The Numerical Simulation of Fuel Cells
of the PEMFC and SOFC type
with the
Finite Difference Element Method (FDEM)

Authors

PEMFC: Matthias Messerschmidt, Werner Lehnert
ZSW Geschiftsbereich 3
Helmholtzstr. 8
D-89081 Ulm, Germany
E-mail of corresponding author: matthias.messerschmidt@zsw-bw.de

SOFC: Institut fiir Werkstoffe der Elektrotechnik (IWE)
Adenauerring 20b
Universitit Karlsruhe (TH)
D-76131 Karlsruhe, Germany
The institute does not give authors for reports
URL: www.iwe.uni-karlsruhe.de

FDEM: Willi Schonauer, Torsten Adolph
Rechenzentrum der Universitidt Karlsruhe (RZ)
D-76128 Karlsruhe, Germany

E-mail of corresponding author: schoenauer @rz.uni-karlsruhe.de

This research project was supported by the Fuel Cell Research Alliance Baden-Wiirttem-
berg (FABZ), by the ZSW Ulm and by the University of Karlsruhe






Foreword

From May 2004 to February 2005 the Fuel Cell Research Alliance Baden-Wiirttemberg
(FABZ) granted to the Computer Center of the University of Karlsruhe the financial means
to implement the PDEs (partial differential equations) for the PEMFCs and SOFCs into the
FDEM program package. The PDEs for the PEMFCs should be delivered by the ZSW and
for the SOFCs by the IWE. The special point was that such strongly nonlinear systems of
PDEs, and in the case of SOFCs also on coupled domains, should be solved numerically
whereas for the first time together with the solution should be computed a reliable error
estimate, so that the engineer could trust the numerical solution. This allows to separate
in the modeling process of FCs the model errors from the discretization errors. If there is
no error estimate and there is a discrepancy between experiment and numerical results, one
does not know if the difference comes from inaccuracies of the model or of the numerical
solution method. Therefore an error estimate is a valuable new feature and an essential
advantage. This is below confirmed by the results.

The first thing we all had to learn in this cooperation project was to speak to each other.
This means that the technical engineers learned what the numerical engineers wanted and
the numerical engineers learned what the technical engineers wanted. A special problem
are always the boundary conditions and in the case of SOFCs also the coupling conditions
between the solution for gas channel and for anode. Then the technical engineers could see
from the numerical solution the quality of the used model for their FCs and they then got
the hints how to improve the model. As they got together with the numerical solution an
error estimate they had not to doubt the quality of the delivered numbers. Finally, we had
for the PEMFC and for the SOFC a useable model. If the engineer has such a model, he
can “play” in the computer with the many parameters that are included in such a model,
can adapt them to new measurements and can, above all with the geometrical parameters,
optimize his FC.

Because the financial means for this project were rather limited and the project time
was very short for such a difficult problem, the project ended with the implementation of
the PDEs and some smaller variations of parameters. Ultimately, this project was intended
as a transitional task until in a larger project with industrial background the optimization of
FCs on a broad basis should start. So the purpose to show that the PDEs of FCs of different
types could be efficiently solved numerically on modern parallel supercomputers, with an
error estimate for the generated solution, was fully attained. If industrial partners want to
cooperate and use the invaluable experience of the project partners they should address the
corresponding authors of this report.

This report is written by three different groups, the ZSW, the IWE and the RZ. To avoid
lengthy coordinations, each group has written its part independently in its own preferred
style. So this report consists of three parts: Part I by ZSW, Part II by IWE, Part III by RZ.
Because of the independent writing the pages of the different parts are numbered by e.g.
1.1, 1.2 etc. or 1.1, II.2 etc.

Above all in Part I and III there are many coloured figures. In the printed version they
are in gray scale and much information is lost. Therefore we recommend to look at these
figures at the screen of a computer in the on-line version of the paper. This is in

http://www.rz.uni-karlsruhe.de/rz/docs/EFDEM/Literatur/fuelcells.pdf
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Part I:
The Polymer-Electrolyte-Membrane Fuel
Cell (PEMFC)

The aim at PEMFC operation and development is a nearly homogenous current density distribution
and thus power distribution all over the electrochemical active cell area. In a real fuel cell the
electrochemical reaction takes place inhomogeneous over the active cell area. The reaction runs
best, where the best reaction conditions exist, expecially the highest educt concentrations and the
best electrical conductivities for electron and proton conduction. Important mechanisms resulting
in current density inhomogenities are material transport limitations, which appear especially in the
gas diffusion layers (GDLs) of PEMFCs. Material transport limitations in the GDL result beside the
transport resistance caused by the mass transport through the GDL thickness mainly from geometry
effects as e.g. the alternation of gas channels and ribs of the flowfield structure. Therefore in order
to study the behaviour of a fuel cell it is essential to consider multidimensional effects and simulate

multidimensional models.



The model and the PDEs

Within this project a 2D-model of the cathode GDL under the channels and ribs was examined. The
calcutlation region and the boundary conditions are shown in Fig. 1.
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Fig. 1: Sketch: Calculation region and boundary conditions

The structural and geometry parameters according to Fig. 1 are given in Tab. 1.

The following model assumptions are made: constant concentration in the gas channel at given
relative humidity; pure gas transport; phase changes aren’t considered; infinitesimal thin reaction

layer as boundary condition; constant cell voltage; isothermal cell.

Tab. 1: Structural and geometry parameters

parameter symbol | unit value source
thickness of the GDL tgpr | [m] | 190.0-107° | chosen
width of the channel c [m] 1-1073 chosen
width of the rib r [m] 1-1073 chosen




Part I: The PEMFC L3

Within this project two models for the gas phase transport are compared: As first approach Fick’s
diffusion was used as gas transport mechanism, cause of it’s simple model. Afterwards the so called
Mean Transport Pore Model (MTPM) was used as gas phase transport mechanism, which considers
molecular multicomponent diffusion according to Stefan Maxwell, pore diffusion according to Knud-
sen, convection according to Darcy and wall slip. The comparison of both models results should help
to judge, whether the simple Fick’s law is sufficient to model the gas transport in a porous PEMFC
GDL or the more detailed MTPM has to be used.

Below the models governing equations and boundary conditions for the two transport mechanisms
are listed.

Model with Fick’s diffusion as transport mechanism

Governing equations

e transport equation:

x £(z) Do Ipo
= /e P 1
o 7 RT Ox (1)
-y 5(1‘) D, Op,
_ p
Mo T RT 0y @)
z e(x) Dy Opu
Mo = 7 RT 0Oz 3)
Ly e(x) Dy Opu
= 28w I 4
M T RT 0y )
e material balances:
cw)dpe __OGE) 90l 5
RT ot or oy
@) py __OGL) _0Gi) .
RT ot Ox oy
One gets 6 PDEs for the dependent variables: 10, n), 1., 1), p, and py. In addition the current

density i, which is used in Eq. 8 and in the boundary conditions Eqs. 16, 17, 47 and 48, is considered
as a variable just at the boundary GDL-reaction layer.

The independent variables are x, y and t. The material balances are set in their general form. The

calculations were done for the steady state case.
The dependent variables are listed in Tab. 2.

In PEMFCs the GDL is compressed under the ribs. In order to consider this effect and it’s impact
on the porosity a location dependent porosity is used:

27 c 27

exp [a cos( ) + ;} — exp [—a COS(mﬂﬁ)}

e(x)=05¢e0 | kf +1+(1—kf) )} (7)

exp [acos(%z) + f} + exp [facos(%x
The origin of the x coordinate is in the middle of the channel, as shown in Fig. 1.
The porosity via the x-location for the model’s standard parameters is shown in Fig. 2.

The parameters needed for the governing equations are listed in Tab. 3.
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Tab. 2: Dependent variables for Fick’s law

parameter symbol unit
molar flux density of n, mol m~2 s~1
oxygen in x-direction

molar flux density of n mol m~2 s~*
oxygen in y-direction

molar flux  density n, mol m—2 s~ !
of water vapour in

x-direction

molar flux  density n’, mol m—2 s~ !
of water vapour in

y-direction

oxygen partial pressure Po Pa
water vapour partial Pw Pa
pressure

current density i A m™2

Tab. 3: Parameters for the governing equations

parameter symbol unit value source
Univ. gas constant R [kg m? s72 mol 1K~ 8.3145

Faraday’s constant F [C mol 1] 9.648531 - 10*
Temperature T [K] 333 chosen
Diffusion coefficient Oq D, [m? s71] 0.178-10~* 3]
in air

Diffusion  coefficient Dy [m? s71] 0.22-107* 3]
H50O vapour in air

Porosity of the GDL €0 [ 0.7 chosen
without compression

Porosity of the GDL | &(x) [ calculated Eq. 7
with compression

Parameter for the a [ 10 (2 - 20) | chosen
porosity calculation

Compression factor kf [ 0.7 chosen
Tortuosity of the GDL T ] 4 chosen

I4
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Fig. 2: location dependent porosity
Boundary conditions

For the calculation of the boundary conditions the current density i in [A m~2] at the reaction layer

according to the Tafel equation is needed (see [2]):

P\ anF (UO —Ugz — —i’“’" 2)
i = fuio ( T(;f) exp RT ne (8)
Po

pD is the value of the oxygen partial pressure at the reaction layer (Index D). In Eq. 8 the ohmic
resistance of the membrane is already considered and it is assumed, that the membrane conductivity

Kmem Stays constant, according to a homogenous membrane humidification.

In addition the water vapour saturation pressure p?v in [Pa] according to the Antoine equation is
needed for the calculation of the boundary values:

B
C + (T —273.15)

log(1072 - pj) = A — (9)

Eq. 9 is a numerical equation.

The boundary conditions are listed below:

e channel boundary (UC):
In the channel a constant pressure at air composition and given relative humidity ¢ is assumed:

= eri (10)
ple = (" - ph9) - yl¢ (11)

uc
Dy
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e rib boundary (UR):

The rib is assumed as impermeable for the reaction gases:

-y,UR

RV = o (12)
U~ (13)
e left (L) and right (R) boundary:
Symmetry boundary condition:
R — (14)
A (15)

e reaction layer boundary (D):

Molar flux density according to Faraday’s law in dependence of the current density in Eq. 8:

-y,D 1.

- 16
"o iF" (16)
-y,D 1.

- 17
M oF' (17)

The negative sign in Eq. 17 marks, that the oxygen and the water vapour have to be transported in
opposite directions.

The parameter needed for the boundary conditions are listed in Tab. 4.
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Tab. 4: Parameters for the boundary conditions

parameter symbol unit value source
Total pressure in the | p [Pa] 1.013- 105 | chosen
channel
Relative humidity in ® [] 0.8 chosen
the channel
Mole fraction of Og in yg,g [ 0.21
air
Exchange current den- io [A mp7] 6.7-1075 2]
sity
Transfer coefficient [ 0.2695 2]
Number of electrons n - 4
involved in electrode
reaction (Faraday)
Reference pressure pref [Pa] 1.013-10° 2]
Surface extension fac- fy [m%, m~?] 79 2]
tor at 0.15 mgp; cm ™2
Reaction order ¥ [ 0.75 2]
Open circuit voltage Up [V] 1.0 chosen
Cell voltage Uy V] 0.6 chosen
Membrane thickness dimem [m] 30.0-107% | chosen
Membrane electric | Kmem [Sm™1] 10.0 [6]
conductivity
Water vapour satura- P [Pa] calculated | Eq. 9
tion pressure

A [ 8.0732991 | [6]
Antoine parameters B [ 1656.39 6]

C [ 226.86 [6]

L7
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L8

Model with MTPM as transport mechanism

Governing equations

The MTPM is now applied for the transport equations ([1]).

So the transport equations become

implicit and the nitrogen partial pressure p, and the total pressure p have to be considered as further

variables.

e transport equations:

RTppoa_y -

1,& Po @
B, )| RTpdy

RTppw or

RTppw a_y -

7 . Pn
(Dwn : p)

- - . .
no Pw no —Po nw DPn n
DKn, (Dow 'p) (Don 'p)
My | PwTy —Po My  Pn T
DKn, (Dow “p) (Don “p)
Ty + Po Ny —Pw Ty + Pn Ty —Pw Ty
DEKny, (Dwo - p) (Dwn - p)
ni + Do ni —Pw ﬁz + Dn T.lz, -
DEKny, (Dwo - p) (Dwn - p)
Ny Po Ny, —Pn N, + Pw Ty —
DKnn (Dno P) (an p)

.y .y .
y Po My —Pn 1

+

Y
>+

=Y
pwnn_

DKny, (Dno - p) (Dnw - p)

e material balances:

e condition for the total pressure:

Finally one gets 9 PDE’s and one algebraic equation for the dependent variables n

P=Do+Pw+Dn

o [ B, , B | Bu
9r | DEny | (Dow-p)'" B,

1_& Po @
B, )| RTpox

ap B, , B, B
DKny ' (Dow - p)*" B,

dp B, By, B,
[Dan * Due )P (1 -
B, DPw ap
mﬂﬁﬁ%
op B, B, B,
[Dan t Dwy )P (1 -
1— &)} p_“’@
By /| RTp oy
d [ Bn B, B,
RTp""0r ~ | DKny | (Do )" (1 B,
By, Pn ap
B B_nﬂ RTp 0z
o [ Bn B, B,
ﬁﬁm@lmm+wmﬂ%OE

)| wi,

B, /| RTpoy
a(n)
o 24
5 (24)
a(nd)
w 2
- (25)
a(n)
n 2
i (26)
(27)
;(5 1;12),7 na, 1;12;/ 3 l;li(],

ﬁi, Pos Pw, Pn and p. In addition, as in the previous model, the current density i, which is used in
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Eq. 8 and in the boundary conditions Eqs. 16, 17, 47 and 48, is considered as a variable just at the
boundary to the reaction layer.

The comparison of Eqgs. 1 to 4 with Eqgs. 18 to 23 shows, that the model with the MTPM as transport
mechanism is more elaborate as the one with Fick’s law.

The dependent variables for the MTPM are listed in Tab. 5

For the transport equations the following partially variable dependend parameters are needed. All
new parameters within the MTPM are listed in Table 6.

