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Foreword

From May 2004 to February 2005 the Fuel Cell Research Alliance Baden-Württemberg
(FABZ) granted to the Computer Center of the University of Karlsruhe the financial means
to implement the PDEs (partial differential equations) for the PEMFCs and SOFCs into the
FDEM program package. The PDEs for the PEMFCs should be delivered by the ZSW and
for the SOFCs by the IWE. The special point was that such strongly nonlinear systems of
PDEs, and in the case of SOFCs also on coupled domains, should be solved numerically
whereas for the first time together with the solution should be computed a reliable error
estimate, so that the engineer could trust the numerical solution. This allows to separate
in the modeling process of FCs the model errors from the discretization errors. If there is
no error estimate and there is a discrepancy between experiment and numerical results, one
does not know if the difference comes from inaccuracies of the model or of the numerical
solution method. Therefore an error estimate is a valuable new feature and an essential
advantage. This is below confirmed by the results.

The first thing we all had to learn in this cooperation project was to speak to each other.
This means that the technical engineers learned what the numerical engineers wanted and
the numerical engineers learned what the technical engineers wanted. A special problem
are always the boundary conditions and in the case of SOFCs also the coupling conditions
between the solution for gas channel and for anode. Then the technical engineers could see
from the numerical solution the quality of the used model for their FCs and they then got
the hints how to improve the model. As they got together with the numerical solution an
error estimate they had not to doubt the quality of the delivered numbers. Finally, we had
for the PEMFC and for the SOFC a useable model. If the engineer has such a model, he
can “play” in the computer with the many parameters that are included in such a model,
can adapt them to new measurements and can, above all with the geometrical parameters,
optimize his FC.

Because the financial means for this project were rather limited and the project time
was very short for such a difficult problem, the project ended with the implementation of
the PDEs and some smaller variations of parameters. Ultimately, this project was intended
as a transitional task until in a larger project with industrial background the optimization of
FCs on a broad basis should start. So the purpose to show that the PDEs of FCs of different
types could be efficiently solved numerically on modern parallel supercomputers, with an
error estimate for the generated solution, was fully attained. If industrial partners want to
cooperate and use the invaluable experience of the project partners they should address the
corresponding authors of this report.

This report is written by three different groups, the ZSW, the IWE and the RZ. To avoid
lengthy coordinations, each group has written its part independently in its own preferred
style. So this report consists of three parts: Part I by ZSW, Part II by IWE, Part III by RZ.
Because of the independent writing the pages of the different parts are numbered by e.g.
I.1, I.2 etc. or II.1, II.2 etc.

Above all in Part II and III there are many coloured figures. In the printed version they
are in gray scale and much information is lost. Therefore we recommend to look at these
figures at the screen of a computer in the on-line version of the paper. This is in

http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur/fuelcells.pdf
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Part I:

The Polymer-Electrolyte-Membrane Fuel

Cell (PEMFC)

The aim at PEMFC operation and development is a nearly homogenous current density distribution

and thus power distribution all over the electrochemical active cell area. In a real fuel cell the

electrochemical reaction takes place inhomogeneous over the active cell area. The reaction runs

best, where the best reaction conditions exist, expecially the highest educt concentrations and the

best electrical conductivities for electron and proton conduction. Important mechanisms resulting

in current density inhomogenities are material transport limitations, which appear especially in the

gas diffusion layers (GDLs) of PEMFCs. Material transport limitations in the GDL result beside the

transport resistance caused by the mass transport through the GDL thickness mainly from geometry

effects as e.g. the alternation of gas channels and ribs of the flowfield structure. Therefore in order

to study the behaviour of a fuel cell it is essential to consider multidimensional effects and simulate

multidimensional models.



The model and the PDEs

Within this project a 2D-model of the cathode GDL under the channels and ribs was examined. The

calcutlation region and the boundary conditions are shown in Fig. 1.
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Fig. 1: Sketch: Calculation region and boundary conditions

The structural and geometry parameters according to Fig. 1 are given in Tab. 1.

The following model assumptions are made: constant concentration in the gas channel at given

relative humidity; pure gas transport; phase changes aren’t considered; infinitesimal thin reaction

layer as boundary condition; constant cell voltage; isothermal cell.

Tab. 1: Structural and geometry parameters

parameter symbol unit value source

thickness of the GDL tGDL [m] 190.0 · 10−6 chosen

width of the channel c [m] 1 · 10−3 chosen

width of the rib r [m] 1 · 10−3 chosen
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Within this project two models for the gas phase transport are compared: As first approach Fick’s

diffusion was used as gas transport mechanism, cause of it’s simple model. Afterwards the so called

Mean Transport Pore Model (MTPM) was used as gas phase transport mechanism, which considers

molecular multicomponent diffusion according to Stefan Maxwell, pore diffusion according to Knud-

sen, convection according to Darcy and wall slip. The comparison of both models results should help

to judge, whether the simple Fick’s law is sufficient to model the gas transport in a porous PEMFC

GDL or the more detailed MTPM has to be used.

Below the models governing equations and boundary conditions for the two transport mechanisms

are listed.

Model with Fick’s diffusion as transport mechanism

Governing equations

• transport equation:

.
n
x
o = −ε(x)

τ

Do

RT

∂po
∂x

(1)

.
n
y
o = −ε(x)

τ

Do

RT

∂po
∂y

(2)

.
n
x
w = −ε(x)

τ

Dw

RT

∂pw
∂x

(3)

.
n
y
w = −ε(x)

τ

Dw

RT

∂pw
∂y

(4)

• material balances:

ε(x)

RT

∂po
∂t

= −∂(
.
n
x
o)

∂x
− ∂(

.
n
y
o)

∂y
(5)

ε(x)

RT

∂pw
∂t

= −∂(
.
n
x
w)

∂x
− ∂(

.
n
y
w)

∂y
(6)

One gets 6 PDEs for the dependent variables:
.
n

x
o,

.
n

y
o ,

.
n

x
w,

.
n

y
w, po and pw. In addition the current

density i, which is used in Eq. 8 and in the boundary conditions Eqs. 16, 17, 47 and 48, is considered

as a variable just at the boundary GDL–reaction layer.

The independent variables are x, y and t. The material balances are set in their general form. The

calculations were done for the steady state case.

The dependent variables are listed in Tab. 2.

In PEMFCs the GDL is compressed under the ribs. In order to consider this effect and it’s impact

on the porosity a location dependent porosity is used:

ε(x) = 0.5 ε0


kf + 1 + (1− kf)

exp
[
a cos( 2π

c+rx) + c
r

]
− exp

[
−a cos( 2π

c+rx)
]

exp
[
a cos( 2π

c+rx) + c
r

]
+ exp

[
−a cos( 2π

c+rx)
]


 (7)

The origin of the x coordinate is in the middle of the channel, as shown in Fig. 1.

The porosity via the x-location for the model’s standard parameters is shown in Fig. 2.

The parameters needed for the governing equations are listed in Tab. 3.
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Tab. 2: Dependent variables for Fick’s law

parameter symbol unit

molar flux density of

oxygen in x-direction

.
n

x
o mol m−2 s−1

molar flux density of

oxygen in y-direction

.
n

y
o mol m−2 s−1

molar flux density

of water vapour in

x-direction

.
n

x
w mol m−2 s−1

molar flux density

of water vapour in

y-direction

.
n

y
w mol m−2 s−1

oxygen partial pressure po Pa

water vapour partial

pressure

pw Pa

current density i A m−2

Tab. 3: Parameters for the governing equations

parameter symbol unit value source

Univ. gas constant R [kg m2 s−2 mol−1K−1] 8.3145

Faraday’s constant F [C mol−1] 9.648531 · 104

Temperature T [K] 333 chosen

Diffusion coefficient O2

in air

Do [m2 s−1] 0.178 · 10−4 [3]

Diffusion coefficient

H2O vapour in air

Dw [m2 s−1] 0.22 · 10−4 [3]

Porosity of the GDL

without compression

ε0 [–] 0.7 chosen

Porosity of the GDL

with compression

ε(x) [–] calculated Eq. 7

Parameter for the

porosity calculation

a [–] 10 (2 – 20) chosen

Compression factor kf [–] 0.7 chosen

Tortuosity of the GDL τ [–] 4 chosen



Part I: The PEMFC I.5

0 0.2 0.4 0.6 0.8 1

x 10
−3

0.45

0.5

0.55

0.6

0.65

0.7

0.75

x−location [m]

po
ro

si
ty

 [−
]

Fig. 2: location dependent porosity

Boundary conditions

For the calculation of the boundary conditions the current density i in [A m−2] at the reaction layer

according to the Tafel equation is needed (see [2]):

i = fvi0

(
pDo

prefo

)γ
exp



αnF

(
U0 − UZ − dmem

κmem
i
)

RT


 (8)

pD
o is the value of the oxygen partial pressure at the reaction layer (Index D). In Eq. 8 the ohmic

resistance of the membrane is already considered and it is assumed, that the membrane conductivity

κmem stays constant, according to a homogenous membrane humidification.

