,y,u,ut,ux,uy,uxx,uxy,uyy

& p,mt,mv,nk,it,ljac,fex)
!**
!
!**
i FDEMUZ1 subroutine
Ixx in which the pde system at inner grid points is described.
!**
!
!**
[l formal parameters :

USE probconst

implicit

H**

integer,

double
double
&
&
double
logical,

none
intent(in) :: mt, mv, nk, it, isect
precision,intent(in) :: tx(mv),y(mv),fex(nk*it

precision,intent(inout) :: u(mv,nk),ut(mt,nk),u

uy(mv,nk),uxx(mv,nk),
uxy(mv,nk),uyy(mv,nk)

precision, intent(out) :: p(mv,nk)
intent(in) :: ljac

¥ Jist of formal parameters :

Kkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkk

x(mv,nk),

i type i ilo i meaning

>
D
3
o

Ixx local parameters : (please define all the appearing

integer
double
double
double
double
double
double

%%

%%

.............. local parameters)

1)

precision f,fx,fy,fz,fxy,fyz,fxz,fxx,fyy,fzz
precision f2,f2x,f2y,f2z,f2xy,f2yz f2xz,f2xx,f
precision f3,f3x,f3y

precision f4,f4x,fAyf4z fAxy, fAyz faxz f4xx,f
precision f5,f5x,f5y,f5z,f5xy,f5yz,f5xz,f5xx,f
precision f6,f6x,f6y,f6z,f6xy,féyz,f6xz,f6XX,f

I***% start of calculation :

212

2yy f2zz

4ayy fAzz
5yy,f5zz
6yy,f6zz

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*kk

*k%k

*kk

*kk

*kk

*kk



if (ljac) then

do j = 1,nk
doi = 1mv
u(i,j) = u(i,j) + fex((j-1)*it+1)
ux(i,j) = ux(i,j) + fex((j-1)*it+2)
uy(i,j) = uy(i,j) + fex((j-1)*it+3)

uxx(i,j) = uxx(i,j) + fex((-1)*it+4)
uxy(i,j) = uxy(i,j) + fex((j-1)*it+5)
uyy(ij) = uyy(i,j) + fex((-1)*it+6)
enddo
enddo
do j = 1,nk
doi=1mt
ut(i,j) = ut(i,j) + fex(*it)
enddo
enddo
endif

doi = 1mv
p@i,1) = u(i,1)+K_x*ux(i,3)/ns
& -(FOx(i), y (i), ) +K _x*E3x(x(i),y(i),t)/ns)

p@i,2) = u(i,2)+K_y*uy(i,3)/ns

& -(f2(x(i),y (i), t)+K_y*f3y(x(i),y(i),t)/ns)
p@i,3) = u(i,3)-u(i,4)*u(i,5)*
& (RR_H20*(1-gamma-u(i,6))+RR_N2*gamma+RR_0O2*u(i,6))
& -(F3(x (D), y (1), 5)-f4(x(0),y (1), ) *F5(x i),y (i), t) *
& (RR_H20*(1-gamma-f6(x(i),y(i),t))
& +RR_N2*gamma+RR_0O2*f6(x(i),y(i),t)))
p(i,4) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i A)*u(i,2)
& -(FAx(x(0),y (i), ) (x (D), y (1), ) +f4(x(1),y (i).1) *(
& x(x(0),y(),)) +f2y (x(i),y (i),1)) +4y (x(0),y (i).t )
& f2(x(i),y().1)
p(,5) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
& lambda_x*uxx(i,5)-lambda_y*uyy(i,5)
& -(FA(x(D),y (), *CC_p*(f(x(i),y(i).1)*
& 5x(x(i),y(0).t)+F20x(D),y(1) )5y (x(0),y(i).t )-
& lambda_x*f5xx(x(i),y(i),t)-lambda_y*f5yy(x(i),y(i ),1)
p@i,6) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
& DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
& DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))
& -(FA(x(D),y (), 5 (Fx (D), y (i), f6x(x (1), y (i) t )+
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! & f2(x(1),y(1),0)f6y(x(1),y(i).1))-
! & DD_x*(fax(x(i),y(i),t)*f6x(x(i),y(i),t)+
! & fa(x(i),y (i), 0)*fexx(x(i),y(i),1))-
! & DD_y*(fay(x(i),y(i),t)yf6y(x(i),y (i),t)+
! & fA(x(i),y(1),0*f6yy (x(i),y(0).1)))