The binary diffusion coefficients Djy in the continuum in [m? s=1] are ([5]):

7 _gM;+M
0.01013 77, /1 - 1073 S~ ‘
Dji, = Jk=o0,w,n (28)

o [Vdf + Vd,%]

Eq. 28 is a numerical equation.
The binary diffusion coefficients in the porous medium Djy in [m? s~!] are calculated from the binary

diffusion coefficients in the continuum by multiplication with the structural parameter e(x)/7:

Dj, = if)l)jk i k=o0,w,n (29)

In the transport equations Eqs. 18 to 23 the following abbreviation is used:

1.75 3 M;+M
E(m) 0.01013 T 1-10-3 zvjijkk

(Djk -p) = T T Jk=o0,w,n (30)
T vaj + v
The effective permeabilities B; in [m? s™!] are according to [1]:
K (e
B, = DI, Vi T 1 b j=ow,n (31)

In Eq. 31 the following variable dependent parameters are needed:

The square roots of the relative molecular weights of the gas components v;:

In Eq. 32 the summation is done with the components k = o,w,n.
The total viscosity n in [Pa s] is (see [6]):

K
_ > ket PEMN My,

n (33)
Zszl PV M,
The Knudsen diffusion coefficients DKn; in [m? s~!] are:
de(z), . [2RT ,
DKnj = §T<T> o, j=o,w,n (34)
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Tab. 5: Dependent variables for the MTPM

parameter symbol unit
molar flux density of n, mol m~2 s~!
oxygen in x-direction

molar flux density of n mol m~2 s~*
oxygen in y-direction

molar  flux  density n, mol m~2 s™*
of water vapour in

x-direction

molar  flux  density n’, mol m~2 s™*
of water vapour in

y-direction

molar flux density of n mol m~2 s~1
nitrogen in x-direction

molar flux density of n’ mol m~2 s~}
nitrogen in y-direction

oxygen partial pressure Po Pa
water vapour partial Pw Pa
pressure

nitrogen partial pres- Pn Pa
sure

total pressure p Pa
current density i A m™2

L10
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The dimensionless Knudsen numbers K; are achieved by dividing the mean free path lengths A; by
the mean pore diameter 2 (r):

Aj .
Kj:—2<;> j=o,w,n (35)

The mean free path lenghts A; in [m] are calculated according to the kinetic theory of gases:

3RT
by M

A =1; j=o,w,n (36)

5

Boundary conditions

Below the boundary conditions for the MTPM are listed in short form. The current density i is

calculated with Eq. 8; the water vapour saturation pressure pS is calculated with Eq. 9.

e channel boundary (UC):

In the channel a constant pressure at air composition and given relative humidity ¢ is assumed:

vucC ch

pe = p (37)
P’ = er (38)
pye = ™" =L -yl (39)
P = 0™ =Y (-l (40)
e rib boundary (UR):
The rib is assumed as impermeable for the reaction gases:
PV = o (41)
PU = o (42)
Y = o (43)
e left (L) and right (R) boundary:
Symmetry boundary condition:
A (44)
A | (45)
R~ (46)

e reaction layer boundary (D):
Molar flux density according to Faraday’s law in dependence of the current density from eq. 8
and gas tight membrane for the nitrogen flow:

-y, D L .

n, = 5 (47)
. y,D o 7i .

Tk (48)
WP = 0 (49)

The parameters for the MTPM boundary conditions are the same as listed for the Fick’s law boundary

conditions.
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Tab. 6: Parameters for the calculation equations with the MTPM

L12

parameter symbol unit value source
Binary diffusion coeffi- | Djk, Djx [m? s71] calculated Egs. 28, 29
cients

Diffusion volume of Oq Vd, numerical eq. 16.6 [5] Da 35
Diffusion volume of Vdy, numerical eq. 12.7 [5] Da 35
H50 vapour

Diffusion volume of Ny Vd, numerical eq. 17.9 [5] Da 35
Effective  permeabili- B; [m? s71] calculated Eq. 31
ties

Square roots of the 2 [ calculated Eq. 32
relative molecular

weights

Total viscosity n [Pa s] calculated Eq. 33
Dynamic viscosity of Mo [Pa s] 22.53-107% at 60 ° C [5] Db 71
O

Dynamic viscosity of Nw [Pa ] 12.27-107% at 100 ° C [5] Db 8
H50 vapour

Dynamic viscosity of Mn [Pa ] 19.396 - 106 at 60 °C | [5] Db 37
Ny

Molecular weight of O M, [kg mol 1] 2-16.0-1073

Molecular weight of My, [kg mol 1] (2-1.008 +16.0) - 1073

H,0

Molecular weight of Ny M, [kg mol~1] 2.14.01-1073

Knudsen diffusion co- | DKn; [m?s™1] calculated Eq. 34
efficients

slip factor w [ T [4]
Knudsen numbers K; [ calculated Eq. 35
Mean free path lengths Aj [m] calculated Eq. 36
Mean transport pore (r) [m] 38.5-1076 measured
radius

Pore radii distribution (r?) [m?] 1.826 - 10710 measured




Discussion of the results

In the following calculation results of variables within the GDL direct at the reaction layer are
compared for Fick’s law and the MTPM as transport mechanism. For the results the standard
parameters listed above were used (cell voltage 0.6 V) unless otherwise noted. According to Fig. 1
the x discretization starts in the middle of the channel and ends in the middle of the rib. All shown
plots were calculated with a grid of 200x201 cells, which was found to result in acceptable calculation

€rrors.

In Fig. 3 the oxygen partial pressure is plotted. As expected the oxygen degrades from the channel
to the rib. With the MTPM the oxygen consumption is lower as with Fick’s law. The maximum
deviation of both models results is approximately 15 %.

In Fig. 4 the water vapour partial pressure is shown. The MTPM leads to lower water vapour
partial pressure in the GDL. The maximum deviation according to Fick’s law is approximately 15 %.
The water vapour saturation pressure for the standard cell temperature of 60 °C' is approximately
2.10* Pa. Thus as can be seen from Fig. 4 the water vapour partial pressure exceeds the water vapour
saturation pressure under the rib, which effect is stronger with Fick’s law as transport mechanism.
This means, that under the rib water will condense and liquid water could block the transport pores
for the gas transport. In the current model condensation and evaporation aren’t considered and it
is assumed, that all the product water has to be transported through the GDL in the gas phase,
although the saturation pressure is exceeded. As the result in Fig. 4 shows in a further model also

phase changes should be included.

In Fig. 5 the current density distribution at the reaction layer is plotted. As expected, the current
density drops strongly beneath the ribs and there is an inhomogenous current density distribution
between the channel and the rib. Within this model just the descent of the oxygen partial pressure
causes the drop of the current density in Eq. 8 and two phase effects are neglected, which would
enforce the inhomogenity of the current density distribution, as could be seen from Fig. 4. Because of
the higher oxygen partial pressure with the MTPM also the current density is higher. The maximal
deviation with both models is approximately 10 %.

In fuel cell practice the voltage current density characteristic (U-i-plot) of a fuel cell is often used to

evaluate it’s behaviour. So some points of an U-i-plot were calculated and shown in Fig. 6.

From Fig. 6 it could be seen, that the deviation between Fick’s law and the MTPM as transport
mechanism rises with rising current density. Because of convergence problems it wasn’t possible to

calculate for lower cell voltages, i.e. higher current densities.
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Fig. 3: Oxygen partial pressure at the reaction layer for standard conditions
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Conclusion

A two dimensional PEMFC model was examined and the gas transport was modelled with two

material transport mechanisms: the simple Fick’s diffusion law and the more detailed MTPM.

As one result the maximum deviations of the calculations with both models were found to be in the
range of 10 to 15 %. This has to be considered, when using the simple Fick’s law instead of the
MTPM. Thus for qualitative calculations the simple Fick’s law could be sufficient. For more precisely

calculations the MTPM has to be used or the Fick’s law has to be corrected in an adequate way.

A further result of the calculation within this project is, that at the low operation temperature of
60 °C already at a cell potential of 0.6 V the water vapour saturation pressure could be exceeded
beneath the flowfield ribs and thus liquid water could limit the material transport under the ribs and

therefore two phase effects should be considered in model refinement.
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The SOFC II.1

The Solid Oxide Fuel Cell (SOFC)

A major advantage of the solid oxide fuel cell (SOFC) in comparison to other fuel cell types
is that it can be operated directly on practical hydrocarbon fuels without the need for a
complex and cost intensive external fuel processing unit. Internal reforming allows the direct
conversion of hydrocarbon fuel into hydrogen and carbon monoxide at the catalytic active
anode. As feed natural gas is preferred because of the high availability and the easy handling
of the gaseous components. In order to understand the processes which occur during internal
reforming on the anode and to be able to identify processes which limit the conversion of the
main component methane, it is necessary to develop multidimensional mathematical models.

The model and the PDE’s

In this study a 2D-model is developed considering the processes in the anode and in the anode
gas channel of a single cell. Figure 1 shows the calculation region.

da

dx gas channel

I‘

Ik

—»

Gas flow

Fig. 1. Sketch: Calculation region
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The structural and the geometry parameters according to fig.1 are given for the base case in
tab. 1

Tab. 1. Structural and geometry parameters (base case)

parameter symbol unit value source
thickness of the da m 50-10° IWE
anode

height of the dx m 1-10” IWE
anode gas channel

length  of the Ik m 35107 IWE
anode gas channel

The model assumptions are as follows:

Steady state and ideal gas behaviour are assumed. The (single) cell is mounted in a furnace.
Temperature gradients that might occur by the heat consumption of the reforming reaction are
flattened by radiation from the surface of the furnace walls. Therefore the temperature is
considered to be uniform in the cell and energy balances are not included in this version of the
model. It is assumed that the influence of axial dispersion is low compared to the convective
flow in x-direction [1]. For simplification, axial dispersion is therefore not considered in this
model. For diffusion, Fick’s law is applied. The area, in which the electrochemical reactions
occur is restricted to a thin layer at the interface anode-electrolyte [2]. Therefore, these
reactions are considered to take place only at the boundary anode-electrolyte.

Below the governing equations and boundary conditions for the anode gas channel are listed

Anode gas channel

e Species balances

0 Di as A,
B a(pK'ux,K'Yi,K)_{_a(pK.uy,K'Yi’K):l_i_ [ ; %

1)-(4
& % (D-(4)
where 1 = CHy, CO, H,, H,O
e Equation of continuity
G(PK-UXWK)_F(?(PK-US,,K):O (5)

OX oy

e Navier-Stokes equations
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au ou ou ou ou ou ou
,0' uXK X, K +uyK X, K :_apK +£ ﬂ 2 X, K _g' X, K + y.K +i ﬂ X, K + y.K
T OX ooy oX  OX ox 3 ox oy oy oy OX

(6)
ofu, ou, o, Uy ) _ 0P +i i 2.6uy,K 2 (0u +auy,K +£ 4 ou, +8uy,K
oX ooy oy oy oy 3| ox oy OX oy OX

(7)

e Dalton’s law

DYk =1 (8)

One obtains 7 PDEs and one algebraic equation for the 8 dependent variables in the anode gas

channel: px, Uxk, Uyk, Yeu, k> Yook > Yh, k> Yeo,« ald Yy o . The independent variables are x

and y.
The Diffusion coefficient D;gas of component 1 in the gas mixture is calculated by the Wilke
approach [2]:

1-Y,
i,gas m 1= CH,4, CO, H,, CO,, H,O 9

j#i

The binary diffusion coefficients Dj; are obtained by using the theory of Chapman and
Enskong (see tab 2).

Tab. 2. Binary Diffusion coefficients Dy/ [m?/s], 950 °C [3]

CH4 CcO H, CO, H,O
CH4 - 2,34e-4 | 7,46e-4 | 1,95¢-4 | 291e-4
CO 2,34e-4 - 8,05e-2 | 1,75e-3 | 2,80e-2
H, 7,46e-4 | 8,05e-4 - 6,91e-3 | 9,53e-2
CO, 1,95e-4 | 1,75¢-4 | 6,91e-4 - 2,28e-2
H,O 291e-4 | 2,80e-4 | 9,53¢e-4 | 2,28¢-4 -

For the calculation of the fluid density the ideal gas law is applied:

p . 3
= in (kg/m
P=R T (kg/m”)

M

The viscosity of the gas mixture is obtained via the equation (see [3])

where R, =

i

andi= CH4, CO, Hz, COQ, HQO

_R
SV

(10)
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YM . -7 ..
=» ———— 1n 1-10" Pa's 1, =CH4, CO, H,, CO,, H,O
K ZZYj\Pij J 4 2 2, H2
j

with ¥, = ' 1, =CHy, CO, H,, CO,, H,O

The viscosity of the single components is calculated by the expression [3]:

JM.T
n =844 "1 in 1:107 Pa-s

2
G;

v,i

with Q,, = 1.16145 N 0.52487 N 2.162 i =CH., CO, H, COn, H,0

kT
— exp(0.773kTJ exp(2.438ij
& €. €.

i

1 1

In Tab. 3 the dependent variables of the anode gas channel are listed

Tab.3. Dependent variables (anode gas channel)

Parameter symbol units
flow velocity in x-direction Ux K ms”
flow velocity in y-direction Uy, ms’
mole fraction of methane YCH4,K -
mole fraction of carbon y
. CO,K -

monoxide
mole fraction of hydrogen Y, k -
mole fraction of carbon v

.. Co, K -
dioxide
mole fraction of steam Y0k -
Pressure Pk Pa

Boundary conditions.

e Rib boundary (y=0)

1.4

(11)

(12)

(13)

(14)
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The rib is assumed to be impermeable for gases
U =0

oY, .
W —0 i=CH,, CO, H,, CO,, H,O

ux,K = 0

e Channel boundary ( y=dk)

6( Pk 'Yi,K) _ Def a( pA'Yi,A)
i,gas RTay — Hi,gas RTay

Uy,K = Uy’A
Yi,K :Yi,A

Pk = Pa

e Left boundary (x=0)

A parabolic velocity profile is assumed at the inlet of the anode gas channel

Y, =Y° i=CHy, CO, H, CO, H,O

i
U =0
4'UX,K,max

— 2 X, K ,max
UX,K - d2 y +4 d
K K

y

This is the parabolic entry profile with uyx x max in the middle of the channel

e Right boundary (x=lg, )

pK:patm

1=CH,4, CO, H,, CO,, H,O

IL.5

(15)

(16-20)

(21)

(22)-(25)
(26)

(27)-(32)
(33)

(34)-(38)
(39)

(40)

(41)

The other variables at the outlet of the anode gas channel are calculated by the governing

equations

Tab.4. Parameters for the governing equations and the boundary conditions (anode gas

channel)
parameter symbol | units value source
Diffusion cc?e?fﬁ01ent of D s m? ! eq. (9) 3]
component i in the gas
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mixture
Binary 'Diffusion D, s tab 2 [3]
coefficients
M 107 16 3
Molar mass of methane cha 3]
kg/mol
Molar mass of carbon Mco 10° 28 [3]
monoxide kg/mol
Molar mass of carbon Mcoz 107 44 [3]
dioxide kg/mol
M 107 2 3
Molar mass of hydrogen e 3]
kg/mol
M 107 18 3
Molar mass of steam H20 3]
kg/mol
Maximum flow velocity
in x-direction at inlet of U’ max ms’! 0.5 chosen
gas channel
Molar fraction of methane o chosen
. Y, - 0.33
at channel inlet 4
Molar fraction of carbon vo 0 chosen
monoxide at channel inlet o i
Molar fraction ofhydrogen o chosen
. Yy - 0
at channel inlet 2
Molar fraction of carbon yo 0 chosen
dioxide at channel inlet e
Molar fr?ction of steam at YHoO ] 0.67 chosen
channel inlet ’
Hard sphere diameter of GCH4 3.758 A [3]
methane
Hard sphere diameter of Gco 3.69 A [3]
carbon monoxide
Hard sphere diameter of 6co2 3.941 A [3]
carbon dioxide
Hard sphere diameter of O 2.827 A [3]
hydrogen
Hard sphere diameter of OH20 2.641 A [3]
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steam