In addition the water vapour saturation pressure pS
w in [Pa] according to the Antoine equation is

needed for the calculation of the boundary values:

log(10−2 · pSw) = A− B

C + (T − 273.15)
(9)

Eq. 9 is a numerical equation.

The boundary conditions are listed below:

• channel boundary (UC):

In the channel a constant pressure at air composition and given relative humidity ϕ is assumed:

pUCw = ϕpSw (10)

pUCo = (pch − pUCw ) · yUCo,a (11)



Part I: The PEMFC I.6

• rib boundary (UR):

The rib is assumed as impermeable for the reaction gases:

.
n
y,UR
o = 0 (12)
.
n
y,UR
w = 0 (13)

• left (L) and right (R) boundary:

Symmetry boundary condition:

.
n
x,L/R
o = 0 (14)
.
n
x,L/R
w = 0 (15)

• reaction layer boundary (D):

Molar flux density according to Faraday’s law in dependence of the current density in Eq. 8:

.
n
y,D
o =

1

4F
i (16)

.
n
y,D
w = − 1

2F
i (17)

The negative sign in Eq. 17 marks, that the oxygen and the water vapour have to be transported in

opposite directions.

The parameter needed for the boundary conditions are listed in Tab. 4.
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Tab. 4: Parameters for the boundary conditions

parameter symbol unit value source

Total pressure in the

channel

pch [Pa] 1.013 · 105 chosen

Relative humidity in

the channel

ϕ [–] 0.8 chosen

Mole fraction of O2 in

air

yUC
o,a [–] 0.21

Exchange current den-

sity

i0 [A m−2
Pt ] 6.7 · 10−5 [2]

Transfer coefficient α [–] 0.2695 [2]

Number of electrons

involved in electrode

reaction (Faraday)

n [–] 4

Reference pressure pref
o [Pa] 1.013 · 105 [2]

Surface extension fac-

tor at 0.15 mgPt cm−2

fv [m2
Pt m−2] 79 [2]

Reaction order γ [–] 0.75 [2]

Open circuit voltage U0 [V] 1.0 chosen

Cell voltage UZ [V] 0.6 chosen

Membrane thickness dmem [m] 30.0 · 10−6 chosen

Membrane electric

conductivity

κmem [S m−1] 10.0 [6]

Water vapour satura-

tion pressure

pS
w [Pa] calculated Eq. 9

A [–] 8.0732991 [6]

Antoine parameters B [–] 1656.39 [6]

C [–] 226.86 [6]



Part I: The PEMFC I.8

Model with MTPM as transport mechanism

Governing equations

The MTPM is now applied for the transport equations ([1]). So the transport equations become

implicit and the nitrogen partial pressure pn and the total pressure p have to be considered as further

variables.

• transport equations:

.
n
x
o

DKno
+
pw

.
n
x
o −po

.
n
x
w

(Dow · p)
+
pn

.
n
x
o −po

.
n
x
n

(Don · p)
= − 1

RT

∂po
∂x

+
1

RTp
po
∂p

∂x
−
[

Bo
DKno

+
Bo

(Dow · p)
pw

(
1− Bw

Bo

)

+
Bo

(Don · p)
pn

(
1− Bn

Bo

)]
po

RTp

∂p

∂x
(18)

.
n
y
o

DKno
+
pw

.
n
y
o −po

.
n
y
w

(Dow · p)
+
pn

.
n
y
o −po

.
n
y
n

(Don · p)
= − 1

RT

∂po
∂y

+
1

RTp
po
∂p

∂y
−
[

Bo
DKno

+
Bo

(Dow · p)
pw

(
1− Bw

Bo

)

+
Bo

(Don · p)
pn

(
1− Bn

Bo

)]
po

RTp

∂p

∂y
(19)

.
n
x
w

DKnw
+
po

.
n
x
w −pw

.
n
x
o

(Dwo · p)
+
pn

.
n
x
w −pw

.
n
x
n

(Dwn · p)
= − 1

RT

∂pw
∂x

+
1

RTp
pw
∂p

∂x
−
[

Bw
DKnw

+
Bw

(Dwo · p)
po

(
1− Bo

Bw

)

+
Bw

(Dwn · p)
pn

(
1− Bn

Bw

)]
pw

RTp

∂p

∂x
(20)

.
n
y
w

DKnw
+
po

.
n
y
w −pw

.
n
y
o

(Dwo · p)
+
pn

.
n
y
w −pw

.
n
y
n

(Dwn · p)
= − 1

RT

∂pw
∂y

+
1

RTp
pw
∂p

∂y
−
[

Bw
DKnw

+
Bw

(Dwo · p)
po

(
1− Bo

Bw

)

+
Bw

(Dwn · p)
pn

(
1− Bn

Bw

)]
pw

RTp

∂p

∂y
(21)

.
n
x
n

DKnn
+
po

.
n
x
n −pn

.
n
x
o

(Dno · p)
+
pw

.
n
x
n −pn

.
n
x
w

(Dnw · p)
= − 1

RT

∂pn
∂x

+
1

RTp
pn
∂p

∂x
−
[

Bn
DKnn

+
Bn

(Dno · p)
po

(
1− Bo

Bn

)

+
Bn

(Dnw · p)
pw

(
1− Bw

Bn

)]
pn

RTp

∂p

∂x
(22)

.
n
y
n

DKnn
+
po

.
n
y
n −pn

.
n
y
o

(Dno · p)
+
pw

.
n
y
n −pn

.
n
y
w

(Dnw · p)
= − 1

RT

∂pn
∂y

+
1

RTp
pn
∂p

∂y
−
[

Bn
DKnn

+
Bn

(Dno · p)
po

(
1− Bo

Bn

)

+
Bn

(Dnw · p)
pw

(
1− Bw

Bn

)]
pn

RTp

∂p

∂y
(23)

• material balances:

ε(x)

RT

∂po
∂t

= −∂(
.
n
x
o)

∂x
− ∂(

.
n
y
o)

∂y
(24)

ε(x)

RT

∂pw
∂t

= −∂(
.
n
x
w)

∂x
− ∂(

.
n
y
w)

∂y
(25)

ε(x)

RT

∂pn
∂t

= −∂(
.
n
x
n)

∂x
− ∂(

.
n
y
n)

∂y
(26)

• condition for the total pressure:

p = po + pw + pn (27)

Finally one gets 9 PDE’s and one algebraic equation for the dependent variables
.
n

x
o,

.
n

y
o ,

.
n

x
w,

.
n

y
w,

.
n

x
n,

.
n

y
n, po, pw, pn and p. In addition, as in the previous model, the current density i, which is used in
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Eq. 8 and in the boundary conditions Eqs. 16, 17, 47 and 48, is considered as a variable just at the

boundary to the reaction layer.

The comparison of Eqs. 1 to 4 with Eqs. 18 to 23 shows, that the model with the MTPM as transport

mechanism is more elaborate as the one with Fick’s law.

The dependent variables for the MTPM are listed in Tab. 5

For the transport equations the following partially variable dependend parameters are needed. All

new parameters within the MTPM are listed in Table 6.

The binary diffusion coefficients Djk in the continuum in [m2 s−1] are ([5]):

Djk =
0.01013 T 1.75

√
1 · 10−3Mj+Mk

MjMk

p
[
V d

1
3

j + V d
1
3

k

] j, k = o, w, n (28)

Eq. 28 is a numerical equation.

The binary diffusion coefficients in the porous medium Djk in [m2 s−1] are calculated from the binary

diffusion coefficients in the continuum by multiplication with the structural parameter ε(x)/τ :

Djk =
ε(x)

τ
Djk j, k = o, w, n (29)

In the transport equations Eqs. 18 to 23 the following abbreviation is used:

(Djk · p) =
ε(x)

τ

0.01013 T 1.75
√

1 · 10−3Mj+Mk

MjMk[
V d

1
3

j + V d
1
3

k

] j, k = o, w, n (30)

The effective permeabilities Bj in [m2 s−1] are according to [1]:

Bj = DKnj
ωνj +Kj

1 +Kj
+
〈r2〉 ε(x)

τ p

8η
j = o, w, n (31)

In Eq. 31 the following variable dependent parameters are needed:

The square roots of the relative molecular weights of the gas components νj:

νj =

√√√√Mj/
K∑

k=1

pk
p
Mk j = o, w, n (32)

In Eq. 32 the summation is done with the components k = o,w,n.