enddo

I**** and of calculation

return
lomeee end of FDEMU1
e n d

subroutine FDEMUZ2(irand,t,x,y,u,ut,ux,uy,uxx,uxy,

x(nb,nk),

& uyy,p,nb,nk,it,ljac,fex)
!**
| *kkkkkkkkkkkkkkkkkkk
!**
Ixx FDEMUZ2 subroutine
Ixx in which the boundary conditions for the 6 boundary areas
i are described.
Ixx example el
!**
| * * * * * *kkkkkkkkkkkkkkkkkkk
!**
Ixx formal parameters :
!** ___________________
!**
USE probconst
implicit none
!***
integer, intent(in) :: irand, nk, nb, it
double precision, intent(in) :: t,x(nb),y(nb),fex(nk*it )
double precision, intent(inout) :: u(nb,nk),ut(nb,nk),u
& uy(nb,nk),uxx(nb,nk),
& uxy(nb,nk),uyy(nb,nk)
double precision, intent(out) :: p(nb,nk)
logical, intent(in) :: ljac
!**
!** _________________ *kk
!**
¥ Jist of formal parameters :
!**
!**
! i fmmmmimm e e
I name i type i ilo i meaning
1 i i P,
! i fmmmmimm e e
|*%
|*%
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[E23

local parameters : (please define all the appearing

------------------ local parameters)

integer i,

double precision f,fx,fy,fz,fxy,fyz,fxz,fxx,fyy,fzz
double precision f2,f2x,f2y,f2z,f2xy,f2yz,f2xz,f2xx,f
double precision f3,f3x,f3y

double precision f4,f4x,fAy,fAz fAxy,fdyz fAxz fAxx,f
double precision f5,f5x,f5y,f5z,f5xy,f5yz,f5xz,f5xx,f
double precision f6,f6x,f6y,f6z,f6xy,f6yz,f6xz,f6XX,f

double precision pl(nb),p2(nb),p3(nb),p4(nb),p5(nb),p
double precision p8(nb),p9(nb),p10(nb),p11(nb),p12(nb
double precision pl14(nb),p15(nb),p16(nb),p17(nb),p18(
double precision p20(nb)

I**** start of calculation :

if (ljac) then

do j = 1,nk
doi=1,nb
u@i,j) = u(,) + fex((-1)*it+1)
ux@i,j) = ux(i,j) + fex((-1)*it+2)
uy(@ij) = uy(ij) + fex((-1)*it+3)
uxx(i,j) = uxx(i,j) + fex((-1)*it+4)
uxy(i,j) = uxy(i,j) + fex((-1)*it+5)
uyy(ij) = uyy(ij) + fex((-1)*it+6)
ut(i,j) = ut(ij) + fex(*it)
enddo
enddo
endif
doi = 1,nb

pl(@) = u(i,1)+K_x*ux(i,3)/ns
& -(F(x (@), y (i), t) +K_x*3x(x(i),y(i),t)/ns)
p2(i) = u(i,2)+K_y*uy(i,3)/ns

& -(f2(x(i),y (i), t)+K_y*f3y(x(i),y(i),t)/ns)

p3(i) = u(i,3)-u(i,4)*u(i,5)*
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2yy,f2zz

ayy fdzz
Syy,f5zz
6yy,f6zz

*kk

6(nb),p7(nb)

),p13(nb)
nb),p19(nb)

(RR_H20*(1-gamma-u(i,6))+RR_N2*gamma+RR_0O2*u(i,6))

*kk

*kk



Addendum A3

Ro Ro Ro

Ro R0 Ro

Ro Ro

Ro R0 R0 Ro Ro Ro

I1Speziell

I1Speziell

-(F3(x(0),y (1),0)-F4(x (1), y (), *f5(x(0),y(0),1)
(RR_H20*(1-gamma-f6(x(i),y(i),1)

+RR_N2*gamma+RR_0O2*f6(x(i),y(i),t)))

p4@i) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i,

-(Fax(x(0),y (D)0 F(x (1), y (), ) +4(x (D). y(i).t)

x(x(0),y(0),0)+f2y(x(0).y (i), 1)) +f4y(x(i),y (i) t

f2(x(1),y(0).1)

p5(@) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
lambda_x*uxx(i,5)-lambda_y*uyy(i,5)