Lennard-Jones-Parameter | ecus/k 148.6 [3]
of methane

Lennard-Jones-Parameter | gco/k 91.7 K [3]
of carbon monoxide

Lennard-Jones-Parameter | gcoo/k | 195.2 K [3]
of carbon dioxide

Lennard-Jones-Parameter em/’k 59.7 K [3]
of hydrogen

Lennard-Jones-Parameter | gpo/k | 809.1 K [3]
of steam

Anode

Below the governing equations for the anode are listed.

e Species balances

ol D as(pACHA) ol D as(pACHA)
) (pA Ve A) (pA Vo A) ) { CH,.g R-Toy J+ [ CH,.g R-Tox o
R-Tox R-Toy oy ox e

(42)

a(pA'YCOA)J [ a(pA COA)]

0| D& e — "L 8| DEY

_ a(pA XA COA) _ (pA YA~ COA) + [ o R-Toy + - R-Tox 4r.. —r=0
R-Tox R-Toy oy ox e

(43)

+ +3r, +r,=0
R-Tox oy oX cH,

(44)

8{ Dlif;gas WJ a{ Daf;gas WJ
_la(pA XA HzA):I_l:a(pA'uy,A'YHz,A):l_i_ oy X

oy oX )
(45)

a(pA CO,, ) a(pA co,, )
o| DN s oA | O D s A
ten ) e 15806 57

- + +r,=0
[ R-Tox R-Toy
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off a(pA'YHZO,A)} 8{ off a(pA‘YHzo,A)]

0 DHZO,gas— DH,O,gas
_[a(pA.uX’A.YHZO’A)]_[a(pA'uy,A'YHZO,A)]J’_ [ RTay N 2 R-Tox y

R-Tox R-Toy dy ox CH,
-r,=0
(46)

e Darcy’s law
Py __ M 4
“Fa__ B 7
ox ok, 47
Py __ M
Pa__H 48
oy k" 49

e Dalton’s law
2 Yia=1 (49)

One obtains 7 PDEs and one algebraic equation for the 8 dependent variables in the anode:
Ux,A, Uy.As PAs Yo, as Yeoas Yh, as Yeo,aUnd Yy o .. The independent variables are x and y.

The effective diffusion coefficients Deffi,gas are calculated from the diffusion coefficient D; g4
and from the Knudsen Diffusion coefficient D¥; by the equation

1 1
D 'eff - £ D + D-K (50)
T

i,gas . i
i,gas

The porosity € of the anode is estimated to be 30%. For the tortuosity t a value of 3 is

assumed.
The reactions occurring on the (inner) anode surface are the reforming reaction

CHy + Hb O - CO+ 3H, (51)
which is accompanied by the shift reaction
CO + HQO: H2 + C02 (52)

For the rate of the reforming reaction on a Ni/YSZ-cermet an expression is employed which

was found by [4]:
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mol 12 -57840 [ﬁ
rCH4 :2'45|:m3S Pa1,z}(pA'YCH4) exp( RT o j (53)

For the shift reaction, a volumetric expression is used which is calculated from the
experimental results presented in [5]:

- -
r, =0.0437 [#‘;ﬂs] -exp (—%J pIiYCO’AYHZO,A —-0.425 [m‘“—"l] -exp (—%J piYCOZ AYi A

3pa’s

R-T R-T
(54)
In tab. 5 the dependent variables of the anode are listed
Tab.5. Dependent variables (anode)
parameter symbol units
flow velocity in x-direction Ux A ms’!
flow velocity in y-direction Uy,A ms’
mole fraction of methane YCH4, A -
mole fraction of carbon
. YCO,A -
monoxide
mole fraction of hydrogen Yi, A -
mole fraction of carbon y
. . CO,.A -
dioxide
mole fraction of steam YHQO, A -
pressure Pa Pa
Below the relevant boundary conditions for the anode are listed.
Boundary conditions
e Left boundary ( x=0)
The left boundary is assumed to be permeable for the gases.
U ,=0 (55)
Yi=Y:" i=CH,, CO, H,, CO,, H,O (56)-(60)

e Interface anode-electrolyte (y = da+dx)
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oY,
e _ g 61)
oy
eff a( pAYCO) _ jCO (62)

S R.Tay  2F

o OPNe) (63)
Ot R.Toy  2F

o O(Pio)

_ AL 64
H,0,gas R Té’y E ( )
e 9(PaYeo,) _ o (65)
€29 R.Toy 2F
e Right boundary (x = Ix)
PA=Patm
(66)

The other variables at the outlet of the anode gas channel are calculated by the governing
equations

The current densities for H, and CO, ji, and jco, respectively, are calculated from the cell
voltage U (eq. (67)-(68)). The equivalent circuit diagram which forms the basis of the model
is depicted in figure 2.

‘ Elektrolyt |

Gaskanale

U kath
ohm
IH, Jeo
Ran,H; Ran,co

L

UNernst,H, T_f UNernst,CO

Fig. 2. Equivalent circuit diagram for the electrical processes in the SOFC [6]
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_ (U NernstH, -U ) Reo + (U NernstH, _UNemSt’CO ) ( Rom + Ry )

Ju =
b RA,HZ (Rohm +Ry ) + RA,H2 RA,CO + RA,CO ( Ronm + Re )

. UNernst,CO _UNernst,Hz + JH2 ) RA,HZ

Jeo =
RA,CO

II.11

(67)

(68)

The expression for the area-specific polarization resistance of Ha, R 2, 1s of the form (see

[1D)
1

AH,

=o.213-109[A/m2]

RT P

[_

1.1x10°[J /mol]

RT

Jory

(69)

For CO, the expression is modified so that R co/Ram =2.6 which corresponds to the mean

value obtained by Matsuzaki and Yasuda [7]:

1

RA,CO

:O.82-108[A/m2]2—exp(—

1.1x10°[J /mol]

RT

}(YCO,A)“S

(70)

For the cathode, the expression for the area specific polarization resistance is taken from [1]:

1

K

4F
14910 A/m? | 2 exp| -
R LA 27 eXp(

1.6x10°[J /mol]

RT

J (0.21)"%

(71)

The Nernst voltages are calculated according to equations (72) and (73), respectively

U =U,

RT lnYHz,A\/sz

Nernst,H, — ™~ Zelle,H, + 2F

YHZO,A

RT . Yeon Yo2
n

110
U Nernst,CO — UZeIIe,CO + 2F 1

Y002 A

The current density j is calculated by the equation

J=lco + Ju,

(72)

(73)

(74)

Tab.4. Parameters for the governing equations and the boundary conditions (anode)

parameter symbol units value source

Effective Diffusion coefficient

of component 1 in the gas ngas m’s” Eq. (50) IWE

mixture

Knudsen diffusion coefficient of -

methane DX cia m’s 8.0107° calculated

Knudsen diffusion coefficient of " - ] leulated
- calculate

carbon monoxide D" co m-s 6.20 10

11
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Knudsen diffusion coefficient of .
hydrogen DK ™ m-s 0.0002399 calculated
Knudsen diffusion coefficient of .
carbon dioxide D* co2 s 5.12107 calculated
Knudsen diffusion coefficient of -
steam DX 10 m?s 8.010° calculated
Faraday constant F A s mol™ 96485.4 -
Current density produced by . )
A Eq. (67 -
elecrochem. CO-Oxidation Jeo m a- (67)
Current density produced by . )
A Eq. (68 -
elecrochem. H,-Oxidation I, m a. (68)
Pressure loss coefficient kp m’ 8.510™" Fz)
Atmospheric pressure Patm Pa 101325 -
Universal gas constant R Jmol K! 8.3144 -
Area-specific Polarization
R om’ Eq (70
resistance of el.CO-oxidation Ao m a(70)
Area-specific Polarization
R om’ Eq (69
resistance of el.H,-oxidation AR, m q(69)
Area-specific Polarization )
R Q Eq (71
resistance of el.O,-reduction K m a(7h)
Area- ific Ohm’ ist
forre; ;Is)ezm ic Ohm’s resistance Re O’ 9.78 10° IWE
temperature K 1223 chosen
Cell voltage U A% 0.7 chosen
Nernst voltage of CO U ternst.co Vv Eq (73)
Nernst voltage of H, U Nernst i, A% Eq (72)
N t Volt t standard o
Nemavolssesandrd | G | 09145 | calulated
N t Volt t standard o
- ;’ afle o sanddt Ul e, v 0.9342 | calculated
pressure for H
1:;[1;)}12 iaction of oxygen at Yo, ] 021 chosen
Porosity of the anode € - 0.3 chosen
tortuosity of the anode T - 3 chosen

12
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Parameter Variation

For the base case an anode thickness of 50um was assumed. This anode thickness is a realistic
value for electrolyte supported cells. In anode supported cells the anode thickness has to be
higher. Therefore this value should be varied from 50pm to 2mm in order to investigate
transport limitations in the porous anode in dependence of the anode thickness. For the anodes
with a thickness between 0.5 and 2mm it was assumed that the open porosity is increased.
Therefore for the ratio of porosity to tortuosity &/t a value of 0.21 is supposed [5]. Because of
the reduced electrolyte thickness of anode supported cells, the area-specific ohmic resistance
Ronm 18 set to 1.63 10°° Q m? in these cases.

Results and Discussion

In Fig. 3 the results of the molar fractions in the anode gas channel are depicted for the base
case (anode thickness of 50 pm). The strong decrease of the methane and steam fractions in
flow direction is due to the reforming reaction taking place in the anode. Accordingly, the
fractions of hydrogen and carbon monoxide increase along the anode gas channel. Carbon
dioxide is produced by the shift reaction and the electrochemical oxidation of CO. It can be
seen that the molar fractions do not vary over the height of the anode gas channel so that
diffusion in the channel is fast enough to transport the species to the anode surface or from the
anode surface to the channel, respectively.

Channel Channel
Y-CH4 ¥-H2O0

0.0001

0000 - 0000 .
0000 0.005 0.010 0015 0020 0025 0.030 0035 0.000 0.005 0010 0015 x 0.020 0025 0.030 0035
X

a) b)
Channel Channel
Y-H2 Y-co

0.0010

0.0008
0.0008
0.0007
0.0006
= 0.0005
0.0004
0.0003
0.0002

0.0001
|

0.000 0.005 0.010 0015 x 0020 0025 0.030 0.035 0.000 0.005 0.010 0015 x 0020 0025 0.030 0.035

c) d)
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Channel
Y-co2

0.0010 I 1
0080
0.000% 0058
0050
0048
0.0008 0.040
0035
0.0007 0030
0025
0020
0.0006 0018
oot
> 00005 0005
0.0004
0.0003
00002
0.0001
0.0000

0.000 0.005 0.010 0015 x 0020 0025 0030 0035

d)

Fig 3. molar fractions of the components in the anode gas channel (base case)

In figure 4 the molar fractions of the components in the anode are shown for the base case.

Anode Anode
Y-CH4 Y-H20

00005

0.00104

0.00103 0.00103
= =

0.00102 0.00102
o001

o001

0.00100 0.00100

0000 0005 0010 0015 0020 0025 0030 0035 0000 0005 0010 0015 0020 0025 0030 0035
a) b)
Anode Anode
Y-H2 Y-Cco
045 AL
] 040 014
035 012
0.00104 030 010
025 008
020 008
015 [-I-1]
090 o0z
0.00103 008
>
0.00102
o000 o000
0.00100 0.00100 i
0000 0005 0010 0015 0020 0025 0030 0035 0000 0005 0010 0015 0020 0025 0030 0035
Anode
Y-Co2
0.00105
oor
005

0.00104

0.00103
=

0.00102

o000

0.00100 e
0000 0005 0010 OUIEKUDZU 0035 0030 0035

d)

Fig 4. molar fractions of the components in the anode (base case)
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The gradient of the molar fractions in x-direction is similar to the gradient in the anode gas
channel. The low variation of the molar fractions in y-direction indicates that no diffusion
limitations occur in the anode with a thickness of 50 pm.

As a result from the distribution of the species in the anode, the Nernst voltage of H, increases
along the anode length, whereas the Nernst voltage of CO decreases because the ratio of CO
to CO, decreases in x-direction (Fig. 5). The distribution of the current densities ju and jco is
according to the distribution of the Nernst voltages. The mean value of the current density j of
5615 A/m’ is high compared to measured values which are around 4000 A/m” . This indicates
that in further work the electrochemical parameters of the model should be adjusted to results
obtained by own experiments

Unernst 12 ; Unemst.co

jHz o ico

fmaan = 5614.98 ]
0000

Fig 5. Nernst voltages and current densities ju, jco and j (base case)

In the remainder the results of the parameter variation are presented. Exemplarily the
discussion is confined to cells with an anode thickness of 2mm. Fig. 6 shows the molar
fractions of the components in the anode for this case. In evidence the reforming reaction
proceeds more quickly in x-direction because of the higher amount of Nickel present in the
anode compared to the base case. For every component high gradients occur in y-direction
which limit the chemical and electrochemical conversions. The CO, content in the upper left
corner seems to be too high. Whether this value originates from a numerical error or a bad

15
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scaled parameter of the electrochemical CO oxidation or of the shift reaction remains to be
investigated in further work.