The total viscosity η in [Pa s] is (see [6]):

η =

∑K
k=1 pkηk

√
Mk∑K

k=1 pk
√
Mk

(33)

The Knudsen diffusion coefficients DKnj in [m2 s−1] are:

DKnj =
4

3

ε(x)

τ
〈r〉
√

2RT

πMj
j = o, w, n (34)
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Tab. 5: Dependent variables for the MTPM

parameter symbol unit

molar flux density of

oxygen in x-direction

.
n

x
o mol m−2 s−1

molar flux density of

oxygen in y-direction

.
n

y
o mol m−2 s−1

molar flux density

of water vapour in

x-direction

.
n

x
w mol m−2 s−1

molar flux density

of water vapour in

y-direction

.
n

y
w mol m−2 s−1

molar flux density of

nitrogen in x-direction

.
n

x
n mol m−2 s−1

molar flux density of

nitrogen in y-direction

.
n

y
n mol m−2 s−1

oxygen partial pressure po Pa

water vapour partial

pressure

pw Pa

nitrogen partial pres-

sure

pn Pa

total pressure p Pa

current density i A m−2
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The dimensionless Knudsen numbers Kj are achieved by dividing the mean free path lengths λj by

the mean pore diameter 2 〈r〉:
Kj =

λj
2〈r〉 j = o, w, n (35)

The mean free path lenghts λj in [m] are calculated according to the kinetic theory of gases:

λj = ηj

√
3RT

pjMjp
j = o, w, n (36)

Boundary conditions

Below the boundary conditions for the MTPM are listed in short form. The current density i is

calculated with Eq. 8; the water vapour saturation pressure pS
w is calculated with Eq. 9.

• channel boundary (UC):

In the channel a constant pressure at air composition and given relative humidity ϕ is assumed:

pUC = pch (37)

pUCw = ϕpSw (38)

pUCo = (pch − pUCw ) · yUCo,a (39)

pUCn = (pch − pUCw ) · (1− yUCo,a ) (40)

• rib boundary (UR):

The rib is assumed as impermeable for the reaction gases:

.
n
y,UR
o = 0 (41)
.
n
y,UR
w = 0 (42)
.
n
y,UR
n = 0 (43)

• left (L) and right (R) boundary:

Symmetry boundary condition:

.
n
x,L/R
o = 0 (44)
.
n
x,L/R
w = 0 (45)
.
n
x,L/R
n = 0 (46)

• reaction layer boundary (D):

Molar flux density according to Faraday’s law in dependence of the current density from eq. 8

and gas tight membrane for the nitrogen flow:

.
n
y,D
o =

1

4F
i (47)

.
n
y,D
w = − 1

2F
i (48)

.
n
y,D
n = 0 (49)

The parameters for the MTPM boundary conditions are the same as listed for the Fick’s law boundary

conditions.
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Tab. 6: Parameters for the calculation equations with the MTPM

parameter symbol unit value source

Binary diffusion coeffi-

cients

Djk, Djk [m2 s−1] calculated Eqs. 28, 29

Diffusion volume of O2 Vdo numerical eq. 16.6 [5] Da 35

Diffusion volume of

H2O vapour

Vdw numerical eq. 12.7 [5] Da 35

Diffusion volume of N2 Vdn numerical eq. 17.9 [5] Da 35

Effective permeabili-

ties

Bj [m2 s−1] calculated Eq. 31

Square roots of the

relative molecular

weights

νj [–] calculated Eq. 32

Total viscosity η [Pa s] calculated Eq. 33

Dynamic viscosity of

O2

ηo [Pa s] 22.53 · 10−6 at 60 ◦ C [5] Db 71

Dynamic viscosity of

H2O vapour

ηw [Pa s] 12.27 · 10−6 at 100 ◦ C [5] Db 8

Dynamic viscosity of

N2

ηn [Pa s] 19.396 · 10−6 at 60 ◦ C [5] Db 37

Molecular weight of O2 Mo [kg mol−1] 2 · 16.0 · 10−3

Molecular weight of

H2O

Mw [kg mol−1] (2 · 1.008 + 16.0) · 10−3

Molecular weight of N2 Mn [kg mol−1] 2 · 14.01 · 10−3

Knudsen diffusion co-

efficients

DKnj [m2s−1] calculated Eq. 34

slip factor ω [–] π
4 [4]

Knudsen numbers Kj [–] calculated Eq. 35

Mean free path lengths λj [m] calculated Eq. 36

Mean transport pore

radius

〈r〉 [m] 38.5 · 10−6 measured

Pore radii distribution 〈r2〉 [m2] 1.826 · 10−10 measured



Discussion of the results

In the following calculation results of variables within the GDL direct at the reaction layer are

compared for Fick’s law and the MTPM as transport mechanism. For the results the standard

parameters listed above were used (cell voltage 0.6 V) unless otherwise noted. According to Fig. 1

the x discretization starts in the middle of the channel and ends in the middle of the rib. All shown

plots were calculated with a grid of 200×201 cells, which was found to result in acceptable calculation

errors.

In Fig. 3 the oxygen partial pressure is plotted. As expected the oxygen degrades from the channel

to the rib. With the MTPM the oxygen consumption is lower as with Fick’s law. The maximum

deviation of both models results is approximately 15 %.

In Fig. 4 the water vapour partial pressure is shown. The MTPM leads to lower water vapour

partial pressure in the GDL. The maximum deviation according to Fick’s law is approximately 15 %.

The water vapour saturation pressure for the standard cell temperature of 60 ◦C is approximately

2·104 Pa. Thus as can be seen from Fig. 4 the water vapour partial pressure exceeds the water vapour

saturation pressure under the rib, which effect is stronger with Fick’s law as transport mechanism.

This means, that under the rib water will condense and liquid water could block the transport pores

for the gas transport. In the current model condensation and evaporation aren’t considered and it

is assumed, that all the product water has to be transported through the GDL in the gas phase,

although the saturation pressure is exceeded. As the result in Fig. 4 shows in a further model also

phase changes should be included.

In Fig. 5 the current density distribution at the reaction layer is plotted. As expected, the current

density drops strongly beneath the ribs and there is an inhomogenous current density distribution

between the channel and the rib. Within this model just the descent of the oxygen partial pressure

causes the drop of the current density in Eq. 8 and two phase effects are neglected, which would

enforce the inhomogenity of the current density distribution, as could be seen from Fig. 4. Because of

the higher oxygen partial pressure with the MTPM also the current density is higher. The maximal

deviation with both models is approximately 10 %.

In fuel cell practice the voltage current density characteristic (U-i-plot) of a fuel cell is often used to

evaluate it’s behaviour. So some points of an U-i-plot were calculated and shown in Fig. 6.

From Fig. 6 it could be seen, that the deviation between Fick’s law and the MTPM as transport

mechanism rises with rising current density. Because of convergence problems it wasn’t possible to

calculate for lower cell voltages, i.e. higher current densities.
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Fig. 3: Oxygen partial pressure at the reaction layer for standard conditions
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Fig. 4: Water vapour partial pressure at the reaction layer for standard conditions
(saturation pressure at 60 ◦C is approximately 2·104 Pa)
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Conclusion

A two dimensional PEMFC model was examined and the gas transport was modelled with two

material transport mechanisms: the simple Fick’s diffusion law and the more detailed MTPM.

As one result the maximum deviations of the calculations with both models were found to be in the

range of 10 to 15 %. This has to be considered, when using the simple Fick’s law instead of the

MTPM. Thus for qualitative calculations the simple Fick’s law could be sufficient. For more precisely

calculations the MTPM has to be used or the Fick’s law has to be corrected in an adequate way.

A further result of the calculation within this project is, that at the low operation temperature of

60 ◦C already at a cell potential of 0.6 V the water vapour saturation pressure could be exceeded

beneath the flowfield ribs and thus liquid water could limit the material transport under the ribs and

therefore two phase effects should be considered in model refinement.
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The SOFC II.1 
 

The Solid Oxide Fuel Cell (SOFC) 
 
A major advantage of the solid oxide fuel cell (SOFC) in comparison to other fuel cell types 
is that it can be operated directly on practical hydrocarbon fuels without the need for a 
complex and cost intensive external fuel processing unit. Internal reforming allows the direct 
conversion of hydrocarbon fuel into hydrogen and carbon monoxide at the catalytic active 
anode. As feed natural gas is preferred because of the high availability and the easy handling 
of the gaseous components. In order to understand the processes which occur during internal 
reforming on the anode and to be able to identify processes which limit the conversion of the 
main component methane, it is necessary to develop multidimensional mathematical models. 
 

The model and the PDE’s 
 
In this study a 2D-model is developed considering the processes in the anode and in the anode 
gas channel of a single cell. Figure 1 shows the calculation region. 