-(fa(x(1),y(i),ty*CC_p*(f(x(i).y (i).H)*
f5x(x(0),y (), 0)+f2(x(1),y (), *fSy (x(i),y (i), 1)

lambda_x*f5xx(x(i),y(i),t)-lambda_y*f5yy(x(i),y(i

p6(i) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
DD_ x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))

-(FA(x(D),y (), (FCx (D), y (1), ) F6x(x (1), y (i) t

f2(x(1),y(0),t)*f6y (x (1), (i).1))-

DD_ x*(fax(x(i),y(i),t)*fex(x(i),y(i),t)+
fA(x(),y i),y fexx(x(),y (i),1))-
DD_y*(fay(x(i),y(i),tyf6y(x(i),y (i),H)+
fAx(),y(0),1)*f6yy(x(),y(7).1)))

fuer den Rand 1:
p7(i) = u(i,3)-PP_k

-(F3(x(0),y(i),1)-PP_K)
p8(i) = lambda_y*uy(i,5)+Alpha_k*(u(i,5)-TT_Kk)

-(lambda_y*f5y(x(i),y(i),t)
+Alpha_k*(f5(x(i),y(i),1)-TT_K))

p9(i) = DD_y*uy(i,6)+Beta_k*(u(i,6)-CC_o02k)

-(DD_y*f6y(x(i),y(i),)
+Beta_k*(f6(x(i),y(i),t)-CC_02K))

fuer den Rand 2:
p10(i) = u(i,2)

-f2(x(1),y(0).t)
pl11(i) = lambda_y*uy(i,5)+Alpha_w*(u(i,5)-TT_c)

-(lambda_y*f5y(x(i),y(i),t)
+Alpha_ w*(f5(x(i),y(i),))-TT_c))
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p12() = uy(i,6)

! & -fEy(x(i).y(i).9)
p13() = uy(i,3)
! & -f3y(x().y(i).t)
ISpeziell fuer den Rand 3:
p14() = u(i,1)
! & -f(x(@),y(0).9

p15(i) = ux(i,5)
! & -fF5x(x(i),y (i), t)
p16(i) = ux(i,6)
! & -fex(x(i),y(i).,t)
pl7(i) = ux(i,3)
! & -f3x(x(),y(i),0)
ISpeziell fuer den Rand 4:
p18(i) = (u(i,2)*u(i,6)-DD_y*uy(i,6))*(1.-(RR_H20/(2.
& (RR_H20/(2.*RR_02))*(1.-gamma)*u(i,2)
& -((F2(x(1),y (), *f6.(x(1),y(i).1)
! & -DD_y*fey(x(i),y(i),t))*(1.-(RR_H20/(2.*RR_02)))+
& (RR_H20/(2.*RR_02))*(1.-gamma)*f2(x(i),y(i),t))
pl19(i) = lambda_y*uy(i,5)+QQ*Beta_r*u(i,4)*u(i,6)

! & -(lambda_y*f5y(x(i),y(i),t)
! & +QQ*Beta_r*f4(x(i),y(i),t)*f6(x(i),y(i),t))

p20(i) = DD_y*uy(i,6)-Beta_r*(u(i,6)-CC_02)
! & -(DD_y*fey(x(i),y(i),t)-Beta_r*(f6(x(i),y(i),1)-C
enddo
! zum kanal:
if (irand == 1) then
do i=1,nb
p(i,.1) = p14()
p(i,2) = p2(i)

p(i,3) = p7(i)

217

*RR_02)))+

C_02))



Addendum A3

p(i,4) = p3(i)

p(i,5) = p8(i)

p(i.6) = p9(i)
enddo

endif

neben dem Kanal (oben):

if (irand == 2) then

do i=1,nb
p(i,1) = pl()
p(i,2) = p10()
p(i,3) = p13()
p(i,4) = p3(i)
p(i,5) = p11()
p(i,6) = p12(i)

enddo

endif

rechts/links:
if (irand == 3) then

do i=1,nb
p@i,1) = pl4()
p@i,2) = p2(i)
p@i,3) = p17()
p(i,4) = p3()
p(i,5) = p15(i)
p(i,6) = p16(i)
enddo
endif
unten:
if (irand == 4) then
do i=1,nb
p@i,1) = pi()
p(i,2) = p18(i)
p@i,3) = p2(i)
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p(i,4) = p3(i)