Anode Anode

Y-CH4 Y-H20

0000 0005 0010 OUIEXDDJ‘D 0025 0030 0000 0005 0010 OEHEXEIDJ‘D 0g25 0030

a) b)
Anode Anode
0.0032 Y-co
0.0030
0ss o1a
050 0.0028 ™ oe
045 014
040 0.0026 012
035 010
30 00024 008

o
015 0.0022 ooz

008 0.0020

0.0018 0.0018
00018 oome
0.0014 0.0014
0.0012 0.0012

00010 :
0000 0005 0010 0015 x 0020 0025 0030

c) d)

0.0010
0.000 0005 0010 0015 XDD?D 0025 0030

% 3
0,001 M=l
0000 000

0020 0025 0030

d)
Fig 6. molar fractions of the components in the anode (2mm anode)

5 0010 0015
x

Fig. 7 shows the Nernst voltages and current densities of the anode supported cell with 2mm
anode. Because of the thinner electrolyte a higher current density can be achieved compared
to electrolyte supported cells. The high increase of Unemstco compared to the base case, can
be attributed to the high rate of the reforming reaction which produces CO very fast and
therefore leads to an increase in the ratio of yco/ycoz in the first quarter of the cell.
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i Unernst 12 i Uniemst,co

8 ™

y: K—\ s

3 o | | | | | T

o b |
° s | ! ! ! 1 |
0od o 015 120 0 -] 5 0000 0008 oo s aom ooz 000 ms
a) b)
Inz ico

EEREEE
&

c) d)

Fig 7. Nernst voltages and current densities ju», jco and j (2mm anode)

Conclusions

The internal reforming process of methane on a Ni/YSZ anode was successfully simulated
with a 2D model. The impact of the anode thickness was investigated and it could be shown
that no diffusion limitations occur in an electrolyte supported cell. In anode supported cells
with 2mm anode thickness the reforming reaction proceeds faster than in an electrolyte
supported cell but the chemical and electrochemical processes are limited by pore diffusion in
the anode. Because of the thinner electrolyte in anode supported cells, the results of the
simulation show that a higher current density can be achieved in an anode supported cell,
compared to an electrolyte supported cell.
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Part |11
Thenumerical solution withthe FDEM

1 TheFDEM program package

A detailed report on the FDEM (Finite Difference Element Method) program package isin
preparation parallel to this report [1]. There the basic method is described together with
three application examples. The third example (Chapter 3.4) is of particular interest with
respect to the present report: it isthe oxygen diffusion at the cathode side of a PEM fuel cell
and hasfor thefirst time demonstrated the suitability of FDEM for the numerical simulation
of fuel célls.

In the following we give a short outline of FDEM. FDEM [2] is a program package
developed at the Computer Center of the University of Karlsruhe that solves by a finite
difference method arbitrary nonlinear systems of PDESs (partial differential equations) under
arbitrary nonlinear BCs (boundary conditions) on an unstructured FEM grid. The 2-D or
3-D PDEs must be of dliptic type (boundary value problem) or parabolic type (initial-
boundary value problem). Herethe FEM grid serves only for the structuring of the space, i.e.
the determination of the neighbouring nodes. In 2-D we use triangles, in 3-D tetrahedrons.
For each node we generate with a sophisticated algorithm by means of neighbouring nodes
difference formulas of consistency order ¢, optionally ¢ = 2 or ¢ = 4 or ¢ = 6. By the use
of formulas of consistency order ¢+ 2 an estimate of the discretization error is obtained. For
parabolic equations we use in time direction (for stability reasons) fully implicit difference
formulas of consistency order p < 6, with error estimate by formulas of order p + 1.
This means that one gets the exact solution if in the space direction the solution of the
PDEs is a polynomial of order ¢ and in time direction of order p. Thisis used to test the
implementation of the PDEsto be solved.

The knowledge of the error permits a selfadaptation of the solution method. In time di-
rection the order p and the time step are always automatically optimized. In space direction
the solution can be adapted to arequested accuracy by grid refinement (bisection of triangle
or tetrahedron edges). There is also possible an optimization of the consistency order ¢
individually for each node by the comparison of the discretization errors of the different
ordersq = 2,4, 6.

For many technical applications the solution domain is composed from subdomains in
which hold different PDESs, e.g. anode material and hydrogen channel in a SOFC. It is not
possible to apply difference formulas across the boundaries of the subdomains. Therefore
we have introduced in FDEM *“dividing lines’ (which are in 3-D in effect dividing areas,
but we call them nevertheless formally dividing lines). These dividing lines are internal
boundaries over which we cannot differentiate. The solutions on both sides of the dividing
lines are coupled by coupling conditions (CCs). Thus one gets over the whole domain
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(composed of several subdomains) aglobal solution with global error estimate. The meshes
on both sides of a dividing line do not have to coincide, one may have non-matching grids.
By interpolation with the consistency order ¢ that holds also for the difference formulas,
the order ¢ is maintained also for the CCs and therefore for the whole coupled domain.
Because of the possibility of non-matching grid, in the subdomains an independent local
grid refinement for the adaptation of the accuracy can be executed. The non-matching grid
also allows arelative movement of the subdomains to each other.

Because FDEM must solve arbitrary nonlinear systems of PDESs, the linearization is
executed by the Newton-Raphson method. In order to make the method as robust as possible
we check after each iteration step if the defect has decreased. If this does not hold we try
with a self-adapted relaxation factor to reduce the defect (then there is only linear instead
of quadratic convergence). For very good convergence we use (optionally) the simplified
Newton method with constant matrix to save computation time. The Newton method is
terminated if the Newton defect is smaller than a corresponding discretization error term,
that no unnecessary digits are computed.

From the discretization of PDES result very large and sparse linear systems of equa-
tions. These are solved by the LINSOL program package that has also been developed at
the Computer Center of the University of Karlsruhe. LINSOL [3] comprises CG (conju-
gate gradient) methods of quite different types for the iterative solution, between which an
automatic optimization in a polya gorithm can be executed. LINSOL also contains a direct
solver with optionally reduced fill-in that can be used as preconditioner for the iterative
solvers. Thefill-in is reduced by different bandwidth optimizers which leads above all for
3-D problems to a considerable saving of computation time and storage space.

FDEM and LINSOL have been developed from the beginning for efficient data struc-
tures on distributed memory parallel computers (in contrast to shared memory computers).
Here the distribution of the data to the processors plays the decisive role. We use a 1-D
domain decomposition that can be executed automatically and runs over dividing lines. For
grid refinement anew distribution of the datais executed after each refinement step. The ex-
change of the data between the processors takes place by the quasi standard MPI (message
passing interface). Thus FDEM is running efficiently on shared and distributed memory
computers. FDEM has been tested on many different types of parallel computers al over
Germany.

FDEM is aprogram package for the solution of PDEs that has unique properties. To us
no other program package is known that unifiesin a single code comparable properties con-
cerning the flexibility of the solution method, of the solution domain, of the error estimate
and of the parall€elization.

FDEM is a black box solver, i.e. it solves an arbitrary nonlinear system of PDEs and
boundary conditions (BCs) on an arbitrary domain. The domain can be composed from
subdomains that are separated by dividing lines and whose solutions are coupled by CCs.
Which PDEs under which BCs and CCs are to be solved is determined by the entering of
the PDEs, BCs and CCs as Fortran code into prescibed program frames. The domain with
its boundaries and dividing lines is read from afile as 2-D or 3-D grid according to given
rules.

Because we assume nonlinear PDESs and solve them by the Newton-Raphson method,
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also the Jacobi matrices for the PDEs, BCs and CCs must be entered as Fortran code into
program frames. The Jacobi matrices reflect the dependence of the PDEs, BCs and CCs
from their arguments. For strongly nested nonlinear systems of PDES the formulation and
implementation of the Jacobi matrices is the main part of the task.

For the simulation of afuel cell one will start at first with a simplified 2-D model to get
insight in the numerical behaviour of the PDES. Then the 2-D model isrefined as necessary.
Here one will at first solve the stationary equations, then eventually the non-stationary ones.
With the thus gained experiences one will try to implement a simplified, later arefined 3-D
model. The transition from 2-D to 3-D is with respect to computation time and above all
to the necessary storage space a very large step. The transition from the stationary to the
non-stationary problem results only in acorresponding factor in computation time, 100 time
steps need 100 times the computation time of a single stationary step.

The above mentioned procedure would be aresearch program for several years. Because
of the relatively short available time for the project (it was intended as an intermediate
financing to gain experience and prepare a larger cooperation project) only stationary 2-D
fuel cells were simulated. However, the experiences gained for the formulation of the many
parameters in the system of PDESs for the different types of fuel cells are very promissing
and prepare the research direction for further more sophiscated models of fuel cells.

2 Thenumerical solution of the PEMFC PDEs

The model and the PDEs for PEMFCs have been presented in Part |. We refer to equations
inPart I, e.g. for equation (1), by 1(1), similarly for figures and tables.

Fig. 1 shows the domain of solution. It is a section of the GDL (gas diffusion layer).
ThisisFig. |1 turned upside down so that we have the x-,y-coordanate system in the usual
way. The performance of the PEMFC is determined by activities in the GDL on the cathode
side, i.e. on the oxygen side. In the upper part of Fig. 1 we see the domain of solution cut
out of thewhole GDL so that itsleft and right boundaries are symmetry lines with vanishing
derivatives in z-direction, and its upper boundary is the reaction layer. The left half of the
lower boundary is open to the channel with oxygen, the right half is closed by therib. The
oxygen is flowing in z-direction perpendicular to the x-,y-plane. The lower part of Fig. 1
shows the domain of solution with more details and gives the numbering of the different
types of boundaries as we use them in the coding.

We got basically two models for the PEMFC from the ZSW, first a simple model which
was later, after the investigation of the results, refined to a more complicated model with a
more sophisticated condition at the reaction layer (Tafel equation). Here we report only on
the latter refined model.

Concerning the diffusion model we got from ZSW the equations with the simple model
of Ficks, equations 1(1)-1(6) for 6 variables, we call this model ZSW3. Then we got a
model with a more sophisticated MTPM (Mean Transport Pore Model) transport mecha-
nism, equations 1(18)—(27) for 10 variables, we call this model ZSW4. This is a much
more complicated model concerning the implementation in FDEM. Therefore we discuss
in this report only the ZSW4 model.
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Table 1. Structural and geometry parameters.

parameter Symbol name
English | German | in code
thickness of GDL tapr dGDL dGDLc
width of channel c k ke
width of rib r s sc

We got from the ZSW at first a report with the PDEs and BCs in German and for
these notations we wrote the code. Later we got the English version. Unfortunately, ZSW
has changed the symbols for some parameters so that they fitted to their English names.
Therefore we give the symbols for the parameters of the English version, of the German
version and additionally the name of the parameter in the Fortran code which usually fitsto
the German name.

Table 2: Dependent variables for node i, mfd means molar flux density.

no. parameter symbol | namein code
1 mfd of oxygen in z-dir. ne u(i,1)
2 mfd of oxygen in y-dir. ny u@i,2)
3 | mfd of water vapour in z-dir. ny u(i,3)
4 | mfd of water vapour in y-dir. iy u(i,4)
5 mfd of nitrogen in z-dir. ny u(i,5)
6 mfd of nitrogen in y-dir. 4 u(i,6)
7 oxygen partial pressure Do u(i,7)
8 | water vapour partial pressure P u(i,8)
9 nitrogen partial pressure Dn u(i,9)
10 total pressure P u(i,10)
11 current density i u(i,11)

Table 1 gives the structural and geometry parameters of Table I 1. We do not repeat here
the units and values. Table 2 which corresponds to Table I5 gives the dependent variables
for ZSW4. In the black-box solver FDEM the variables for node ¢ and solution component j
are denoted by u(i,j). In the Fortran code many loops run over the node number i. If the
innermost loop runs over thefirst index of amultidimensional array, in Fortran the elements
are accessed contiguously which is the most efficient access. Therefore the node number ¢
isin thefirst position in u(i,j).

We can see from Table 2 that we have 11 dependent variables. One of them, namely the
current density 7 (do not confuse with node index i), plays avery specia role. It occurs only
in the boundary condition at the reaction layer. If it appeared explicitly we could express
it by the other variables. But it appears in a bad nonlinear way in the Tafel equation I(8).
Therefore we proceed as follows. we take the current density ¢ as a variable in the whole
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Table 3: Sequence of variables and equationsin the interior of the domain.

>
o

variable eguation

1(18) inform (2)
[(19) in similar form
1(20) in similar form
[(21) in similar form
1(22) in similar form

S SIS

O©CoO~NOOU D WNPRF
S

0 1(23) in similar form
Do 1(24)
Puw 1(25)
Pn 1(26)
10 P 1(27)
11 7 Q)

domain, but it has a physical meaning only at the reaction layer. In the other nodes the
current density ¢ plays the role of a dummy variable and there we put

i=0. D

This is the “PDE” and BC except for the nodes at the reaction layer (boundary [Cinl
Fig. 1).

As we can see at Table 2 we have 11 variables and therefore we need 11 eguations.
In Table 3 we show which equation is used in which position in the system of PDEs. As
FDEM requests the PDEsin the form P,u = 0 for PDE no. i, we take all termsto the |.h.s.
of the equations. Therefore I(18) is used in the form

1A Pwlly — Doy, Pnlly — Polty, +
DKn, Doy - p Dop - p
1 9po  po Op [ Bo | Bobu < _ﬁ) @
RT 0x RTpox DKn, Dy -p Y
| Bopn (1_&” Po O _
Dyn-p RTp oz

Similarly we write in equs. [(19)-1(27) al terms to the I.h.s.. Now these equations
can be coded in Fortran. Before we can write down code we must give to the coefficients
Fortran names. The coefficients that occur in the PDEs are compiled in Tables 13 and 16.
There are coefficients that are constants, their names will end by “c” for constant. There
are coeffients that depend on the node i and there are coefficients that depend on solution
component index j or j, k. In Tables 13 and |6 all information about the coefficientsisgiven.
Here we givein Table 4 only the Fortran names for the coefficients. In the PDES appear the
following coefficients D Kn; with (j) aso, w, n, thus DKno(i), DKnw(i), DKnn(i) for
each node i, Beff(j) similarly as Beffo(i), Beffw(i), Beffn(i). Asthe coefficients D; j,
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Table 4: Fortran names for the coefficients that occur for the PDEs.

Fortran Fortran

symbol | name || symbol | name
R Rc n eta
F Fc Mo etaoc
T Tc Nw etawc
€o €psoc Mn etanc
e(z) | epsxc(i) M, Moc
a aec M, Mwc
kf kfc M, Mnc
T tau DKnj | Dkn(j)
D; D(.,k) w omc
Vd, Vdo K; Kn(j)
Vdy, Vdw Aj lam(j)
Vd, Vdn <r> rmc
B, Beff(j) || < 2> | rmqgc
vj nue(j) RT RTc

with j and k as o, w, n appear only in the combination p - D; ;, we immediately compute
pDoy @ pDow(i), pDyy, 8 pDon(i) and pD,,, as pDwn(i) etc. These coefficients are
pre-computed for all nodes ¢ with the equations givenin Part I.

Before we present the coding for equ. (2) as an example, we must mention the following
items: we have introduced an additional coefficient RT as RTc because R and T' aways
appear in this combination. Derivatives of variables are denoted in the following way: the -
and y-derivatives of u(i,1) are denoted and naturally stored as ux (i, 1) and uy(i, 1). Second
derivatives (that do not appear in this section) would be denoted by uxxz(i, 1), uyy(i, 1),
uxy(i,1). With these notations and above all with the notations of Table 2 for the variables
the coding for equ. (2) looks like this (this is B u, the Newton residual of the first PDE in
the system) for node 7, denoted by p(i, 1):

p(i,1) = u(i,1)/Dkno(i) + (u(i, 8) * u(i,1) —
u(i, 7) * u(i,3)/pDow(i) + (u(i,9) * u(i, 1) —
u(i, 7) *u(i,5)/pDon(i) + ux(i,7)/RTc —
u(t,7) * uz(i, 10)/(RTc * u(i, 10)) + (3
Beffo(i) * (1D0/Dkno(i) + u(i,8) * (1D0 —
Beffw(i)/Beffo(i)/pDow(i) + u(i,9) *
(1D0 — Beffn(i)/Beffoli)) [pDon(i)) *
u(i,7) * ux(i, 10)/(RTc * u(i, 10)) .