 

electrolyte
dA anode
 

gas channeldK

y 

x 
rib

lK

 
Gas flow  

 
Fig. 1. Sketch: Calculation region 

 
 



The SOFC II.2 
 

 The structural and the geometry parameters according to fig.1 are given for the base case in 
tab.1 

 
Tab. 1. Structural and geometry parameters (base case) 

 
parameter symbol unit value source 
thickness of the 
anode 

dA m 50·10-6 IWE 

height of the 
anode gas channel 

dK m 1·10-3 IWE 

length of the 
anode gas channel 

lK m 35·10-3 IWE 

 
The model assumptions are as follows: 
Steady state and ideal gas behaviour are assumed. The (single) cell is mounted in a furnace. 
Temperature gradients that might occur by the heat consumption of the reforming reaction are 
flattened by radiation from the surface of the furnace walls. Therefore the temperature is 
considered to be uniform in the cell and energy balances are not included in this version of the 
model. It is assumed that the influence of axial dispersion is low compared to the convective 
flow in x-direction [1]. For simplification, axial dispersion is therefore not considered in this 
model. For diffusion, Fick’s law is applied. The area, in which the electrochemical reactions 
occur is restricted to a thin layer at the interface anode-electrolyte [2]. Therefore, these 
reactions are considered to take place only at the boundary anode-electrolyte.  
Below the governing equations and boundary conditions for the anode gas channel are listed 
 
Anode gas channel 
 

• Species balances 

( ) ( )
( ),

,
, ,, , 0

K i K
i gas

K y K i KK x K i K

p Y
D

yp u Yp u Y
x y y

⎛ ⎞∂ ⋅
∂ ⎜ ⎟⎜ ⎟⎡ ⎤ ∂∂ ⋅ ⋅∂ ⋅ ⋅ ⎝ ⎠− + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
=  (1)-(4) 

where i = CH4, CO, H2, H2O 
 

• Equation of continuity 
 

( ) ( ),, 0
∂ ⋅∂ ⋅

+
∂ ∂

K y KK x K uu
x y

ρρ
=  (5) 

 
• Navier-Stokes equations 
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The SOFC II.3 
 

, ,, , , , ,
, ,

22
3

⎛ ⎞⎛ ∂ ⎞ ⎡∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂ ∂
⋅ + = − + ⋅ ⋅ − ⋅ + + ⋅ +⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣⎝ ⎠

y K y Kx K x K x K x K x KK
x K y K

u uu u u u upu u
x y x x x x y y y x

ρ µ
∂ ⎤

⎦
µ

 (6) 
 

, , , ,, ,
, ,

22
3

⎛ ⎞∂ ∂ ⎛ ∂ ∂ ⎞ ⎡ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⋅ + = − + ⋅ ⋅ − ⋅ + + ⋅ +⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣⎝ ⎠

y K y K y K y K y Kx K x KK
x K y K

u u u u uu upu u
x y y y y x y x y x

ρ µ , ⎤

⎦
µ

 (7) 
 

• Dalton’s law 
 

, 1i K
i

Y =∑  (8) 

 
One obtains 7 PDEs and one algebraic equation for the 8 dependent variables in the anode gas 
channel: pK, ux,K, uy,K, , , 

4 ,CH KY ,CO KY
2 ,H KY , and 

2 ,CO KY
2 ,H O KY . The independent variables are x 

and y. 
The Diffusion coefficient Di,gas of component i in the gas mixture is calculated by the Wilke 
approach [2]: 
 

,
1
( / )

i
i gas

j ij
j i

YD
Y D

≠

−
=

∑  i = CH4, CO, H2, CO2, H2O  (9) 

 
The binary diffusion coefficients Dij are obtained by using the theory of Chapman and 
Enskong (see tab 2). 
 

Tab. 2. Binary Diffusion coefficients Dij/ [m2/s], 950 oC [3] 
 

 CH4  CO H2 CO2 H2O 
CH4 - 2,34e-4 7,46e-4 1,95e-4 2,91e-4 
CO 2,34e-4 - 8,05e-2 1,75e-3 2,80e-2 
H2 7,46e-4 8,05e-4 - 6,91e-3 9,53e-2 

CO2 1,95e-4 1,75e-4 6,91e-4 - 2,28e-2 
H2O 2,91e-4 2,80e-4 9,53e-4 2,28e-4 - 

 
For the calculation of the fluid density the ideal gas law is applied: 
 

M

p
R T

ρ =   in (kg/m3)      where M
i i

i

RR
Y M

=
⋅∑

 and i = CH4, CO, H2, CO2, H2O  (10) 

The viscosity of the gas mixture is obtained via the equation (see [3]) 
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i i

i j ij
j

Y
Y
µ

µ =
Ψ∑ ∑

 in 1·10-7 Pa·s  i,j =CH4, CO, H2, CO2, H2O (11)  

 with 

20.5 0.25

0.5

1

8 1

ji

j i

ij

i
j

M
M

M
M

µ
µ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣Ψ =
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎦   i,j =CH4, CO, H2, CO2, H2O (12) 

 
The viscosity of the single components is calculated by the expression [3]: 
 

i
i 2

i v,i

M T
844µ =

σ Ω
       in 1·10-7 Pa·s (13)  

with v,i

i i i

1.16145 0.52487 2.162
kT kT kTexp 0.773 exp 2.438

Ω = + +
⎛ ⎞ ⎛
⎜ ⎟ ⎜ε ε ε⎝ ⎠ ⎝

⎞
⎟
⎠

 i =CH4, CO, H2, CO2, H2O (14) 

 
In Tab. 3 the dependent variables of the anode gas channel are listed 
 

Tab.3. Dependent variables (anode gas channel) 
 

Parameter symbol units 

flow velocity in x-direction ux,K m s-1

flow velocity in y-direction uy,K m s-1

mole fraction of methane  4 ,CH KY  - 

mole fraction of carbon 
monoxide ,CO KY  - 

mole fraction of hydrogen 2 ,H KY  - 

mole fraction of carbon 
dioxide 2 ,CO KY  - 

mole fraction of steam 2 ,H O KY  - 

Pressure pK Pa 

 
 

                                    
Boundary conditions.   
 

• Rib boundary  (y=0)  
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The SOFC II.5 
 

The rib is assumed to be impermeable for gases 
 (15) , 0y Ku =

 , 0
∂

=
∂

i KY
y

   i =CH4, CO, H2, CO2, H2O  (16-20) 

, 0=x Ku  (21) 

• Channel boundary ( y=dK) 

( ) ( ),
, ,

∂ ⋅ ∂ ⋅
=

⋅ ∂ ⋅ ∂
K i K A i Aeff

i gas i gas

p Y p Y
D D

R T
,

y R T y
  i =CH4, CO, H2, CO2, H2O (22)-(25) 

, ,=y K y Au u   (26) 

, ,=i K i AY Y   (27)-(32) 

=K Ap p   (33) 

 

• Left boundary (x=0)   

A parabolic velocity profile is assumed at the inlet of the anode gas channel 

,
o

i K iY Y=   i =CH4, CO, H2, CO2, H2O (34)-(38) 

, 0y Ku =   (39) 

, ,max , ,max2
, 2

4
4

⋅
= − +x K x K

x K
K K

u u
u y

d d
y  (40) 

This is the parabolic entry profile with ux,K,max in the middle of the channel 

 

• Right boundary (x=lK, )  

pK=patm (41) 

The other variables at the outlet of the anode gas channel are calculated by the governing 
equations  

 

 

Tab.4. Parameters for the governing equations and the boundary conditions (anode gas 
channel) 

 

parameter symbol units value source 

Diffusion coefficient of 
component i in the gas 

Di,gas m2 s-1 eq. (9) [3] 
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mixture 

Binary Diffusion 
coefficients 

Dij m2 s-1 tab 2 
[3] 

Molar mass of methane 
MCH4 10-3 

kg/mol 
16 [3] 

Molar mass of carbon 
monoxide 

MCO 10-3 

kg/mol 
28 [3] 

Molar mass of carbon 
dioxide 

MCO2 10-3 

kg/mol 
44 [3] 

Molar mass of hydrogen 
MH2 10-3 

kg/mol 
2 [3] 

Molar mass of steam 
MH2O 10-3 

kg/mol 
18 [3] 

Maximum flow velocity 
in x-direction at inlet of 
gas channel 

uo
x,max m s-1 0.5 chosen 

Molar fraction of methane 
at channel inlet 4CH

oY  - 0.33 
chosen 

Molar fraction of carbon 
monoxide at channel inlet 

o
COY  - 0 

chosen 

Molar fraction ofhydrogen 
at channel inlet 2

o
HY  - 0 

chosen 

Molar fraction of carbon 
dioxide at channel inlet 2CO

oY  - 0 
chosen 

Molar fraction of steam at 
channel inlet 2H O

oY  - 0.67 chosen 

Hard sphere diameter of 
methane 

σCH4 3.758 
Å 

[3] 

Hard sphere diameter of 
carbon monoxide 

σCO 3.69 Å [3] 

Hard sphere diameter of 
carbon dioxide 

σCO2 3.941 Å [3] 

Hard sphere diameter of 
hydrogen 

σH2 2.827 Å [3] 

Hard sphere diameter of σH2O 2.641 Å [3] 
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steam 

Lennard-Jones-Parameter 
of methane 

εCH4/k 148.6 
K 

[3] 

Lennard-Jones-Parameter 
of carbon monoxide 

εCO/k 91.7 K [3] 

Lennard-Jones-Parameter 
of carbon dioxide 

εCO2/k 195.2 K [3] 

Lennard-Jones-Parameter 
of hydrogen 

εH2/k 59.7 K [3] 

Lennard-Jones-Parameter 
of steam 

εH2O/k 809.1 K [3] 

 

Anode  
 

Below the governing equations for the anode are listed. 