p(i,5) = p19(i)
p(i,6) = p20(i)
enddo

endif

I**** and of calculation

return
l--———end of FDEMU2---------mmmmmmmmmmmmcmcmcoeeeeee e
e n d
subroutine FDEMU3(isect,iequ,icom,t,X,y,u,ut,ux,uy,u XX,UXY,
& uyy,pu,put,pux,puy,puxx,puxy,
& puyy,mt,mv,nk)
!**
| *kkkkkkkkkkkkkkkkkkk
!**
i FDEMUS33 subroutine
Ixx in which the jacobian matrices at inner grid points are **
Ixx described. only nonzero elements must be defined. b
!**
| *kkkkkkkkkkkkkkkkkkk
!**
[l formal parameters :

USE probconst

implicit none

!***
integer, intent(in) :: iequ, icom, mt, mv, nk, isect
double precision, intent(in) :: tx(mv),y(mv),u(mv,nk),

& ut(mt,nk),ux(mv,nk),uy(mv,nk),
& uxx(mv,nk),uxy(mv,nk),
& uyy(mv,nk)
double precision, intent(out) :: pu(mv),put(mt),pux(mv) ,puy(mv),
& puxx(mv),puxy(mv),
& puyy(mv)
!**
!** _________________ *kk
!**
[l list of formal parameters :
%%
i**
! i e e e
I name i type i ilo i meaning
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Ixx local parameters : (please define all the appearing

integer i

double
double
double
double
double
double
double
double
double
double

%%

%%

precision
precision
precision
precision
precision
precision
precision
precision
precision
precision

------------------ local parameters)

pl_1(mv),pl_3x(mv)
p2_2(mv),p2_3y(mv)
p3_3(mv),p3_4(mv),p3_5(mv),p3_6(mv)
p4_1x(mv),pd_2y(mv),p4_4x(mv),pd_4y(
p4_1(mv),p4_2(mv),pd_4(mv)
p5_1(mv),p5_2(mv),p5_4(mv),p5_5x(mv)
p5_5y(mv),p5_5xx(mv),p5_5yy(mv)
p6_1(mv),p6_2(mv),p6_6x(mv),p6_6y(mv
p6_6xx(mv),p6_6yy(mv)
p6_4(mv),p6_4x(mv),p6_4y(mv)

I***% start of calculation :

%%

do i=1,mv
! pl(i) = u(i,1)+K_x*ux(i,3)/ns
pl_1(3)= 1.

pl_3x(i)= K_x/ns

! p2(i) = u(i,2)+K_y*uy(i,3)/ns
p2_2() = 1.
p2_3y(i)) = K_y/ns

! p3(i) = u(i,3)-u(i,4)*ui,5)*

mv)

*kk

*kk

*k%k

*k%k

*kk

! & (RR_H20*(1-gamma-u(i,6))+RR_N2*gamma+RR_0O2*u(i,6) )
p3_3() = 1.
p3_4(i) = -u(i,5)*(RR_H20*(1-gamma-u(i,6))
& +RR_N2*gamma+RR_02*u(i,6))
p3_5()) = -u(i,4)*(RR_H20*(1-gamma-u(i,6))
& +RR_N2*gamma+RR_02*u(i,6))
p3_6() = u(i,4)*u(i,5)*(RR_H20-RR_02)
! p4(i) = ux(i,4)*u(i,1)+u(i,4)*(ux(i,1)+uy(i,2))+uy(i JA)*u(i,2)
p4_1x(i)= u(i,4)
p4_2y(i)= u(i,4)
p4_4x(i)= u(i,1)
p4_4y(i)= u(i,2)
p4_1() = ux(i,4)
p4_2()) = uy(i.4)
p4_4(i) = ux(i,1)+uy(i,2)