This gives atouch how by mnemonic nomenclature it israther easy to translate equ. (2)
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Table 5: Fortran names for the coefficients that occur for the BCs.

Fortran Fortran
symbol | name || symbol | name
p°ht pKac v gammac
® phic Uy UOc
Yoo yokc U, UZc
10 ioc dmem | dmemc
Q aphac || Kmem | Kappac
n nc A Ac
orel | porefe B Bc
fo fvc C Cc
Py | pwsc

into Fortran code. These p(i,j) for equation j in node ¢ are pre-computed and in a later
step entered in a program frame that places them into the right position in the linear system
of equations for the computation of the Newton correction. The meaning of p(i, 1) is the
Newton residual or Newton defect of the first equation in the block of 11 equations for
nodei. Itisther.h.s. in the linear system of the computation of the Newton correction.

The next problem we want to discuss are the boundary conditions for the 4 types of
boundaries [fal CaflFig. 1. At the boundaries for some variables BCs are given. However,
we need at each boundary node 11 equations for the 11 variables. So we take the missing
equations quite naturally from the set of the interior equations, where no other conditions,
e.g. symmetry at boundary L[, _ale given.

The set of parameters that occur in the BCsis given in Table 14. We givein Table 5 the
Fortran names for these parameters.

The BCsfor the MTPM transport equations are given in equs. 1(37)—(49). We have to
supplement these equations by interior or other PDES (symmetry) so that we have aways
11 equations for the 11 variables. In contrast to Part | we do not use (upper) indices like
UC, UR for channel or rib because the index i of the node tells where the nodeis.

BCs at boundary [{0pen to channel): Here we need 7 with the Fortran name pwsc
pre-computed from I(9) which is resolved for 3 and gives a constant value. For a node i
on the boundary [Cweé have the BCs 1(37)—(40). Aswe need 11 BCsfor the 11 variables,
we supplement the conditions by the PDEs I(18)—(23) and equ. egrefequl. In Table 6 we
list the variables and the equations at boundary includes the left corner. In order to
show how such a BC is trandated to Fortran, we show the code for the equation for p, in
Table6 for anode ¢ on the boundary 1

p(4,9) = u(4,9) — (pKac — u(i,8)) * (1LD0 — yokc) (4

1.8



Table 6: Variables and equations for the BCs at boundary 1

>
o

variable eguation
1(18) inform (2)
[(19) in similar form

3. 3
[SESJeRS]

1

2

3 ne 1(20) in similar form

4 ne, [(21) in similar form

5 ny 1(22) in similar form

6 ny [(23) in similar form

7 Po Po — (pCh - pw)yg,g =0
8 Pw Pw— @ pi =0

9| pn |- " —pu)(1—yI¢)=0
10 D p—ph=0

11 1 (D)

Theright corner of boundary [CiS]'avoided” asthe separation between boundary [Cand
[islput between two nodes. If at the separation of the two boundaries a node would be
placed, there would be no unique BC for this node. However, this procedure means that the
geometrical location how far the BC [Cedtends to the right and BC [falthe left changes
with the mesh size in the x-direction.

BCs at boundary [(under rib): Here the impermeability conditions 1(41)—-(43) are
given. Therefore we need another 8 equations for the 11 variables. In Table7 we list the
variables and the equations at boundary includes the right corner.

BCs at boundary [(dymmetry lines): Because of the symmetry no x-transport of
species takes place, this results in the BCs 1(44)-1(46). For the other variables, except
current density 4 for which i = 0 holds also here, we put the z-derivative to zero. Table 8
shows the variables and the equations for boundary [,_eXcluding the corner nodes.

BCsat boundary [(réaction layer): The BCsfor boundary [ark givenin 1(47)-1(49).
However, in these equations appears the current density 4 for which holds the Tafel equa
tion 1(8). This extremely nonlinear equation cannot be resolved explicitly for the current
density i. Therefore wetake it in the form

ol
. . p
i o (227) exo
Po

and use this as the equation for the current density . The other two BCs1(47), 1(48) are
used in the form

anF(Uy — U, — mem
( 0 Kmem ) — 0 (5)
RT

1

Y — 4 =

nO 4F2 07 (6)
1

Y —7 =

nw+2Fz 0. @)
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Table 7: Variables and equations for the BCs at boundary 1

no. | variable equation

1 ne [(18) inform (2)

2 Mg ny =

3 ne 1(20) correspond. form
4 n, ng =0

5 ny [(22) correspond. form
6 ny ny =0

7 Do [(24) correspond. form
8 Puw [(25) correspond. form
9 Dn 1(26) correspond. form

=
o
i)

[(27) correspond. form
@

[EEN
[N
~

Table 8: Variables and equations for the BCs at boundary 1

no. | variable equation
1| n2 Rt =0
2 | aY | onY/or =0
3| g 7 =0
4 nY, Ony/0x =0
5 | R =0
6 ny ony,/0x =0
7 Po Opo/0x =0
8 Puw Opw/0z =0
9 Pn Opn/0x =0

=
o
s

Op/0x =0
@

=
=
~
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Table 9: Variables and equations for the BCs at boundary 1

>
(S

variable eguation
1(18) inform (2)

(6)

[(20) correspond. form
(7)

1(22) correspond. form
1(49)

Do [(24) correspond. form

DPw [(25) correspond. form

Dn [(26) correspond. form

1(27) correspond. form

©)

SeSh §é§§ Sy

OO ~NOOULDSWNPE
33

B
~ O
=03

For the other variables we again take the corresponding equations of Table 3. Table 9
shows the variables and equations at boundary 1

Again we show how eguation (5) is coded in Fortran for a node i on the boundary 1
at first auxiliary values are computed before the i-loop:

hU2 = alphac * nc x Fc

hU3 = fvc*ioc

Then in the -loop for anode ¢, we have

p(i,11) = u(i, 11) — hU3 * (u(i, 7) /porefc)
gammac * exp(hU2 % (UOc — UZc — (8)
dmeme * u(i, 11) /kappac)/ RT'c

For FDEM such anonlinear algebraic equation isincluded in the black-box scheme and
poses no problem.

For the solution of the PDEs by the Newton-Raphson iteration and for the computation
of the error estimate the Jacobian matrices, i.e. the dependence of the differential equa-
tions from the variables and their derivatives are needed. For a system of m PDEs with
m variables we have for the differential operator in 2-D:

Pu = P(xayauauxauyauxxauyyauxy) =0, )

with
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(75} Plu

u9 P2U
u = . , Pu = . . (10)

The Jacobian matrices, see [1, equ. (2.4.6)], are

% 8P1 8P1 . 8P1

5P 81-L1 R —aqu oP 8u1.!zy - d?tn:z,,my

%: . : ,...,_au_ - : : . (11)
8Pm 0P Yy —apm’ 9P,
Ouq Tt Oum OUley " Oum,ay

We will not give here the formulas for all Jacobians of the system. We rather want to
illustrate the procedure by afew examples. Thefirst PDE Fu in (10) isin our case the first
equation in Table 3, i.e. 1(18), that we use in the formulation of equ. (2). Thefirst variablein
Table3isn?. Thusin (11) g—i isthe derivative of equ. (2) with respect to 7. But before we
formulate the derivatives we must check if there are not hidden variables in “ coefficients”
that appear in the equation. Fortunately, the coefficients do not depend on 7, so we get

8Pl 1 Pw Pn

+ +

pu— . 12
8’05 DKnO Dow P Don 'p ( )

However, if we e.g. want to compute g—Pi = gq—lj;, i.e. the dependency of the first PDE

from the variable p,, the permeabilities B, and B,, depend in a complicated way from p,:
In1(31) Bj, j = o,w,n, depends on v;, 1(32) that depends on py, k = o,w,n, and B;
depends also on 7, 1(33) that depends on p,, k = o,w,n and finally B; depends on Kj,

1(35) that depends by \; on p;, 1(36). Therefore we precompute the g;;j ,1,j = o,w,n and
1
similarly 38(;],) and 25 We have |(31)

K, <r2>°:@ 1
ot Ho | 2T —.p- —. (13)
1+Ko 8 n

With the pre-computed values we can compute with the chain rule for differentiation
eg.

B, = DKn,

0By _ o (L Ko)w Gz + 52) — (wro+ Ko) Gy <> o) O)
apo o (1_|_K0)2 87— A

(14)
In the same way all 0B;/0p; and aso 0B;/0p are pre-computed and stored for all
nodes i. Note that the expressions for (Dj;, - p) 1(30) do not depend on p.
Now we can formulate 9 P /Ou; in the terminology of (11) whichisour equ. (2) differ-
entiated to p,
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oP, ne ne 1 Op

_ w n

apo_ Dow'p_Don'p_RTp%

OBy 0B,o
8Bo [*] Do + @ +B B Pw Boa—po - Bw Opo . (15)
Op, "RTp Oz °l Dow- p B?
9By 9B,
pn Bo apo - Bna—po po @ [*] 1 @
Dyn - p B? RTp Ox ““RTpox

Here [*] denotes the brackets in (2) which saves writing down twice this large expres-
sion. Quite naturaly, in the coding one would precompute [*] as an auxiliary variable, so
this form is closer to the coding than the written-out form. If you nevertheless imagine
written out [*] in (15) you get the impression, in which a complicated way the first PDE of
the system depends on the 7" variable. In asimilar way the first 6 PDES depend on the 7"
to 10** variable. 1t would not be possible to handle these Jacobians without a clear scheme
for intermediate derivatives as it has been presented above. These expressions then must be
translated into Fortran code asit has been shown for equ. (2).

In the same way we must deliver the Jacobians for the BCs. In many cases the interior
PDEs are al'so used for the BCs, so the Jacobians are the same in these cases.

In Table 9 the equations are shown for boundary [, THe reaction layer. Here the Tafel
equation (5) is the BC for the last variable, the current density i. Therefore R /0uq; is
the derivative of (5) with respect to i. That we do not get too complicated expressions and
because intermediate results can be used also in other Jacobians, we precompute auxiliary
values

hu2 = anF

hu3 = poip

hud = explhu2 x (Uy — U, — S=eni) /(RT)]

With these values we get for the boundary [frdm equ. (5)

v
%:1+hu3*<1%> *hu4*hu2*%. (16)
All these Jacobians are entered in a prescribed program frame of FDEM that then exe-
cutes with thisinformation the solution process as described in detail in [1]. So by the PDEs
and BCs and their Jacobians from the black-box solver a solver for the special problem is
created.

Here we present the results that we obtained for the standard data given in Part | for the
(more complicated) Mean Transport Pore Model (MTPM) as an examplefor the information
that FDEM delivers as result. We computed on the HP X C6000 parallel supercomputer of
the University of Karlsruhe. The processors are Intel Itanium?2 processors with 1.5 GHz. We
computed with 32 processors in parallel. The grid was 200 x 201 nodes in z-,y-direction.
We computed with consistency order ¢ = 4. As we have 11 unknowns per node, see
Table 2, we have totally 442,200 unknows. The computation time was 4123sec on the
master processor 1.
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In Figs. 2-21 the results are plotted as coloured contour plots together with their errors.
These plots are black-and-white in the printed version. So it might be recommended to ook
at the pictures at the computer in the on-line version of the paper.

Fig. 1 shows the domain of solution. At the lower boundary we have in the left half
the opening to the oxygen channel and in the right half the domain is closed by the rib.
Therefore we have in the middle of the lower boundary an abrupt change in the BCs that
causes a singularity in the solution because there is mathematically no smooth transition
from the one type of BC to the other type. This singularity is clearly visible in the figures.

For the fuel cell research the behaviour of the partial pressure p, of oxygen, p,, of
water vapour, p,, of nitrogen and the current density ¢ at the reaction layer are of greatest
interest. Therefore we show in Figs. 22-26 these quantities together with their errors along
the reaction layer. We can see that the singularity of the lower boundary has smoothed
out at the upper boundary of the solution domain. At the top of Fig. 26 the value 4,,cqn 1S
presented which is the mean value of the grid points at the reaction layer and is a measure
of the output of the fuel cell. Aswe have the singularity in the problem, the local error at
the singularity will not decrease with finer grid as fast as we expect from the consistency
order g = 4.

The discussion of the results from the point of view of the fuel cell researcher is pre-
sented in Part I.
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Figure 2: Contour plot of molecular flux density of oxygenin z-directionn .
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Figure 3: Contour plot of the global relative error of 2.
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Figure 4: Contour plot of molecular flux density of oxygen in y-directionn ¥.
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Figure6: Contour plot of molecular flux density of water vapour in z-direction 7 %,.
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Figure 7: Contour plot of the global relative error of 7.
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Figure 8: Contour plot of molecular flux density of water vapour in y-directionn ¥,.
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Figure 9: Contour plot of the global relative error of 2 ¥,.
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Figure 15: Contour plot of the global relative error of p .
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Figure 16: Contour plot of water vapour partial pressurep .
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Figure 20: Contour plot of total pressure p.
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Figure 21: Contour plot of the global relative error of p.
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Figure 22: Oxygen partial pressure p, aong thereaction layer and its global relative error.
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Figure 23: Water vapour partial pressure p,, along the reaction layer and its global relative
error.
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Figure24: Nitrogen partial pressure p,, along the reaction layer and its global relative error.
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Figure 25: Total pressure p aong the reaction layer and its global relative error.
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Figure 26: Current density ¢ along the reaction layer and its global relative error. On top of the
upper frameisthevalue i, ,eq, = 2981.92.
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3 Thenumerical solution of the SOFC PDEs
The model and the PDEsfor the SOFC have been presented in Part 1. Werefer to equations
inPart 11, e.g. for equation (1), by I1(1), similarly for figures and tables.

Fig. 27 shows the domain of solution and the numbering of the boundaries. Here we

have a coupled domain of anode and gas channel, coupled by the dividing line DL with
side 1 und side 2 where we have coupling conditions (CCs).

electrolyte
A @
da ©) anode ©)

side 2

side 1

dy (6)  gas channel @

—> gas flow
AY
v | x ©®
rib
< >
lk

Figure 27: Domain of solution and humbering of the boundaries.