 
• Species balances 

( ) ( )
( ) ( )4 4

4 4

4 4

4

, ,
, ,

, , , , 0

A CH A A CH Aeff eff
CH gas CH gas

A x A CH A A y A CH A
CH

p Y p Y
D D

R T y R T xp u Y p u Y
r

R T x R T y y x

⎛ ⎞ ⎛ ⎞∂ ⋅ ∂ ⋅
⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟⋅ ∂ ⋅ ∂⎡ ⎤ ⎡ ⎤∂ ⋅ ⋅ ∂ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥− − + +

⋅ ∂ ⋅ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− =

 
 (42)

( ) ( )
( ) ( )

4

, ,
, ,

, ,, , 0

A CO A A CO Aeff eff
CO gas CO gas

A y A CO AA x A CO A
CH s

p Y p Y
D D

R T y R T xp u Yp u Y
r r

R T x R T y y x

⎛ ⎞ ⎛ ⎞∂ ⋅ ∂ ⋅
∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤ ⋅ ∂ ⋅ ∂⎡ ⎤ ∂ ⋅ ⋅∂ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠− − + + +⎢ ⎥⎢ ⎥

⋅ ∂ ⋅ ∂ ∂ ∂⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
− =

 (43)

( ) ( )
( ) ( )2 2

2 2

2 2

4

, ,
, ,

, , , , 3 0

A H A A H Aeff eff
H gas H gas

A x A H A A y A H A
sCH

p Y p Y
D D

R T y R T xp u Y p u Y
r r

R T x R T y y x

⎛ ⎞ ⎛ ⎞∂ ⋅ ∂ ⋅
⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟⋅ ∂ ⋅ ∂⎡ ⎤ ⎡ ⎤∂ ⋅ ⋅ ∂ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥− − + + +

⋅ ∂ ⋅ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
+ =

 (44)

( ) ( )
( ) ( )2 2

2 2

2 2

, ,
, ,

, , , , 0

⎛ ⎞ ⎛ ⎞∂ ⋅ ∂ ⋅
⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟⋅ ∂ ⋅ ∂⎡ ⎤ ⎡ ⎤∂ ⋅ ⋅ ∂ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥− − + +

⋅ ∂ ⋅ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A CO A A CO Aeff eff
CO gas CO gas

A x A CO A A y A CO A
s

p Y p Y
D D

R T y R T xp u Y p u Y
r

R T x R T y y x
+ =

 (45) 

 7



The SOFC II.8 
 

( ) ( )
( ) ( )2 2

2 2

2 2

4

, ,
, ,

, , , ,

0

A H O A A H O Aeff eff
H O gas H O gas

A x A H O A A y A H O A

CH

s

p Y p Y
D D

R T y R T xp u Y p u Y
r

R T x R T y y x

r

⎛ ⎞ ⎛ ⎞∂ ⋅ ∂ ⋅
⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟⋅ ∂ ⋅ ∂⎡ ⎤ ⎡ ⎤∂ ⋅ ⋅ ∂ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥− − + + −

⋅ ∂ ⋅ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− =
  (46) 

 

 

• Darcy’s law 

,
∂

= −
∂

A
x A

p

p µ u
x k

  (47) 

,
∂

= −
∂

A
y A

p

p µ u
y k

  (48) 

 

• Dalton’s law 

, 1=∑ i A
i

Y  (49) 

 
One obtains 7 PDEs and one algebraic equation for the 8 dependent variables in the anode: 
ux,A, uy,A, pA, , , 

4 ,CH AY ,CO AY
2 ,H AY , und 

2 ,CO AY
2 ,H O AY . The independent variables are x and y. 

The effective diffusion coefficients Deff
i,gas are calculated from the diffusion coefficient Di,gas 

and from the Knudsen Diffusion coefficient DK
i by the equation  

,
,

1 1
e ff K
i g a s i

i g a s
D Dε

τ

= +
1

D  (50) 

The porosity ε of the anode is estimated to be 30%. For the tortuosity τ a value of 3 is 
assumed.  
The reactions occurring on the (inner) anode surface are the reforming reaction  

CH4  +  H2O  → CO +  3H2   (51) 

which is accompanied by the shift reaction 

CO  +  H2O    H2  +  CO2   (52) 

For the rate of the reforming reaction on a Ni/YSZ-cermet an expression is employed which 
was found by [4]: 
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( ) [ ]
4 4
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57840
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J
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⎛ −⎡ ⎤

= ⋅ ⎜⎢ ⎥
⎣ ⎦ ⎝ ⎠

⎞
⎟  (53) 

For the shift reaction, a volumetric expression is used which is calculated from the 
experimental results presented in [5]: 

[ ] [ ]
3 2 3 22 2 2

J J
mol mol2 2mol mol

s A CO,A H O,A A CO ,A H ,Am Pa s m Pa s

112131 132467
r 0.0437 exp p Y Y 0.425 exp p Y Y

R T R T
⎛ ⎞ ⎛ ⎞

⎡ ⎤ ⎡ ⎤= ⋅ − − ⋅ −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⋅ ⋅⎝ ⎠ ⎝ ⎠
 (54) 

 

In tab. 5 the dependent variables of the anode are listed 
 

Tab.5. Dependent variables (anode) 
parameter symbol units 

flow velocity in x-direction ux,A m s-1

flow velocity in y-direction uy,A m s-1

mole fraction of methane  4 ,CH AY  - 

mole fraction of carbon 
monoxide ,CO AY  - 

mole fraction of hydrogen 2 ,H AY  - 

mole fraction of carbon 
dioxide 2 ,CO AY  - 

mole fraction of steam 2 ,H O AY  - 

pressure pA Pa 

 
 

Below the relevant boundary conditions for the anode are listed. 

 

Boundary conditions     

• Left boundary ( x=0) 

The left boundary is assumed to be permeable for the gases.  

, 0=y Au  (55) 

Yi =Yi
0    i =CH4, CO, H2, CO2, H2O (56)-(60) 

 
• Interface anode-electrolyte (y = dA+dK) 
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  (61) 
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  (62) 

( )2 2
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∂
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  (63) 

( )2 2

2 , 2

∂
−

⋅ ∂
A H O
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p Y j
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R T y F
 (64) 

( )2

2 , 2

∂
−

⋅ ∂
A COeff CO

CO gas

p Y
= −

jD
R T y F

 (65) 

 
• Right boundary (x = lK) 

pA=patm

 (66)
The other variables at the outlet of the anode gas channel are calculated by the governing 
equations  

 

The current densities for H2 and CO, jH2 and jCO, respectively, are calculated from the cell 
voltage U (eq. (67)-(68)). The equivalent circuit diagram which forms the basis of the model 
is depicted in figure 2.  

 

 
 
 

Fig. 2. Equivalent circuit diagram for the electrical processes in the SOFC [6] 
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 (68) 

The expression for the area-specific polarization resistance of H2, RA,H2, is of the form (see 
[1]) 

[ ] ( )2

2

5
0 .259 2

,
,

1 .1 10 /1 20 .213 10 / exp H A
A H

J m olFA m Y
R R T R T

⎛ ⎞×
⎡ ⎤= ⋅ ⋅ −⎜ ⎟⎣ ⎦

⎝ ⎠
 (69) 

For CO, the expression is modified so that RA,CO/RA,H2 = 2.6  which corresponds to the mean 
value obtained by Matsuzaki and Yasuda [7]: 

[ ] ( )
5

0 .258 2
,

,

1 .1 10 /1 20 .82 10 / exp C O A
A C O

J m o lFA m Y
R R T R T

⎛ ⎞×
⎡ ⎤= ⋅ −⎜ ⎟⎣ ⎦

⎝ ⎠
  (70) 

 
For the cathode, the expression for the area specific polarization resistance is taken from [1]: 

[ ] ( )
5

0 .2510 2 1 .6 10 /1 41 .49 10 / exp 0 .21
K

J m o lFA m
R R T R T

⎛ ⎞×
⎡ ⎤= ⋅ −⎜ ⎟⎣ ⎦

⎝ ⎠
 (71) 

The Nernst voltages are calculated according to equations (72) and (73), respectively 

2

2 2

2

,
, ,

,

ln
2

= + 2H A Oo
Nernst H Zelle H

H O A

Y YRTU U
F Y  (72) 

2

2

,
, ,

,

ln
2

= + CO A Oo
Nernst CO Zelle CO

CO A

Y YRTU U
F Y  (73) 

The current density j is calculated by the equation 
 

2CO Hj j j= +  (74) 