! p5(@) = u(i,4)*CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-
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lambda_x*uxx(i,5)-lambda_y*uyy(i,5)

p5_1() = u(i,4)*CC_p*ux(i,5)

p5_2(i) = u(i,4)*CC_p*uy(i,5)

p5_4(i) = CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))
p5_5x(i)= u(i,4)*CC_p*u(i,1)

p5_5y(i)= u(i,4)*CC_p*u(i,2)

p5_5xx(i)= -lambda_x

p5_5yy(i)= -lambda_y

p6(@i) = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))

p6_1(i)= u(i,4)*ux(i,6)

p6_2(i)= u(i,4)*uy(i,6)

p6_4(i)= u(i,1)*ux(i,6)+u(i,2)*uy(i,6)-
DD_x*uxx(i,6)-DD_y*uyy(i,6)

p6_4x(i)= -DD_x*ux(i,6)

p6_4y(i)= -DD_y*uy(i,6)

p6_6x(i)= u(i,4)*u(i,1)-DD_x*ux(i,4)

p6_6y(i)= u(i,4)*u(i,2)-DD_y*uy(i,4)

p6_6xx(i)=-DD_x*u(i,4)

p6_6yy(i))=-DD_y*u(i,4)

enddo

if (ilequ == 1) then

if (icom == 1) then
do i=1,mv
pu(i)= p1_1()
enddo
endif
if (icom == 3) then
do i=1,mv
pux(i)= p1_3x(i)
enddo
endif

endif

if ( iequ == 2 ) then

if (icom == 2) then
do i=1,mv
pu(i)= p2_2(i)
enddo
endif
if (icom == 3) then
do i=1,mv
puy(i)= p2_3y(i)
enddo
endif

endif

if (ilequ == 3) then

if (icom == 3) then
do i=1,mv
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pu(i)= p3_3(i)
enddo
endif
if (icom == 4) then
do i=1,mv
pu(i)= p3_4()
enddo
endif
if (icom == 5) then
do i=1,mv
pu(i)= p3_5(i)
enddo
endif
if (icom == 6) then
do i=1,mv
pu(i)= p3_6(i)
enddo
endif
endif

if (iequ == 4) then
if (icom == 1) then
do i=1,mv

pux(i)= p4_1x(i)

pu(i) = p4_1(i)
enddo
endif
if (icom == 2) then
do i=1,mv
pu(i) = p4_2(i)

puy(i)= p4_2y(i)

enddo

endif

if (icom == 4) then
do i=1,mv

pux(i)= p4_4ax(i)
puy()= p4_4y())

pu() = p4_4()
enddo
endif
endif

if (iequ == 5) then
if (icom == 1) then
do i=1,mv
pu()= p5_1(i)
enddo
endif
if (icom == 2) then
do i=1,mv
pu(i)= pS_2(i)
enddo
endif
if (icom == 4) then
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do i=1,mv
pu(i)= p5_4(i)
enddo
endif
if (icom == 5) then
do i=1,mv
pux(i)= p5_5x(i)
puy()= p5_5y(i)
puxx(i)= p5_5xx(i)
puyy(i)= p5_5yy(i)
enddo
endif
endif

if (iequ == 6) then
if (icom == 1) then
do i=1,mv
pu(i)= p6_1(i)
enddo
endif
if (icom == 2) then
do i=1,mv
pu(i)= p6_2(i)
enddo
endif
if (icom == 4) then
do i=1,mv
pu(i)= p6_4(i)
pux(i)= p6_4x(i)
puy()= p6_4y())

enddo

endif

if (icom == 6) then
do i=1,mv

pux(i)= p6_6x(i)
puy(i)= p6_6y(i)
puxx(i)= p6_6xx(i)
puyy(i)= p6_6yy(i)
enddo
endif
endif

I**** and of calculation

return
l--———end of FDEMU3---------mmmmmmmmmcmcmmccoceeeee e
e n d
subroutine FDEMU4(irand,iequ,icom,t,X,y,u,ut,ux,uy,u XX,
& uxy,uyy,pu,put,pux,puy,puxx,
& puxy,puyy,nb,nk)
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* * * * * kkkkkkkkkkkkhkkkhkkkhkk

FDEMU4 subroutine

in which the jacobian matrices at the 4 boundary lines ok
are described. only nonzero elements must be defined. *
example el

%%

&
&
&

Kkkkkkkkkkkkkkkkkkkkk

formal parameters :

USE probconst
implicit none

integer, intent(in) :: irand, iequ, icom, nk, nb

double precision, intent(in) :: t,x(nb),y(nb),u(nb,nk),
ut(nb,nk),ux(nb,nk),uy(nb,nk),
uxx(nb,nk),uxy(nb,nk),
uyy(nb,nk)

double precision, intent(out) :: pu(nb),put(nb),pux(nb)