Table 10 which corresponds to Table 111 gives the names of the geometrical parameters
in the Fortran code. The last letter “c” denotes that these values are constants. We do not
repeat here the units and values, they are given in Part |1. Table 11 shows the 8 dependent
variables with their Fortran names. It combines Tables 113 and 115. In Part 11 the variables
have different symbols for gas channel, index K (for Kanal, German word for channel)
and index A for anode. However, these are in reality the same variables, only in different
domains. That they are computed by different PDEs in the different domains does not
matter. Asthe node number ; tellswhere the variable is used, adifferent index K or A isnot
necessary. In the black-box solver FDEM the variables for node ¢ and solution component j
are denoted by u(i,j). In the Fortran code many loops run over the node number i. If the
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Table 10: Structural and geometrical parameters.

parameter symbol | nhamein code
thickness of anode da dac
height of gas channel dg dkc
length of gas channel Ik Ikc

Table 11: Dependent variables with their Fortran names for node 7, mf means mole fraction.

no. variable symbol | namein code
1 | flow velocity in z-direction Uy u(i,1)

2 | flow velocity in y-direction Uy u(i,2)

3 mf of methane Yona u(i,3)

4 mf of carbon monoxide Yoo u(i,4)

5 mf of hydrogen Y, u(i,5)

6 mf of carbon dioxide Yco, u(i,6)

7 mf of steam Yu,0 u(i,?)

8 pressure P u(i,8)

innermost loop runs over thefirst index of amu
are accessed contiguously which is the most efficient access. Therefore the node number ¢
isin thefirst position in u(i,j).

[tidimensional array, in Fortran the elements

Table 12: Sequence of variables and equationsin the channel.

no. | variable | our notation equation

1 Uy Uy [1(5) in form (17)

2 Uy Uy [1(7) in form (18)

3 Yona Ys [1(1) in form (19)

4 Yo Yy [1(2) in similar form

5 Y, Ys5 [1(3) in similar form

6 Yco, Ys [1(4) in similar form

7 Yu,0 Y7 [1(8) in form (20)

8 P P [1(6) in similar form to (18)
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Table 12 shows the variables and the equations that we use in the channel. That we do
not have to write the chemical indiceslike C'H, in Y1, we have replaced them by numbers
that correspond to the numbering in Table 12, thus instead of Yo, we write Y3, instead of
Yoo we write Y etc. These simplified indices are also used for component indices in the
coefficients of the PDESs.

For the numerical solution we must differentiate out the product terms. Therefore the
first equation 11(5) (continuity equation) in Table 12 becomes

— — —2 =0. 17
ox x+ yuy—i—g (17)

The second equation in Table 12, the y-momentum equation 11(7) becomes, as we must
take all terms of the PDEsto the l.h.s.

Ouy Oty Op  Op (40uy 20us)
e g +ouy oy + oy Oy \3dy 3 0x
4 82uy 1 0%uy 82uy op (Ou,  Ouy
= - -z —“Z)1=0. 1
u(38y2+38x8y+8x2> 8x<8y+8x> (18)

The third equation in Table 12, the species balance I1(1) for C'H; is with the ssimplified
chemical indices of Table 12

Oop Oy 0Y3 Op Ouy 0Y3
O Uy Y3 Oz pYs3 Oz Pbuy Ay Uy}/S dy pYs3 dy DUy +
aDB gas ap aYES
P3gas (Py, 973 1
dos (g T0) o)
%p opdYs 0%V
D3 gas [ =2 Y3 + 222223 =0.
o (8y2 Ty oy " 8y2p> 0

The equations no. 4 to 6 in Table 12 are obtained by replacing in ¥3 and Dj3 4, the
index 3 by 4, 5, 6. The 7" equation 11(8), Dalton’s law, becomes

YVa+ Yy +Ys+Ys+Yr—1=0. (20)

The 8" equation 11(6), the y-momentum equation, iswritten similarly to the z-momentum
equation (18).

In (19) appears the diffusion coefficient D3 4., Which is given in [1(9) which isin our
notation

1-Y

Di gas = —=———— |,
%,g9as Zj#i }/]/Dz]

i, =3,4,5,6,7 . (21)
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However, there appears in (19) also 0Ds 44./0y. To get a corresponding expression
from (21), we write out the expression for Dy g,

1-Y; 1-Y;
D3,gas: Y, Y- Y, Y- 19 (22)
Dai t0gs t D Ty U

where we have abbreviated the denominator by suni where sum’ meansthat the term
Y;/D;; with j = i, in our case Y3/ Ds3, does not appear in sum’3. With the quotient rule
for differentiation we get from (22)

D3 gas - Y:
%Z = —(sum/3)72 [sum'?;%—i—

1 9Y, 1 9Y: 1 9Y 1 9y,
(1_1,3)( L LY, 1Y 1 7>]

1 oh o5 9¥e 9r7 23
D3y 0y D35 0y  Dsg Oy Dz Oy (23

Theother 0D; 44, /0y are computed similarly. For the anode wewill need also 0D; 44 /0
that we get by replacing 9/0y by 9/0z.
In (18) appears the “ coeffient” 1. (viscosity) that is given by 11(11)

H:ZZilu 17]:3747576777 (24)

where ¢;; are values that are computed from 11(12)-11(14), but do not depend on the
variables Y;. However, there appears also 0p/0x and 0y /0y in (18). To get these expres-
sions we write out (23):

. Ysus n
Y3133 + Yyth3a + Ysihss + YetPse + Yribsr
sumps3
Yipa n
Y3943 + Yathas + Ysthas + Yotbae + Yribar

sumps4

(25)

\29%:
Y31h73 + Yytbra + Ysihrs + Yotbre + Yribrr

sumps7T

By the quotient rule of differentiation we get
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on =(sumps3) "2 | sumps3pus3 oYs_
ox ox

Y- oY, Y-
Y3us3 <¢338—; + ¢348—; +-+ ¢378—;>] +

dsumps3
T

Y. 0 4]
(sumpsd) 2 | sumpsdpy—r — Y4,u4M + (26)
Ox or |

v -
(5umps7)_2 sumps?;w@ — Y7M7M .
or ox

In the same way we get 9u/dy by replacing 9/0x by 0/0y.
For equs. (17) and (18) we need the density p and for (17) also its derivatives with
respect to x and y. From 11(10) we have

D 4 R ‘
_ - — =3.4 27
p Ry T ) with Ry ZZ Y;MZ ) ¢ 37 757 67 7 ( )
in our notation. If wewrite out Ry, we get
R
Ry = 28
M= YoM + YoMy + YsMs + Yo Mg + Y- M (28)
and we have
p-sumr
pu— 2
p BT (29)
8p 1 ap 8Y3 8Y4 8Y7
— = | = Mz—— + Mgy——— + -+ M;— || .
Ooxr RT [81} Sumr +p < > Ox M Ox AT Ox (30)

If we replace 0/0x by 0/0y we get dp/dy.

Now we have available all the necessary information for the coding of the PDEs in the
channel. But before we can give an example for the coding we must give Fortran names to
the parameters in the PDEs, and we want to include here already the parameters for the BCs.
For this purpose we repeat only the symbols of Table [14 and give them the corresponding
Fortran names in Table 13. Some coefficients, e.g. R, T are given below with the anode
datain Table 16.
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Table 13: Symbols for the parameters and their Fortran names for the PDEs and BCs of the
channel.

Fortran Fortran Fortran
symbol | name || symbol | name || symbol | name
Digas | digas || Y0y, y03c o, sig6e
D;; dijc Ye, | YO4c || omo | sig7c
Mcy, | m3c YY), | yosc || ecm,/k | epk3c
Mco | mac || YO, | y06¢ || eco/k | epkdc
Mco, | m5c || Yg., | YO7c | eco,/k | epk5c
My, m6c OCH, sig3c em,/k | epkée
MH2 o) m7c oCco S g4c €EH,0 /k‘ epk7c
ul uoxc | oo, | sighc
Herei or j must bereplaced by i, j=3, 4,5, 6, 7.

Table 14: Symbolsand Fortran names for pre-computed “ coefficients’.

Fortran Fortran Fortran
symbol | name || symbol | name symbol name
p rho ij psiij ou/ox muex
Op/0x | rhox i mug ou/dy muey
dp/dy rhoy Dy OMVi || 0D gqs/0x | digasx
Ry rm m mue 0D gas/0y | digasy

Herei orl must be replaced by i, j=3, 4, 5, 6, 7.

But we must give for the coding also names for pre-computed “coefficients’ that are
given in Table 14. Partly they are mere parameters, partly they contain the variables Y.
These pre-computed values are stored in corresponding arrays for the nodes i.

Now we give the Fortran coding for the first 3 equations in Table 12. These are the
Newton residuals Pu to Psu in (10). But at first we must say how derivatives of variables
are denoted in the code: for node i the - and y-derivatives of u(i,1), i.e. of thefirst solution
component (here u,.) are denoted and stored as ux(i,1) and uy(i,1), second derivatives are
denoted by uxx(i,1), uyy(i,1), uxy(i,1). Similarly the derivatives of other components u(i,j)
are denoted by ux(i,j), uy(i,j), uxx(i,j), uyy(i,j), uxy(i,j).

The Fortran code for P, u, equation (17), looks like this for node i:

p(i,1) = rhox(i) * u(i, 1) + rho(i) * ux(i, 1) +
rhoy(i) * u(i, 2) + rho(i) * uy(i, 2) (31)

The Fortran code for Pu, equation (18), looks like this for node i:
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Table 15: Sequence of variables and egquationsin the anode.

no. | variable | our notation eguation

1 U Uy 11(46) in form (34)

2 Uy Uy 11(48) in form (35)

3 You, Y3 11(42) in form like (34)
4 Ycoo Y, 11(43) in form like (34)
5 Y, Ys [1(44) in form like (34)
6 Yco, Ys 11(45) in form like (34)
7 YH,0 Y~ 11(49) all termstol.h.s.
8 D D [1(47) in form like (35)

p(2,2) = rho(i) * u(i, 1) * ux(i, 2) 4+ rho(i) * u(i, 2) * uy(i, 2) +
ux (i, 8) — muey(i) * (4D0 x uy(i,2)/3D0 —

2D0 * ux(i,1)/3D0) — mue(i) * (4D0 * uyy(i,2)/3D0 +
uzxy(i,1)/3D0 + uzx(i, 2)) — muex (i) * (uy(i, 1) + ux(i, 2)

(32)

The Fortran code for the third component of the Newton defect Bu, equation (19), is

p(i,3) = —ux(i,8) *xu(i, 1) x u(i,3) —
ux(i, 1) *u(i,8) * u(i,3) — ux(i,3) * u(i,8) * u(i, 1) —
uy(i, 8) * u(i,2) * u(i,8) —uy(i, 2) * u(i,8) * u(i,3) —
uy(i, 3) * u(i,8) * u(i,2) + uy(i,8) * u(i,2) * u(i,3) —
uy(i,2) * u(i,8) *u(i,3) —uy(i,3) * u(i,8) * u(i,2) +

d3gasy(i) * (uy(i,8) * u(i, 3) + uy(i, 3) * u(i,8)) +
d3gas(i) * (uyy(i, 8) * u(i, 3) + 2D0 * uy(i, 8) * uy(i,3) +

(33)

So we recognize that by the chosen name conventions and precomputation of the “co-

Fortran code.

effients’, that themselves depend on variables, it is quite easy to trandate the equations to

The next problem are the PDEs in the anode (up to now we had discussed the PDESin
the channel). Table 15 showswhich equation is used in which position of ther.h.s. (Newton
residual) of the linear system for the computation of the Newton correction. It should be
recalled that we do not usetheindices K and A for variables in the channel and in the anode.
For FDEM these are the same variables, only in different domains and the node number
tells where the position is. Here we show the form of the first 2 equations prepared for the
coding, the other equations are of the same type or trivial (#" equ.). For the preparation
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Table 16: Symbols for the parameters and their Fortran names for the PDESs and BCs for the

anode.
Fortran Fortran Fortran
symbol | name | symbol | name symbol name
;Zgés dlgas kp kpC UNernst,CO uneco
CH4 dk3c Patm patC UNernst,Hg uneh2
DE, | dk4c R rc Ueeco | Uzooc
Dy, | dk5¢c || Raco | raco U etie.r, | uzh2c
Dfo, | dkéc || Ram, rah2 Yo, yo2c
Df.o | dk7c Rk rk € epsc
F fc Ronm | rohmc T tauc
jco jco T tc TCH, rch4
JH, jh2 U uc Ts rs

Herei must bereplaced by 3,4, 5, 6, 7.

of equation 11(46) which is the first equation in Table 15, we multiply the equation by
RT which brings this term as a factor to the last term in 11(46). We must differentiate
out al terms. In [1(46) there are effective diffusion coefficients fo /' that are computed
from 11(50). Here, i is the component index that takes values 3 to 7 in our notation. In
the equations and in the node we drop the upper index “eff” because in the anode domain
the D; 445 are computed from 11(50) so that we do not need a specia identification in the
formulas or code. So 11(46) becomes

—%ung - ag;prs - %pux - g—zuyY - %—Zprg -
—%—f’puy + D3 gas <22§ Ys + gz %Y?' + p%) + (3
8%;‘“ <ng3 + 88—5;3 > + D3 gas <§22Y3+2g—p% + é;?) +

The equation 11(48) which is the equation in the second position in Table 15 becomes

— + u, =0. (35)

Now we have prepared the basic types of the equations for the anode, the other equations
have quite similar form, see Table 15. The functions r¢c, = r3 and r that appear in the
equations 11(43)—(46) are computed from 11(53), (54).
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In Table 16 we have listed the parameters of Table 114 with their Fortran names. As
mentioned above, we named the Di];f;s by D; 4as in the anode domain. However, they are
computed there from 11(50) in which appear the D, ,,, computed from [1(9) or from (22)
for the example of D 4,,. In order to distinguish the two D 4., we denote the D; 4., from
11(9) by D}, and its derivatives computed like (22) by 9Dy . /0x or OD; . /9y. Now
we need for the equations the derivatives 0D; 4,,/0x and 0D; 445/0y in the anode which
are in redlity the “eff” values. From I1(50) we get in the present notation, resolving for

Dz, gas:

D*
€ K ;
3

T 1,9a8

with i = 3,4,5,6,7 in our notation. From (36) we get the partial derivative (with
intermediate calculation)

ODjgas € DK oDy

?

0r  7(5D; + DK)? 0z’

(37)

with 8;; L as shown for 8{9—? in (22). Theformulafor 0D; 44,/0y is obtained by replac-

ing 9/0z by 0/0y.

The formal trandation of these equations is executed as we have shown it above for the
trandation of (19) to (33) so that there is no new information.

Now we have finished the discussion of the programming of the PDEs in the interior
of the domain for the channel, Table 12, and for the anode, Table 15. The next problem is
the discussion of the BCs. Aswe have 8 variables, we need at each boundary a system of
8 eguations. Often at a boundary only afew conditions are precribed, e.g. the pressure at
the exit of the channel. Then we “fill up” the set of the equations by appropriate equations.
The domain with its boundaries is shown in Fig. 27. We discuss the boundaries without
their corners and discuss the conditions at the corners later.