 
Tab.4. Parameters for the governing equations and the boundary conditions (anode) 

parameter symbol units value source 

Effective Diffusion coefficient 
of component i in the gas 
mixture 

,
eff
i gasD  m2 s-1 Eq. (50) IWE 

Knudsen diffusion coefficient of 
methane DK

 CH4 m2 s-1 8.0 10-5 calculated 

Knudsen diffusion coefficient of 
carbon monoxide DK

 CO  m2 s-1 6.20 10-5 calculated 
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Knudsen diffusion coefficient of 
hydrogen DK

 H2  m2 s-1 0.0002399 calculated 

Knudsen diffusion coefficient of 
carbon dioxide DK

 CO2 m2 s-1 5.12 10-5 calculated 

Knudsen diffusion coefficient of 
steam DK

 H2O  m2 s-1 8.0 10-5 calculated 

Faraday constant F A s mol-1 96485.4 - 

Current density produced by 
elecrochem. CO-Oxidation COj  A m-2 Eq. (67) - 

Current density produced by 
elecrochem. H2-Oxidation 2Hj  A m-2 Eq. (68) - 

Pressure loss coefficient kp m2 8.5 10-14 FZJ 

Atmospheric pressure patm Pa 101325 - 

Universal gas constant R J mol-1 K-1 8.3144 - 

Area-specific Polarization 
resistance of el.CO-oxidation  ,A COR  Ωm2 Eq (70)  

Area-specific Polarization 
resistance of el.H2-oxidation 2,A HR  Ωm2 Eq (69)  

Area-specific Polarization 
resistance of el.O2-reduction KR  Ωm2 Eq (71)  

Area-specific Ohm’s resistance 
for 8YSZ 

Rohm Ωm2 9.78 10-6 IWE 

temperature T K 1223 chosen 

Cell voltage U V 0.7 chosen 

Nernst voltage of CO ,Nernst COU  V Eq (73)  

Nernst voltage of H2 2,Nernst HU  V Eq (72)  

Nernst Voltage at standard 
pressure for CO ,

o
Zelle COU  V 0.9145 calculated 

Nernst Voltage at standard 
pressure for H2

2,
o
Zelle HU  V 0.9342 calculated 

Mole fraction of oxygen at 
cathode 2OY  - 0.21 chosen 

Porosity of the anode ε - 0.3 chosen 

tortuosity of the anode τ - 3 chosen 
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Parameter Variation 
For the base case an anode thickness of 50µm was assumed. This anode thickness is a realistic 
value for electrolyte supported cells. In anode supported cells the anode thickness has to be 
higher. Therefore this value should be varied from 50µm to 2mm in order to investigate 
transport limitations in the porous anode in dependence of the anode thickness. For the anodes 
with a thickness between 0.5 and 2mm it was assumed that the open porosity is increased. 
Therefore for the ratio of porosity to tortuosity ε/τ a value of 0.21 is supposed [5]. Because of 
the reduced electrolyte thickness of anode supported cells, the area-specific ohmic resistance 
Rohm is set to 1.63 10-6 Ω m2 in these cases. 
 

Results and Discussion 
In Fig. 3 the results of the molar fractions in the anode gas channel are depicted for the base 
case (anode thickness of 50 µm). The strong decrease of the methane and steam fractions in 
flow direction is due to the reforming reaction taking place in the anode. Accordingly, the 
fractions of hydrogen and carbon monoxide increase along the anode gas channel. Carbon 
dioxide is produced by the shift reaction and the electrochemical oxidation of CO. It can be 
seen that the molar fractions do not vary over the height of the anode gas channel so that 
diffusion in the channel is fast enough to transport the species to the anode surface or from the 
anode surface to the channel, respectively. 
 

a) b) 

 
c) d) 
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d) 

 

Fig 3. molar fractions of the components in the anode gas channel (base case) 
 
In figure 4 the molar fractions of the components in the anode are shown for the base case. 
 

 
a) b) 

 
c) d) 

 
d) 

 

Fig 4. molar fractions of the components in the anode (base case) 
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The gradient of the molar fractions in x-direction is similar to the gradient in the anode gas 
channel. The low variation of the molar fractions in y-direction indicates that no diffusion 
limitations occur in the anode with a thickness of 50 µm. 
As a result from the distribution of the species in the anode, the Nernst voltage of H2 increases 
along the anode length, whereas the Nernst voltage of CO decreases because the ratio of CO 
to CO2 decreases in x-direction (Fig. 5). The distribution of the current densities jH2 and jCO is 
according to the distribution of the Nernst voltages. The mean value of the current density j of 
5615 A/m2 is high compared to measured values which are around 4000 A/m2 . This indicates 
that in further work the electrochemical parameters of the model should be adjusted to results 
obtained by own experiments 
 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Fig 5. Nernst voltages and current densities jH2, jCO and j (base case) 
 
In the remainder the results of the parameter variation are presented. Exemplarily the 
discussion is confined to cells with an anode thickness of 2mm. Fig. 6 shows the molar 
fractions of the components in the anode for this case. In evidence the reforming reaction 
proceeds more quickly in x-direction because of the higher amount of Nickel present in the 
anode compared to the base case. For every component high gradients occur in y-direction 
which limit the chemical and electrochemical conversions. The CO2 content in the upper left 
corner seems to be too high. Whether this value originates from a numerical error or a bad 
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scaled parameter of the electrochemical CO oxidation or of the shift reaction remains to be 
investigated in further work. 
 

 
a) b) 

 
c) d) 

 
d) 

 

Fig 6. molar fractions of the components in the anode (2mm anode) 
 
Fig. 7 shows the Nernst voltages and current densities of the anode supported cell with 2mm 
anode. Because of the thinner electrolyte a higher current density can be achieved compared 
to electrolyte supported cells. The high increase of UNernst,CO compared to the base case, can 
be attributed to the high rate of the reforming reaction which produces CO very fast and 
therefore leads to an increase in the ratio of yCO/yCO2 in the first quarter of the cell. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Fig 7. Nernst voltages and current densities jH2, jCO and j (2mm anode) 
 

Conclusions 
The internal reforming process of methane on a Ni/YSZ anode was successfully simulated 
with a 2D model. The impact of the anode thickness was investigated and it could be shown 
that no diffusion limitations occur in an electrolyte supported cell. In anode supported cells 
with 2mm anode thickness the reforming reaction proceeds faster than in an electrolyte 
supported cell but the chemical and electrochemical processes are limited by pore diffusion in 
the anode. Because of the thinner electrolyte in anode supported cells, the results of the 
simulation show that a higher current density can be achieved in an anode supported cell, 
compared to an electrolyte supported cell. 
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Part III:
The numerical solution with the FDEM

1 The FDEM program package

A detailed report on the FDEM (Finite Difference Element Method) program package is in
preparation parallel to this report [1]. There the basic method is described together with
three application examples. The third example (Chapter 3.4) is of particular interest with
respect to the present report: it is the oxygen diffusion at the cathode side of a PEM fuel cell
and has for the first time demonstrated the suitability of FDEM for the numerical simulation
of fuel cells.

In the following we give a short outline of FDEM. FDEM [2] is a program package
developed at the Computer Center of the University of Karlsruhe that solves by a finite
difference method arbitrary nonlinear systems of PDEs (partial differential equations) under
arbitrary nonlinear BCs (boundary conditions) on an unstructured FEM grid. The 2-D or
3-D PDEs must be of elliptic type (boundary value problem) or parabolic type (initial-
boundary value problem). Here the FEM grid serves only for the structuring of the space, i.e.
the determination of the neighbouring nodes. In 2-D we use triangles, in 3-D tetrahedrons.
For each node we generate with a sophisticated algorithm by means of neighbouring nodes
difference formulas of consistency order q, optionally q = 2 or q = 4 or q = 6. By the use
of formulas of consistency order q+2 an estimate of the discretization error is obtained. For
parabolic equations we use in time direction (for stability reasons) fully implicit difference
formulas of consistency order p < 6, with error estimate by formulas of order p + 1.
This means that one gets the exact solution if in the space direction the solution of the
PDEs is a polynomial of order q and in time direction of order p. This is used to test the
implementation of the PDEs to be solved.

The knowledge of the error permits a selfadaptation of the solution method. In time di-
rection the order p and the time step are always automatically optimized. In space direction
the solution can be adapted to a requested accuracy by grid refinement (bisection of triangle
or tetrahedron edges). There is also possible an optimization of the consistency order q
individually for each node by the comparison of the discretization errors of the different
orders q = 2, 4, 6.

For many technical applications the solution domain is composed from subdomains in
which hold different PDEs, e.g. anode material and hydrogen channel in a SOFC. It is not
possible to apply difference formulas across the boundaries of the subdomains. Therefore
we have introduced in FDEM “dividing lines” (which are in 3-D in effect dividing areas,
but we call them nevertheless formally dividing lines). These dividing lines are internal
boundaries over which we cannot differentiate. The solutions on both sides of the dividing
lines are coupled by coupling conditions (CCs). Thus one gets over the whole domain
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(composed of several subdomains) a global solution with global error estimate. The meshes
on both sides of a dividing line do not have to coincide, one may have non-matching grids.
By interpolation with the consistency order q that holds also for the difference formulas,
the order q is maintained also for the CCs and therefore for the whole coupled domain.
Because of the possibility of non-matching grid, in the subdomains an independent local
grid refinement for the adaptation of the accuracy can be executed. The non-matching grid
also allows a relative movement of the subdomains to each other.