& puxx(nb),puxy(nb),
& puyy(nb)
!**
!** _________________ *kk
!**
¥ Jist of formal parameters :
!**
!**
! i fmmmmimm e e
I name i type i ilo i meaning
1 i fommmmfomcmmmmmmmmmmmmcmmemmemeee
! i fmmmmimm e e
!**
!**
!**
Ixx local parameters : (please define all the appearing Fhk
P local parameters) ek
!**
integer i

double precision f,fx,fy,fz,fxy,fyz,fxz,fxx,fyy,fzz

double precision pl_1(nb),p1_3x(nb)

double precision p2_2(nb),p2_3y(nb)

double precision p3_3(nb),p3_4(nb),p3_5(nb),p3_6(nb)

double precision p4_1x(nb),p4_2y(nb),p4_4x(nb),p4_4y( nb)
double precision p4_1(nb),p4_2(nb),p4_4(nb)

double precision p5_1(nb),p5_2(nb),p5_4(nb),p5_5x(nb)

double precision p5_5y(nb),p5_5xx(nb),p5_5yy(nb)

double precision p6_1(nb),p6_2(nb),p6_6x(nb),p6_6y(nb )
double precision p6_6xx(nb),p6_6yy(nb),p6_4(nb)
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double precision

double precision
double precision
double precision
double precision
double precision
double precision

[E23

%%

p6_4x(nb),p6_4y(nb)

p7_3(nb),p8_5(nb),p8_5y(nb),p9_6(nb)
p1l0_2(nb),p11_5(nb),p11_5y(nb),p12_
pl3_3y(nb),p1l4_1(nb),pl5 5x(nb),pl6_
pl7_3x(nb),p18_2(nb),p18 6(nb),p18_
p19_4(nb),p19_5y(nb),p19_6(nb)
p20_6(nb),p20_6y(nb),p12_5y(nb)

]

(e2}

I**** start of calculation :

[E23

do i=1,nb

! pl(i) = u(i,1)+K_x*ux(i,3)/ns

pl 1()= 1.

pl_3x(i)= K_x/ns

! p2(i) = u(i,2)+K_y*uy(i,3)/ns

p2_2(i) = 1.

p2_3y(i) = K_y/ns

! p3() = u(i,3)-u(i,4)*u(i,5)*

p3_4() = -u(i,5)*(RR_H20*(1-gamma-u(i,6))

+RR_N2*gamma+RR_02*u(i,6))

p3_5(i) = -u(i,4)*(RR_H20*(1-gamma-u(i,6))

+RR_N2*gamma+RR_02*u(i,6))

p3_6() = u(i,4)*u(i,5)*(RR_H20-RR_02)

! p4(i) = ux(i,4)*u(i,1)+u(i,4)*(ux(,1)+uy(i,2))+uy(i

p4_4(i) = ux(i,1)+uy(i,2)

! p5@) = u(i,4)*CC_p*u(i,1)*ux(i,5)+u(i,2)*uy(i,5))-

! &
p3_3() = 1.
&
&
p4_1x(i)= u(i,4)
p4_2y(i)= u(i,4)
p4_4x(i)= u(i,1)
p4_4y(i)= u(i,2)
p4_1(i) = ux(i,4)
p4_2(i) = uy(i,4)
! &

lambda_x*uxx(i,5)-lambda_y*uyy(i,5)

p5_1() = u(i,4)*CC_p*ux(i,5)

p5_2(i) = u(i,4)*CC_p*uy(i,5)

p5_4(i) = CC_p*(u(i,1)*ux(i,5)+u(i,2)*uy(i,5))
p5_5x(i)= u(i,4)*CC_p*u(i,1)

p5_5y(i)= u(i,4)*CC_p*u(i,2)

p5_5xx(i)= -lambda_x

p5_5yy(i)= -lambda_y

! p6() = u(i,4)*(u(i,1)*ux(i,6)+u(i,2)*uy(i,6))-
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! & DD_x*(ux(i,4)*ux(i,6)+u(i,4)*uxx(i,6))-
! & DD_y*(uy(i,4)*uy(i,6)+u(i,4)*uyy(i,6))
p6_1(i)= u(i,4)*ux(i,6)
p6_2(i)= u(i,4)*uy(i,6)
p6_4(i)= u(i,1)*ux(i,6)+u(i,2)*uy(i,2)-
& DD_x*uxx(i,6)-DD_y*uyy(i,6)
p6_4x(i))= -DD_x*ux(i,6)
p6_4y(i)= -DD_y*uy(i,6)
p6_6x(i)= u(i,4)*u(i,1)-DD_x*ux(i,4)
p6_6y(i)= u(i,4)*u(i,2)-DD_y*uy(i,4)
p6_6xx(i)=-DD_x*u(i,4)
p6_6yy(i)=-DD_y*u(i,4)