We start with the BCs for boundary [ fhie left entry of the anode, which is assumed
to be permeable. For u, we take the Darcy law 11(47) in the form of the &" equation of
Table 15. The value v, = 0 is prescribed which fulfils with the condition for p: dp/dy = 0
Darcy’s law 11(48). The condition dp/0y = 0 means constant pressure along [ _We will
later take the pressure from the channel at the lower corner of [C_Tlhe Y are prescribed by
their entry values Y,°. In Table 17 the boundary equations for boundary [ark compiled.

For boundary [, fhe boundary between anode and electrolyte, the conditions I1(61)—
(65) are given. For v, we prescribe Darcy’s law like on boundary C_Thereis v, = 0
because of closed wall. For p we prescribe Darcy’s law 11(48), which is no.2 in Table 15.
The other conditions are given. For Y; we have 11(62) which isin our notation and product
differentiation

1 0 Y, 1
DL <Y4—§ +p—y4) k=0 (39)



The other conditions are in similar form. The equations for boundary [ark shown in
Table 17. For these BCs the values jy, = j5 11(67) and jco = j4 11(68) must be pre-
computed for the nodes of boundary L[,_eXcept for the first node (Ieft corner) where for the
entry values Y; a singular value would result. However, for the computation of j and js
we need intermediate values R4 r,, Ra,co, Rk, UnNernst,i, @A Unernst,co Which are
givenin 11(69)—(73). These values are also pre-computed for the nodes of boundary [_Fbr
the given entry value Y5,, = 0 we get a singular value for 11(73). Therefore we do not
compute the j4, js for the entry values of Y;.

For boundary [, ekit of anode, which is assumed to be “open”, there is prescribed only
D = Patm- S0 We use for u, Darcy’s law 11(47) (no.8 in Table 15) and for the equations in
position 2—7 those of the interior, Table 15. The equations are compiled in Table 17.

Now follow the BCs for the channel. At boundary L[ _the right exit of the channel,
thereonly p = puun, IS prescribed, 11(41). The other equations are like in the interior of the
channel, i.e. the same as positions 1-7 in Table 12. The boundary equations for boundary [1
are compiled in Table 18.

The BCs for boundary L[ ilke rib wall, are given in 11(15)—(21), these are the no-dip
conditions for the velocity components and zero gradient normal to the wall for the Y. For
the pressure we take the x-momentum equation I1(6) like in the interior (no.8 in Table 12).
The boundary equations for boundary [ark compiled in Table 18.

The boundary conditions for boundary [ ilie channel entry, are given in 11(34)—(41).
Here values are prescribed for all variables except the pressure which is computed from the
x-momentum equation 11(6) (no.8 in Table 12). For v, aparabolic profileis prescribed with
the maximal velocity u, i maqz in the middle of the channel and no-slip condition u, = 0 at
therib wall and at the anode, equ. 11(40). However, we must have the same w,, in the channel
and in the anode at theinterface DL, see Fig. 27. We compute at the anode interface «, from
Darcy’s law 11(47) and we take this as slip for the channel flow at the anode interface. We
call this the “modified parabola 11(40)". Else we would have ajump in w, at the interface.
The boundary equations for boundary [—ark compiled in Table 18.

The next problem are the coupling conditions (CCs) at the dividing line DL, see Fig. 27.
The DL is geometrically one line, but logically two lines. side 1 belongs to the channel,
side 2 totheanode. The CCsare given in 11(22)—(33). However, we must clearly distinguish
which conditions are applied at side 1 and side 2. The variables are computed at one side
and their value is transferred to the other side. In the code the logical hodes on side 1 and
2 have different node numbers 7, so the variables can be easily distinguished. In the writing
down of the CCs we distinguish the variables and aso the variable-dependent coefficients
by theindex K for channel and A for anode. We have compiled the CCsin Table 19 which
we now will discuss.

The value of w,, iscomputed from Darcy’s law in x-direction 11(47), the equation is that
of position 8 in Table 15, i.e. it is computed with the variables in the anode, index A. Sothis
is the equation for u, on side 2. This value is taken to the channel, side 1, by the condition
U, K = Ug, A, thisisthe dip velocity.
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Table 17: Boundary equations for the anode for boundaries [=11__1

no. | var. | boundary [ boundary [ boundary [l
1 | u, | no8inTab. 15 no.8 in Tab. 15 no.8 in Tab. 15
2 | uy Uy =0 Uy =0 no.2 in Tab. 15
3| V3| ¥3-Y)=0 dY3/dy =0 no.3 in Tab. 15
4 | Yy | Yu—-Y?=0 | 1I(62)inform (38) | no.4 inTah. 15
5| Y | Ys-Y2=0 [11(63),similar form | no.5 in Tab. 15
6 | Yo | Ys—Y) =0 |11(64), Smilar form | no.6 in Tab. 15
7 | Y: | Ya—Y?=0 |11(65), smilar form | no.7 in Tab. 15
8 | p op/oy =0 no.2 in Tab. 15 D — Patm = 0

no.8, Tab. 15 means the equation in row 8 of Table 15.

Table 18: Boundary equations for the channel for the boundaries [=1I.__1

no. | var. | boundary ] boundary ]I boundary 1
1 | u, | like Uy =0 uz=mod.par. 11(40)
2 | u, | positions Uy =0 uy =0
3| Ys |17 dY3/0y =0 Y3 -YY =0
4 | Y, |in Y, /0y =0 Yi—Y2=0
5 | Y; | Tablel2 0Y5/0y =0 Y5 - Y0 =0
6 | Ys 0Ys/0y =0 Yo — Y =0
7 | Y, Y7 /0y =0 Y7 =YY =0
8 P | Pp—Ppam =0 | no.8inTah. 12 no.8 in Tab. 12

mod.par. 11(40) means modified parabola 11(40), see text.

Similar conditions hold for «,. The Y; are computed in the anode from the equality
of the diffusion transport for channel and anode, 11(22)—(26). From I1(22) we get in our
notation, differentiating out the products and taking all terms to the I.h.s., the equation for
Ys:

0Y3 4

Opk
z ) - D3,gas,K (a—yy

0Y3 i
3,K T DA .

dy

Opa
D3,gas,A (%Y&A +pa 9

>_0. (39)

Here D3 44,4 is computed from (36) with the Y; 4 and Ds 44, k IS computed from
type (22) with the Y; . Similar relations hold for the Y} to Y7. These values are taken by
Yi k = Y; 4 tothe channel side 1.

The pressure p;, is computed from the 2-momentum equation I1(6) in the channel which
isthe equation of position 8 in Table 12. Thisvaueistransferred by px = px to the anode
side. This discussion of the CCs at the DL is an illustrative example of the use and of the
possibilities of a dividing line. It couples by CCs the two domains channel and anode in
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Table 19: Coupling conditions (CCs) at dividing line DL. Index K isvariablein channel, index

A inanode.
no. | var. | side1, channel side 2, anode
1| up | ugx —uga=0 no.8 in Tab. 15
2 | uy | Uy —Uya=0 no.2 in Tah. 15
3| Y3 | Yag—Y34=0 11(22) in form (39)
4 | Yy | Yag —Yia=0 11(23) in similar form
S | Y | Y56k —Y54=0 11(24) in similar form
6 | Yo | Yok —Y54=0 [1(25) in similar form
7T | Y | Yog—Yr4=0 [1(26) in similar form
8 P no.8 in Tab. 12 Py —Pg =0
no.8 in Tab. 12 means the equation in position 8 in Table 12.

which hold quite different PDESs. We get aglobal solution over the two domains with global
error estimate.

The next problem are the corners. They belong to two boundaries. At first sight it
seems to be of no importance which conditions we take. However, the present problem is
very critical and we had experienced that we got large errors and even divergence of the
Newton iteration if we did not take the “correct” conditions at the corners. We report here
those conditions that we take presently which does yet not mean that these are the optimal
conditions. One hasto look at Fig. 27 for the corners.

Upper left corner, intersection of boundaries [and [ we take the equations of bound-
ay [, Thblel7.

Upper right corner, intersection of boundary [Cadd [“_Hor position 1 to 7 we take the
equations of boundary [, Table 17, for position 8 wetake p— i, = 0. At first we had used
the conditions of boundary [fal 1to7 and p — put., = 0 for 8. With this choice the errors
were 1 to 2 orders of magnitude larger. This shows the extreme sensibility of the problem
to such seemingly tiny changes and it shows that the corner nodes play an important role
for the solution of the whole problem.

Lower right corner, intersection of boundary [Cand [ wale take the equations of bound-
ary [ Thble 18, for positions 1 to 7 and for position 8 wetake p — pum = 0.

Lower left corner, intersection of boundary [Cadd [ we take the equations of bound-
ay 1

The next problem are the left and right end nodes of the dividing line. Here we have for
the one geometrical node again two logical nodes at the end and we have to differ between
side 1 (channel) and side 2 (anode). We depict our choice of al CCsin Table 20, it is
self-explaining.

Now we have prepared all the information for the coding of ther.h.s. of thelinear system
for the computation of the Newton correction. You have seen that there was still much to
do to formulate clearly the problem. The BCsand CCs have been given “shortly” in Part 11,
but these are only the given conditions that must be “filled up” by other equations to get
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Table 20: CCsat left and right end of DL. Index K isvariablein channel, index A in anode.

left end right end

sidel side 2 sidel side2
no. | var. channel anode channel anode
1 Ug | Up, K — Ug, A = 0
2 | uy uy =0 uy =0 position position
3 Y3 | Vap—Y?=0 | Y35k —YY=0 1to7 1to7
4 1Yy | ag—-Y)=0 | Y4k —Y)=0 like like
51Y | Yo —Y2=0 |V, —YX=0 sidel side 2
6 | Vo | Yox—YP=0 | Ysx—Y=0 Table 19 Table 19
7\ Y | Vig—Y?=0 | Yok — Y2 =0
8 P no.8, Tab. 12 Pr—Pgk =0 | p—20atm =0 | p—Patm =0
no.8, Tab. 12 means the equation in position 8 in Table 12.

the necessary 8 equations. And in Part Il nothing is said about the corners. So the user
of FDEM isforced to formulate exactly all the details of his problem to get the equations
that finally are entered in FDEM. The formal trandlation to Fortran code is easy as has been
shown exemplarily in equs. (31)—(33) for the channel flow.

Thematrix 4 of thelinear system is composed by FDEM from the difference formulas
and the Jacobian matrices, that are also needed for the computation of the error estimate,
see the basic paper [2] or the detailed report [1]. The meaning and the form of the Jacobian
matrices has been explained above in the equations (9)—(11) and the corresponding context.
The system of PDEsfor the SOFC is extremely nonlinear, above al by the nonlinear coeffi-
cients, e.g. the D; 44, Or . It will be impossible to give here the formulas for the Jacobian
matrices, they would fill many pages with formulas that nobody would read. We rather want
to show the procedure how to get the Jacobian matrices in our case.

Let uns consider equ. (17), thisis the first equation in Table 12 and therefore Ru in
the notation of (10). for the Jacobians we must look for the dependencies of (17) from the
variables. Equ. (17) depends explicitly from u, = uq, thefirst variable, from itsz-derivative
Ouy/0x = uy g, fromu, = ug, from its y-derivative ou, /0y = us,, in the terminology
of (9)«11). If p would be a constant, these would be the (explicit) dependencies of the
operator Pyu (17). However, p depends by (29) from sumr and sumr depends by (28)
from the variables Y3 = ug to Y7 = wr, and p depends on p = ug. These are implicit
dependcies. So we have purely formal
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Plu - Pl(uluu27u37u47u57u67u77u87u1,x7u2,y)
Oou,; Ou

Y

= Pl(uacauyaY37Y47Y57Y67Y77p7 ) )

oxr 0Oy

Ou, Ou
= Pl(uacauyv8—;78—;7p(p78umr(}/37"'7Y7))7

2, 2 sumr(xy), 0
X X

Ox > Ox
Op dsumr ,0Y;

dp
a—y(p,a—yasumr(Yi), o (ay)))'

From (17), (28)—30) we get

))7

8P1 _ 8P1 _ 8p
8—u1  Ouy oz
8P1 _ 8P1 _ 8p
duy — Ou, Dy
opP, 0P (8ux N 8uy> ap (L) (%)

dus 0v; \oz "oy )ovs oy, oy,
similarl @ to %
Y v, oY,
L
OP _ P _ (Ous O\ 0p  O(F) +uya(%) '
Oug op Oz oy ) Op op op

(dependence 15! PDE from 1°¢ variable),

(dependence 1°* PDE from 2"? variable),

(40)

(41)

This ends the dependencies of P from the variables u,. to p. Now come the dependen-

cies from the z-derivatives of the variables:

P, ) 9
2%1 =p  (thereisnodep. on %),

oz T

oYy = Y oy similarly for - o
oP _ ()

op T T o

oz Oz
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Ouy =0

oy

oP (%) .

d_ygl = u, 8_Yy’ similarly for Y, to Y7 (43)
oy dy

opr  0(F)

o W

oy dy

All intermediate quantities are pre-computed and stored, e.g. sumr, dsumr /dx, dsumr /[y
and their derivatives with respect to the variables. From (28)—30) we get e.g.

@ _ P Osumr
9Ys RT 0Ys ’

osumr
= M.

8Y3 35

6(%%) _ 1 9pdsumr (44)

dYs  RT 0z IY;s

%) _ 1 o)

BOURT B
8(Bsg;nr)
v, - M-

ox

This should be sufficient to show you how the Jacobians (11) are computed and why
we do not list them al here. We have developed a formalism where we reduce the com-
plicated expression by a chain of intermediate values for which we apply the chain rule of
differentiation, so that even the most complex expressions get back to their ssimple origins.
Nevertheless, the formulation of the Jacobians is ahard mental training.

It is now aso clear that the Jacobians are the main part of the implementation—and
that they are rather error-prone. Therefore we have developed the Jacobi tester, where we
check the elements of the Jacobi matrices by difference quotients, see[1]. And indeed, there
were alot of errors found, but finaly the Jacobi tester did no longer show errors. Then the
numerical solution started.