Because FDEM must solve arbitrary nonlinear systems of PDEs, the linearization is
executed by the Newton-Raphson method. In order to make the method as robust as possible
we check after each iteration step if the defect has decreased. If this does not hold we try
with a self-adapted relaxation factor to reduce the defect (then there is only linear instead
of quadratic convergence). For very good convergence we use (optionally) the simplified
Newton method with constant matrix to save computation time. The Newton method is
terminated if the Newton defect is smaller than a corresponding discretization error term,
that no unnecessary digits are computed.

From the discretization of PDEs result very large and sparse linear systems of equa-
tions. These are solved by the LINSOL program package that has also been developed at
the Computer Center of the University of Karlsruhe. LINSOL [3] comprises CG (conju-
gate gradient) methods of quite different types for the iterative solution, between which an
automatic optimization in a polyalgorithm can be executed. LINSOL also contains a direct
solver with optionally reduced fill-in that can be used as preconditioner for the iterative
solvers. The fill-in is reduced by different bandwidth optimizers which leads above all for
3-D problems to a considerable saving of computation time and storage space.

FDEM and LINSOL have been developed from the beginning for efficient data struc-
tures on distributed memory parallel computers (in contrast to shared memory computers).
Here the distribution of the data to the processors plays the decisive role. We use a 1-D
domain decomposition that can be executed automatically and runs over dividing lines. For
grid refinement a new distribution of the data is executed after each refinement step. The ex-
change of the data between the processors takes place by the quasi standard MPI (message
passing interface). Thus FDEM is running efficiently on shared and distributed memory
computers. FDEM has been tested on many different types of parallel computers all over
Germany.

FDEM is a program package for the solution of PDEs that has unique properties. To us
no other program package is known that unifies in a single code comparable properties con-
cerning the flexibility of the solution method, of the solution domain, of the error estimate
and of the parallelization.

FDEM is a black box solver, i.e. it solves an arbitrary nonlinear system of PDEs and
boundary conditions (BCs) on an arbitrary domain. The domain can be composed from
subdomains that are separated by dividing lines and whose solutions are coupled by CCs.
Which PDEs under which BCs and CCs are to be solved is determined by the entering of
the PDEs, BCs and CCs as Fortran code into prescibed program frames. The domain with
its boundaries and dividing lines is read from a file as 2-D or 3-D grid according to given
rules.

Because we assume nonlinear PDEs and solve them by the Newton-Raphson method,
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also the Jacobi matrices for the PDEs, BCs and CCs must be entered as Fortran code into
program frames. The Jacobi matrices reflect the dependence of the PDEs, BCs and CCs
from their arguments. For strongly nested nonlinear systems of PDEs the formulation and
implementation of the Jacobi matrices is the main part of the task.

For the simulation of a fuel cell one will start at first with a simplified 2-D model to get
insight in the numerical behaviour of the PDEs. Then the 2-D model is refined as necessary.
Here one will at first solve the stationary equations, then eventually the non-stationary ones.
With the thus gained experiences one will try to implement a simplified, later a refined 3-D
model. The transition from 2-D to 3-D is with respect to computation time and above all
to the necessary storage space a very large step. The transition from the stationary to the
non-stationary problem results only in a corresponding factor in computation time, 100 time
steps need 100 times the computation time of a single stationary step.

The above mentioned procedure would be a research program for several years. Because
of the relatively short available time for the project (it was intended as an intermediate
financing to gain experience and prepare a larger cooperation project) only stationary 2-D
fuel cells were simulated. However, the experiences gained for the formulation of the many
parameters in the system of PDEs for the different types of fuel cells are very promissing
and prepare the research direction for further more sophiscated models of fuel cells.

2 The numerical solution of the PEMFC PDEs

The model and the PDEs for PEMFCs have been presented in Part I. We refer to equations
in Part I, e.g. for equation (1), by I(1), similarly for figures and tables.

Fig. 1 shows the domain of solution. It is a section of the GDL (gas diffusion layer).
This is Fig. I1 turned upside down so that we have the x-,y-coordanate system in the usual
way. The performance of the PEMFC is determined by activities in the GDL on the cathode
side, i.e. on the oxygen side. In the upper part of Fig. 1 we see the domain of solution cut
out of the whole GDL so that its left and right boundaries are symmetry lines with vanishing
derivatives in x-direction, and its upper boundary is the reaction layer. The left half of the
lower boundary is open to the channel with oxygen, the right half is closed by the rib. The
oxygen is flowing in z-direction perpendicular to the x-,y-plane. The lower part of Fig. 1
shows the domain of solution with more details and gives the numbering of the different
types of boundaries as we use them in the coding.

We got basically two models for the PEMFC from the ZSW, first a simple model which
was later, after the investigation of the results, refined to a more complicated model with a
more sophisticated condition at the reaction layer (Tafel equation). Here we report only on
the latter refined model.

Concerning the diffusion model we got from ZSW the equations with the simple model
of Ficks, equations I(1)–I(6) for 6 variables, we call this model ZSW3. Then we got a
model with a more sophisticated MTPM (Mean Transport Pore Model) transport mecha-
nism, equations I(18)–I(27) for 10 variables, we call this model ZSW4. This is a much
more complicated model concerning the implementation in FDEM. Therefore we discuss
in this report only the ZSW4 model.
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Figure 1: Upper part: domain of solution in the “environment”. Lower part: Details of the
domain of solution.
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Table 1: Structural and geometry parameters.

parameter Symbol name
English German in code

thickness of GDL tGDL dGDL dGDLc
width of channel c k kc

width of rib r s sc

We got from the ZSW at first a report with the PDEs and BCs in German and for
these notations we wrote the code. Later we got the English version. Unfortunately, ZSW
has changed the symbols for some parameters so that they fitted to their English names.
Therefore we give the symbols for the parameters of the English version, of the German
version and additionally the name of the parameter in the Fortran code which usually fits to
the German name.

Table 2: Dependent variables for node i, mfd means molar flux density.

no. parameter symbol name in code
1 mfd of oxygen in x-dir. ṅx

o u(i,1)
2 mfd of oxygen in y-dir. ṅy

o u(i,2)
3 mfd of water vapour in x-dir. ṅx

w u(i,3)
4 mfd of water vapour in y-dir. ṅy

w u(i,4)
5 mfd of nitrogen in x-dir. ṅx

n u(i,5)
6 mfd of nitrogen in y-dir. ṅy

n u(i,6)
7 oxygen partial pressure po u(i,7)
8 water vapour partial pressure pw u(i,8)
9 nitrogen partial pressure pn u(i,9)
10 total pressure p u(i,10)
11 current density i u(i,11)

Table 1 gives the structural and geometry parameters of Table I1. We do not repeat here
the units and values. Table 2 which corresponds to Table I5 gives the dependent variables
for ZSW4. In the black-box solver FDEM the variables for node i and solution component j
are denoted by u(i,j). In the Fortran code many loops run over the node number i. If the
innermost loop runs over the first index of a multidimensional array, in Fortran the elements
are accessed contiguously which is the most efficient access. Therefore the node number i
is in the first position in u(i,j).

We can see from Table 2 that we have 11 dependent variables. One of them, namely the
current density i (do not confuse with node index i), plays a very special role. It occurs only
in the boundary condition at the reaction layer. If it appeared explicitly we could express
it by the other variables. But it appears in a bad nonlinear way in the Tafel equation I(8).
Therefore we proceed as follows: we take the current density i as a variable in the whole
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Table 3: Sequence of variables and equations in the interior of the domain.

no. variable equation
1 ṅx

o I(18) in form (2)
2 ṅy

o I(19) in similar form
3 ṅx

w I(20) in similar form
4 ṅy

w I(21) in similar form
5 ṅx

n I(22) in similar form
6 ṅy

n I(23) in similar form
7 po I(24)
8 pw I(25)
9 pn I(26)
10 p I(27)
11 i (1)

domain, but it has a physical meaning only at the reaction layer. In the other nodes the
current density i plays the role of a dummy variable and there we put

i = 0 . (1)

This is the “PDE” and BC except for the nodes at the reaction layer (boundary ④ in
Fig. 1).