ISpeziell fuer den Rand 1:
! p7(@) = u(i,3)-PP_k
p7_3()= 1.

| p8() = lambda_y*uy(i5)+Alpha_k*(u(i6)-TT_K)
p8_5()= Alpha_k
p8_5y(i)= lambda_y

! p9(i) = DD_y*uy(i,6)+Beta_k*(u(i,6)-CC_o2k)
p9_6(i)= Beta_k
p9_6y(i))= DD_y

ISpeziell fuer den Rand 2:
! p10@i) = u(i,2)
p10_2(i)= 1.

! pl1(i) = lambda_y*uy(i,5)+Alpha_w*(u(i,5)-TT_c)
pl1_5(i)= Alpha_w
pll 5y(i)= lambda_y

! p12(i) = uy(i,6)
pl2_6y(i)= 1.

! p13(i) = uy(i,3)
pl3_3y(i)= 1.

ISpeziell fuer den Rand 3:
! p14() = u(i,1)
pl4_1(i)= 1.

! p15(@) = ux(i,5)
p15_5x(i)= 1.

! pl6(i) = ux(i,6)
p16_6x(i)= 1.

! pl7(i) = ux(i,3)
p17_3x(i)= 1.

ISpeziell fuer den Rand 4:
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p18() = (u(i,2)*u(i,6)-DD_y*uy(i,6))*(1.-(RR_H20/(2 *RR_02)))+

& (RR_H20/(2.*RR_02))*(1.-gamma)*u(i,2)
p18_2(i)= u(i,6)*(1.-(RR_H20/(2.*RR_02)))
& +RR_H20/(2.*RR_02)*(1.-gamma)

p18 6()= u(i,2)*(1.-(RR_H20/(2.*RR_02)))
pl18_6y())= -DD_y*(1.-(RR_H20/(2.*RR_02)))

pl9(i) = lambda_y*uy(i,5)+QQ*Beta_r*u(i,4)*u(i,6)
pl9_4(i)= QQ*Beta_r*u(i,6)

p19_5y(i)= lambda_y

pl9_6()= QQ*Beta_r*u(i,4)

p20(i) = DD_y*uy(i,6)-Beta_r*(u(i,6)-CC_02)
p20_6(i)= -Beta_r
p20_6y(i))= DD_y

enddo

* * * * * Kkkkkkkkkkkkkkkkkkk

RAND 1 i

Kkkkkkkkkkkkkkkkkkk

Zum Kanal:
if (irand == 1) then

if (iequ == 1) then
if (icom == 1) then
do i=1,nb
pu()= p14_1()
enddo
endif
endif

if (ilequ == 2) then
if (icom == 2) then
do i=1,nb
pu(i)= p2_2(i)
enddo
endif
if (icom == 3) then
do i=1,nb
puy(i)= p2_3y(i)
enddo
endif
endif

if (iequ == 3) then
if (icom == 3) then
do i=1,nb
pu(i)= p7_3(i)
enddo
endif
endif
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if (ilequ == 4) then

if (icom == 3) then
do i=1,nb
pu(i)= p3_3(i)
enddo
endif
if (icom == 4) then
do i=1,nb
pu(i)= p3_4()
enddo
endif
if (icom == 5) then
do i=1,nb
pu(i)= p3_5(i)
enddo
endif
if (icom == 6) then
do i=1,nb
pu(i)= p3_6(i)
enddo
endif

endif

if (iequ == 5) then

if (icom == 5) then
do i=1,nb
pu(i)= p8_5(i)

puy(i)= p8_5y(i)

enddo
endif

endif

if (iequ == 6) then

if (icom == 6) then
do i=1,nb
pu(i) = p9_6(i)

puy(i)= p9_6y(i)

enddo
endif

endif

endif

RAND 2

kkkkkkkkkkkkkkkkkk

* * * *

oberer rand (neben Kanal)
if (irand == 2) then

if (iequ == 1) then

if (icom == 1) then
do i=1,nb
pu()= p1_1(i)