However, the situation was not quite as ssimple as it seems to be. For the PEMFC
we got rather final models that worked nearly immediately. The situation is much more
complicated for the SOFC, especialy because of the methane reforming process and by the
coupling of the two domains of anode and gas channel. Only by solving the PDEswe could
check their validity. At the same time aso the used values for the many coefficients that
came from different sources were not “safe” values and had to be adapted. So we had to
improve the model of the PDEs and the values of the coefficients until we finally came up
with the model that has been presented here. Because changing the model means changing
the Jacobi matrices thisis ahard work.
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Table 21: Maximaof the solution components and of the relative global error estimates for the
computation with the 2 mm anode.

channel anode
no. | var solution error solution error
1 Uy 0.6733E+00 | 0.36E-02 | 0.2287E-01 | 0.76E-01
2 Uy 0.1749E-01 | 0.39E-01 | 0.1749E-01 | 0.91E-02
3 | Yous | 0.3300E+00 | 0.19E-02 | 0.3300E+00 | 0.96E-02
4 | Yoo | 0.2022E+00 | 0.15E-01 | 0.2022E+00 | 0.42E-01
5 | Yy, | 0.5754E+00 | 0.64E-02 | 0.5752E+00 | 0.18E-01
6 | Yoo, | 0.8065E-01 | 0.82E-02 | 0.1269E+00 | 0.36E-01
7 | Yn,0 | 0.6700E+00 | 0.89E-02 | 0.6700E+00 | 0.31E-01
8 P 0.1013E+06 | 0.11E-05 | 0.1082E+06 | 0.16E-02

The numerical experiments showed that the SOFC PDESs are very critical because of
their extreme non-linearity which can be seen by the complicated Jacobian matrices. We
computed solutions for 3 different thicknesses d4 of the anode, 0.05, 1 and 2 mm. We could
get the solution for 2 mm only by computing the solution for 0.05 mm, using this as starting
solution for 1 mm and this solution as starting solution for 2 mm. When we used the entry
values of x = 0 for the variables as starting values, the Newton iteration diverged. We used
the consistency order ¢ = 4. With the order ¢ = 2 we got errors 10 to 100 times larger.
When we used the order ¢ = 6, the Newton iteration diverged, even with the solution of
order 4 asinitial solution. We used agrid of 80 nodes in the z-direction. When we used for
accuracy tests a grid of 160 nodes we could get the solution of order 4 only by computing
a solution for order 2 and using this as starting solution for order 4. These experiences
illustrate how critical the SOFC PDEs are.

The results that we present below were computed on the HP XC6000 parallel super-
computer of the University of Karlsruhe. The processors are Intel Itanium2 processors with
1.5 GHz. We computed with 8 processors in parallel. The grid was 80 nodes in z-direction
and 41 nodes in y-direction in the channel and 41 nodes in the anode. We computed with
consistency order 4. We will present below the results for the anode with ds = 2 mm,
e/T = 0.21, Ropm = 1.63 - 1075, see the section “Parameter Variation” in Part 11. We
used as starting values the solution for d4 = 1 mm and needed 4 Newton iterations. The
execution time on the master processor 1 was 510 sec, of which are needed 508 sec by the
linear solver LINSOL. Aswe have 80 x 82 nodes and 8 unknowns per node, the number of
unknows was 52480.

In Table 21 the maxima of the solution components and the maxima of the estimated
relative global errors are compiled for channel and anode. Before we will discuss these
numbers we look at the result plots in Figs. 28-59. These figures are in grayscale in the
printed version of the report, but they are in colour in the on-line version. Therefore you
should look at these figures at the computer screen.

We discuss at first the results for the channel, Figs. 28-43. Our discussion is purely
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about the numerical behaviour. The physical behaviour is discussed in Part 1. The plot for
ug, Fig. 28, shows that in the middle of the channel v, grows from the entry value of 0.5

m/s to its maximal value 0.67, see Table 21, and then goes down again. The error plot,
Fig. 29, shows that the maximal relative error of 0.36E-2 or 0.36% occursin asmall region
at the exit. Except this region the error is much smaller. The plot of v, Fig. 30, shows that

the maximal value of 0.017 m/s, Table 21, occurs close to the entry in the upper part which
results from the influence of the anode, see Fig. 46. The error plot, Fig. 31, shows a small

error below 1%, the max. error of 1.7% of Table 21 is not visible and obviously occurs
in avery small region at the exit of the channel. The plots for the chemical components,
Figs. 3241, speak for themselves. Itisinteresting to seethat Yo7, and Y, 0 drop quite fast

from their entry values to lower values by the chemical reactions of the reforming process.
Theerrors of the Y’s are quite small, their maximal values occur either in the entry or in the
exit region of the channel. The pressure is shown in Fig. 42, you can see in the scale to the
right of the plot that the change from entry to exit isonly in the 3" digit, thisisin the range
of the discretization error whose max. value is 0.11E-5 from Table 21. Therefore the error
plot, Fig. 43, looks alittle weird, but this comes only from the smallness of the error.

Now we want to discuss shortly the results for the anode, Figs. 44-59. The velocity
components u, and u,, are small. The maximal error of w, of 7.6%, the largest error that
occursin Table 21, ispractically not visiblein Fig. 45 because it occurs obviously just at the
entry. This indicates that there is asingularity or an incompatibility in the BCs at the entry
of the anode. The second largest error in Table 21 occurs in the anode for Yop. Fig. 51
showsthat this error occursin asmall region at the exit of the anode, indicating a singularity
or incompatibility in the BCs at the exit of the anode. Also for the other Y’sthe max. errors
occur in very small regions at the entry or exit of the anode. The variation of the pressurein
the anode, Fig. 58, is much larger than in the channel and is surely caused by the diffusion
process of the chemical species.

From the numerical point of view these results are very convincing by the small esti-
mates of the errors. The system of the SOFC PDEs s strongly non-linear and numerically
very critical, and it is solved on a coupled domain with different PDEsin channel and anode.
How should we trust our solution without the error estimate?
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Figure 28: Contour plot of velocity u, [m/g] in the channel.
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Figure 29: Contour plot of the global relative error of u , in the channel.
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Figure 30: Contour plot of velocity «,, [m/s] in the channel.
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Figure 31: Contour plot of the global relative error of w ,, in the channel.
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Figure 32: Contour plot of mole fraction Y¢ gy, in the channel.
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Figure 33: Contour plot of the global relative error of Y, in the channel.
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Figure 34: Contour plot of molefraction Yo in the channel.
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Figure 35: Contour plot of the global relative error of Yoo in the channel.
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Figure 36: Contour plot of mole fraction Y, in the channel.
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Figure 37: Contour plot of the global relative error of Yy, in the channel.
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Figure 38: Contour plot of molefraction Y ¢, in the channel.
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Figure 39: Contour plot of the global relative error of Yo, in the channel.
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Figure40: Contour plot of mole fraction Y, in the channel.
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Figure4l: Contour plot of the global relative error of Y i, inthe channel.
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Figure42: Contour plot of pressure p [Pa] in the channel.
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Figure43: Contour plot of the global relative error of p in the channel.
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Figure 44: Contour plot of velocity u, [m/g] in the anode.
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Figure 45: Contour plot of the global relative error of v, in the anode.
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Figure46: Contour plot of velocity u,, [m/s] in the anode.
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Figure47: Contour plot of the global relative error of « , in the anode.
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Figure48: Contour plot of molefraction Y¢ g, inthe anode.
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Figure 49: Contour plot of the global relative error of Y, in the anode.
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Figure 50: Contour plot of molefraction Yo in the anode.
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Figure51: Contour plot of the global relative error of Y ¢ in the anode.
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Figure52: Contour plot of mole fraction Y, in the anode.
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Figure53: Contour plot of the global relative error of Y, in the anode.
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Figure54: Contour plot of mole fraction Y ¢, in the anode.
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Figure 55: Contour plot of the global relative error of Y, in the anode.

[11.60



0.0032
0.0030
0.65
0.0028 0.60
0.55
0.0026 |- 0.50
[ 0.45
[ 0.40
0.0024 | 035
1 0.30
0.0022 | 025
> I 0.20
0.0020 |
0.0018
0.0016 F
0.0014 |
0.0012
0.0010
0.000 0.005 0.010 0.015 X 0.020 0.025 0.030
Figure56: Contour plot of mole fraction Yz, o inthe anode.
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Figure 57: Contour plot of the global relative error of Y, o in the anode.
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Figure 58: Contour plot of pressure p [Pa] in the anode.
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Figure59: Contour plot of the global relative error of p in the anode.
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Figure 60: Current densities j, jco and ju, [A/M?], jimean = 6860.67.
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Channel 80x41 160x81
max. mean max. mean
u-x 3,6E-03 9,4E-04 9,1E-02 4,6E-03
u-y 2,6E-01 4,3E-03 1,1E+00 7,1E-03
Y-CH4 8,1E-04 5,0E-04 8,2E-04 4,2E-04
Y-CO 5,1E-03 1,2E-03 3,3E-02 8,5E-03
Y-H2 1,7E-03 6,3E-04 1,3E-02 5,4E-03
Y-CO2 3,8E-03 8,0E-04 2,0E-02 5,8E-03
Y-H20 2,8E-03 6,6E-04 1,8E-02 6,0E-03
p 1,3E-06 8,0E-07| 7,9E-06 5,2E-06
Anode 80x41 160x81
max. mean max. mean

u-x 1,9E-01 2,9E-03 1,7E-01 1,4E-03
u-y 2,0E-02 3,3E-03 1,9E-02 3,6E-03
Y-CH4 7,8E-04 4,8E-04 8,2E-04 4,2E-04
Y-CO 6,1E-03 1,2E-03 3,3E-02 8,4E-03
Y-H2 1,7E-03 6,1E-04] 1,3E-02 5,3E-03
Y-CO2 7,2E-03 7,7E-04 2,2E-02 5,9E-03
Y-H20 4,0E-03 6,5E-04 1,8E-02 5,8E-03
p 4,0E-05 1,5E-05 9,6E-05 2,8E-05

Figure 61: Comparison of max. and mean error for grid 80 x 41 and 160 x 81 for channel and
anode.

For the output of a SOFC the current densities at the interface of the anode to the elec-
trolyte are an essential result. Fig. 60 shows the current densities j [A/n?], equ. |1(74),
jco, equ. 11(68) and jr,, equ. 11(67). We have also computed the arithmetic mean of j of
the node values at boundary [which iS jican = 6860.67 A/m?. For these quantities we
cannot give error estimates as we did it for the PEMFC in Fig. 26, there the current density
isnamed i. For the PEMFC i was avariabl e that had ameaning only at the reaction layer. If
we needed error estimates for joo and jg, (j istrivia by equ. 11(74)), we had to introduce
them as variables that have a physical meaning only at the interface to the electrolyte, just
aswe did it for 7 in the PEMFC. However, this would increase the number of variables to
10. But asthe entriesin the formulas for the j's have errorsin the 1% range, we can assume
that the j's are accurate also in the 1% range.

As mentioned above the system of SOFC PDEs is humericaly very critical and there
is the suspicion of a hidden singularity or incompatibility of the BCs. If this would be the
case the errors would grow if we use afiner grid because the singularity is better detected,
or at least would not go down as expected from the consistency order ¢ = 4. Halving the
step size would theoretically reduce the error by a factor (1/2)* = 1/16 or roughly one
order of magnitude. Therefore we computed the solution with a grid of 160 x 81 for the
channel and for the anode and compared the errors to those of 80 x 41. Aswe have seen
in the (coloured) figures the error is usually small in the main part of the domain and gets
larger values only in very small regions at the entry or exit. Therefore we investigated also
the mean error, i.e. the arithmetic mean value of the errors in the domain. The max. and
mean errors for grid 80 x 41 and 160 x 81 for channel and anode are depicted in Fig. 61.
What can we learn from these 64 numbers? Where we have small max. errors, the mean
error is not much smaller, so we have a“flat” error distribution. However, where we have
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large max. errors (compared to their neighbouring values), the mean error is by one to two
orders of magnitude smaller, see the following examples in Fig. 61:

channel, wu,: 2.6E-1— 4.3E-3, 1.1E0 — 7.1E-3 ,
anode, uz:  1.9E-1 — 2.9E-3, 1.7E-1 - 1.4E-3

This shows clearly that there are error “peaks’ that indicate a singularity or incompat-
ibility, presumably in the BCs. Thisis what the comparison of max. and mean error tells
us.

Now we compare the errors of the two grids. Where we have large errors, e.g. for u, in
the channel, the max. and mean errors for the fine 160-grid are both larger than those of the
coarser 80-grid. For u, we have for max. and mean error:

2.6E-1 — 1.1EQ, 4.3E-3 — 7.1E-3
All max. errors go up from the 80-grid to the 160-grid except v, u, in the anode. Also
most of the mean errors go up from the 80-grid to the 160-grid. This shows that there is not
the theoretically expected behaviour of an error reduction by afactor of 1/16. Thisconfirms
the assumption of a singularity/incompatibility in the system of PDEs and BCs and CCs.
This needs further investigation of the problem. However, because the financial means were
very short there was not the time to do this. Nevertheless we can trust our results for the
80-grid. This ends the discussion of numerical solution of the SOFC PDEs.

4 Concluding remarks

In chapter 1 we gave ashort survey of the FDEM program package and its possibilities. The
essential advantage of this exceptional black-box PDE solver isthe error estimate. Thisisa
unique feature. To our knowledge nobody else can solve such general nonlinear systems of
PDEswith areliable error estimate. FDEM is an unprecedented generalization of the FDM.
Aslarge technica problems makethe use of large parallel supercomputers mandatory: Also
in thisrespect the FDEM program package is exemplary becauseit is efficiently parallelized
with MPI for shared and distributed memory parallel computers.

In Chapter 2 we report on afruitful cooperation with the ZSW Ulm to solve the PDEs
of PEMFCs. We solved severa models with increasing complexity. Only if one solves the
PDEs of acertain model numerically, the properties of the model cometo light. Our partner,
inthis case ZSW, isresponsible for the PDES, we are responsible for the numerical solution.
The partner will immediately ask us. How good isthe solution, can | trust it? Hetakes it for
granted, that we can solve his PDEs. But he expects a so that we can tell him the quality of
the solution. Asthe PEMFCswererather critical, ZSW asked us for solutions on finer grids
until they were satisfied with the errors. In chapter 2 we described how we implemented
their most elaborate model in FDEM and we discussed the properties of the PDEs from the
point of view of numerics.

In Chapter 3 we report about the numerical solution of the SOFC PDEs that were partly
established and improved in avital cooperation with the IWE of our university. The problem
of SOFCsisrather complicated by the methane reforming process and hence there are many
parameters in the system that must carefully be adapted to get useful solutions. So much of
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the project time was used to tune the model. We report here on the implementation of the
final model. Again the knowledge of the error of the numerical solution was an invaluable
help that opened the eyes to us and to IWE. As in the PDEs are many “ coefficients’ that
themselves depend in a multistage way on the variables, the generation and implementation
of the Jacobian matrices that describe the dependency of the PDEsfrom the variables was a
really hard task. The PDEs of the SOFC are numerically very critical as has been shown in
Chapter 3.

For us the cooperation with the ZSW and IWE was extremely useful to demonstrate
with practical industry-near problems the usefulness of FDEM and we want to thank the
colleagues of these institutes for their engaged cooperation.

Asit will be our task to demonstrate the usefulness of FDEM by possibly many exam-
ples, we are looking for further cooperation partners to solve in common research projects
their problems. The problems may be any type of humerical simulation. If you are inter-
ested you may contact us.
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