Kkkkkkkkkkkkkkkkkkk



enddo

endif

if (icom == 3) then
do i=1,nb

pux(i)= p1_3x(i)

enddo

endif

endif

if (iequ == 2) then
if (icom == 2) then
do i=1,nb
pu(i)= p10_2(j)
enddo
endif
endif

if (iequ == 3) then
if (icom == 3) then
do i=1,nb
puy()= p13_3y(i)
enddo
endif
endif

if (iequ == 4) then
if (icom == 3) then
do i=1,nb
pu(i)= p3_3(i)
enddo
endif
if (icom == 4) then
do i=1,nb
pu(i)= p3_4()
enddo
endif
if (icom == 5) then
do i=1,nb
pu(i)= p3_5(i)
enddo
endif
if (icom == 6) then
do i=1,nb
pu(i)= p3_6(i)
enddo
endif
endif

if (iequ == 5) then
if (icom == 5) then
do i=1,nb
pu(i)= p11_5()
puy()= p11_5y()
enddo
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endif
endif

if (iequ == 6) then
if (icom == 6) then
do i=1,nb
puy(i)= p12_6y(i)
enddo
endif
endif

endif

RAND 3

rechter & linker rand:
if (irand == 3) then

if (iequ == 1) then
if (icom == 1) then
do i=1,nb
pu()= p14_1()
enddo
endif
endif

if (iequ == 2) then
if (icom == 2) then
do i=1,nb
pu(i)= p2_2(i)
enddo
endif
if (icom == 3) then
do i=1,nb
puy(i)= p2_3y(i)
enddo
endif
endif

if (iequ == 3) then
if (icom == 3) then
do i=1,nb
pux(i)= p17_3x(i)
enddo
endif
endif

if (iequ == 4) then
if (icom == 3) then
do i=1,nb
pu(i)= p3_3(i)
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enddo
endif
if (icom == 4) then
do i=1,nb
pu(i)= p3_4()
enddo
endif
if (icom == 5) then
do i=1,nb
pu(i)= p3_5(i)
enddo
endif
if (icom == 6) then
do i=1,nb
pu(i)= p3_6(i)
enddo
endif
endif

if (iequ == 5) then
if (icom == 5) then
do i=1,nb
pux(i)= p15_5x(i)
enddo
endif
endif

if (iequ == 6) then
if (icom == 6) then
do i=1,nb
pux(i)= p16_6x(i)
enddo
endif
endif

endif

RAND 4

* * * *

unterer rand:
if (irand == 4) then

if (iequ == 1) then
if (icom == 1) then
do i=1,nb
pu(i)= p1_1(i)
enddo
endif
if (icom == 3) then
do i=1,nb
pux(i)= p1_3x(i)
enddo
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endif
endif

if (iequ == 2) then
if (icom == 2) then
do i=1,nb
pu(i)= p18_2(i)
enddo
endif
if (icom == 6) then
do i=1,nb
pu(i)= p18_6(i)
puy(i)= p18_6y(i)
enddo
endif
endif

if (iequ == 3) then
if (icom == 2) then
do i=1,nb
pu(i)= p2_2(i)
enddo
endif
if (icom == 3) then
do i=1,nb
puy(i)= p2_3y(i)
enddo
endif
endif

if (iequ == 4) then
if (icom == 3) then
do i=1,nb
pu(i)= p3_3(i)
enddo
endif
if (icom == 4) then
do i=1,nb
pu(i)= p3_4()
enddo
endif
if (icom == 5) then
do i=1,nb
pu(i)= p3_5(i)
enddo
endif
if (icom == 6) then
do i=1,nb
pu(i)= p3_6(i)
enddo
endif
endif

if (iequ == 5) then
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if (icom == 4) then
do i=1,nb
pu(i)= p19_4()
enddo
endif
if (icom == 5) then
do i=1,nb
puy()= p19_5y()
enddo
endif
if (icom == 6) then
do i=1,nb
pu(i)= p19_6(i)
enddo
endif
endif

if (iequ == 6) then
if (icom == 6) then
do i=1,nb
pu(i)= p20_6(i)
puy()= p20_6y(i)

enddo
endif
endif
endif

I**** and of calculation

end of FDEMU4

return

end
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