As we can see at Table 2 we have 11 variables and therefore we need 11 equations.
In Table 3 we show which equation is used in which position in the system of PDEs. As
FDEM requests the PDEs in the form Piu = 0 for PDE no. i, we take all terms to the l.h.s.
of the equations. Therefore I(18) is used in the form

ṅx
o

DKno
+
pwṅ

x
o − poṅ

x
w

Dow · p +
pnṅ

x
o − poṅ

x
n

Don · p +

1
RT

∂po

∂x
− po

RTp

∂p

∂x
+

[
Bo

DKno
+

Bopw

Dow · p
(

1 − Bw

Bo

)
(2)

+
Bopn

Don · p
(

1 − Bn

Bo

)]
po

RTp

∂p

∂x
= 0 .

Similarly we write in equs. I(19)–I(27) all terms to the l.h.s.. Now these equations
can be coded in Fortran. Before we can write down code we must give to the coefficients
Fortran names. The coefficients that occur in the PDEs are compiled in Tables I3 and I6.
There are coefficients that are constants, their names will end by “c” for constant. There
are coeffients that depend on the node i and there are coefficients that depend on solution
component index j or j, k. In Tables I3 and I6 all information about the coefficients is given.
Here we give in Table 4 only the Fortran names for the coefficients. In the PDEs appear the
following coefficients DKnj with (j) as o, w, n, thus DKno(i),DKnw(i), DKnn(i) for
each node i, Beff(j) similarly as Beffo(i), Beffw(i), Beffn(i). As the coefficients Dj,k
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Table 4: Fortran names for the coefficients that occur for the PDEs.

Fortran Fortran
symbol name symbol name
R Rc η eta
F Fc ηo etaoc
T Tc ηw etawc
εo epsoc ηn etanc
ε(x) epsxc(i) Mo Moc
a aec Mw Mwc
kf kfc Mn Mnc
τ tau DKnj Dkn(j)
Djk D(j,k) ω omc
V do Vdo Kj Kn(j)
V dw Vdw λj lam(j)
V dn Vdn < r > rmc
Bj Beff(j) < r2 > rmqc
νj nue(j) RT RTc

with j and k as o, w, n appear only in the combination p · Dj,k we immediately compute
pDow as pDow(i), pDon as pDon(i) and pDwn as pDwn(i) etc. These coefficients are
pre-computed for all nodes i with the equations given in Part I.

Before we present the coding for equ. (2) as an example, we must mention the following
items: we have introduced an additional coefficient RT as RTc because R and T always
appear in this combination. Derivatives of variables are denoted in the following way: the x-
and y-derivatives of u(i,1) are denoted and naturally stored as ux(i, 1) and uy(i, 1). Second
derivatives (that do not appear in this section) would be denoted by uxx(i, 1), uyy(i, 1),
uxy(i, 1). With these notations and above all with the notations of Table 2 for the variables
the coding for equ. (2) looks like this (this is P1u, the Newton residual of the first PDE in
the system) for node i, denoted by p(i, 1):

p(i, 1) = u(i, 1)/Dkno(i) + (u(i, 8) ∗ u(i, 1) −
u(i, 7) ∗ u(i, 3)/pDow(i) + (u(i, 9) ∗ u(i, 1) −
u(i, 7) ∗ u(i, 5)/pDon(i) + ux(i, 7)/RTc −

u(i, 7) ∗ ux(i, 10)/(RTc ∗ u(i, 10)) + (3)

Beffo(i) ∗ (1D0/Dkno(i) + u(i, 8) ∗ (1D0 −
Beffw(i)/Beffo(i)/pDow(i) + u(i, 9) ∗
(1D0 −Beffn(i)/Beffo(i))/pDon(i)) ∗

u(i, 7) ∗ ux(i, 10)/(RTc ∗ u(i, 10)) .
This gives a touch how by mnemonic nomenclature it is rather easy to translate equ. (2)
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Table 5: Fortran names for the coefficients that occur for the BCs.

Fortran Fortran
symbol name symbol name
pch pKac γ gammac
ϕ phic U0 U0c
yuc

o,a yokc Uz UZc
i0 ioc dmem dmemc
α alphac κmem kappac
n nc A Ac
ρref

o porefc B Bc
fv fvc C Cc
pS

w pwsc

into Fortran code. These p(i, j) for equation j in node i are pre-computed and in a later
step entered in a program frame that places them into the right position in the linear system
of equations for the computation of the Newton correction. The meaning of p(i, 1) is the
Newton residual or Newton defect of the first equation in the block of 11 equations for
node i. It is the r.h.s. in the linear system of the computation of the Newton correction.

The next problem we want to discuss are the boundary conditions for the 4 types of
boundaries ① to ④ of Fig. 1. At the boundaries for some variables BCs are given. However,
we need at each boundary node 11 equations for the 11 variables. So we take the missing
equations quite naturally from the set of the interior equations, where no other conditions,
e.g. symmetry at boundary ③, are given.

The set of parameters that occur in the BCs is given in Table I4. We give in Table 5 the
Fortran names for these parameters.

The BCs for the MTPM transport equations are given in equs. I(37)–I(49). We have to
supplement these equations by interior or other PDEs (symmetry) so that we have always
11 equations for the 11 variables. In contrast to Part I we do not use (upper) indices like
UC , UR for channel or rib because the index i of the node tells where the node is.

BCs at boundary ① (open to channel): Here we need pSw with the Fortran name pwsc
pre-computed from I(9) which is resolved for pSw and gives a constant value. For a node i
on the boundary ① we have the BCs I(37)–I(40). As we need 11 BCs for the 11 variables,
we supplement the conditions by the PDEs I(18)–I(23) and equ. eqrefequ1. In Table 6 we
list the variables and the equations at boundary ① that includes the left corner. In order to
show how such a BC is translated to Fortran, we show the code for the equation for pn in
Table6 for a node i on the boundary ①:

p(i, 9) = u(i, 9) − (pKac− u(i, 8)) ∗ (1D0 − yokc) (4)
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Table 6: Variables and equations for the BCs at boundary ①.

no. variable equation
1 ṅx

o I(18) in form (2)
2 ṅy

o I(19) in similar form
3 ṅx

w I(20) in similar form
4 ṅy

w I(21) in similar form
5 ṅx

n I(22) in similar form
6 ṅy

n I(23) in similar form
7 po po − (pch − pw)yUC

o,a = 0
8 pw pw − ϕ pS

w = 0
9 pn pn − (pch − pw)(1 − yUC

o,a ) = 0
10 p p− pch = 0
11 i (1)

The right corner of boundary ① is “avoided” as the separation between boundary ① and
② is put between two nodes. If at the separation of the two boundaries a node would be
placed, there would be no unique BC for this node. However, this procedure means that the
geometrical location how far the BC ① extends to the right and BC ② to the left changes
with the mesh size in the x-direction.

BCs at boundary ② (under rib): Here the impermeability conditions I(41)–I(43) are
given. Therefore we need another 8 equations for the 11 variables. In Table7 we list the
variables and the equations at boundary ② that includes the right corner.

BCs at boundary ③ (symmetry lines): Because of the symmetry no x-transport of
species takes place, this results in the BCs I(44)–I(46). For the other variables, except
current density i for which i = 0 holds also here, we put the x-derivative to zero. Table 8
shows the variables and the equations for boundary ③, excluding the corner nodes.

BCs at boundary ④ (reaction layer): The BCs for boundary ④ are given in I(47)–I(49).
However, in these equations appears the current density i for which holds the Tafel equa-
tion I(8). This extremely nonlinear equation cannot be resolved explicitly for the current
density i. Therefore we take it in the form

i− fvi0

(
po

pref
o

)γ

exp

[
αnF (U0 − Uz − dmem

κmem
i)

RT

]
= 0 (5)

and use this as the equation for the current density i. The other two BCs I(47), I(48) are
used in the form

ṅy
o −

1
4F

i = 0 , (6)

ṅy
w +

1
2F

i = 0 . (7)
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Table 7: Variables and equations for the BCs at boundary ②.

no. variable equation
1 ṅx

o I(18) in form (2)
2 ṅy

o ṅy
o = 0

3 ṅx
w I(20) correspond. form

4 ṅy
w ṅy

w = 0
5 ṅx

n I(22) correspond. form
6 ṅy

n ṅy
n = 0

7 po I(24) correspond. form
8 pw I(25) correspond. form
9 pn I(26) correspond. form
10 p I(27) correspond. form
11 i (1)

Table 8: Variables and equations for the BCs at boundary ③.

no. variable equation
1 ṅx

o ṅx
o = 0

2 ṅy
o ∂ṅy

o/∂x = 0
3 ṅx

w ṅx
w = 0

4 ṅy
w ∂ṅy

w/∂x = 0
5 ṅx

n ṅx
n = 0

6 ṅy
n ∂ṅy

n/∂x = 0
7 po ∂po/∂x = 0
8 pw ∂pw/∂x = 0
9 pn ∂pn/∂x = 0
10 p ∂p/∂x = 0
11 i (1)
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Table 9: Variables and equations for the BCs at boundary ④.

no. variable equation
1 ṅx

o I(18) in form (2)
2 ṅy

o (6)
3 ṅx

w I(20) correspond. form
4 ṅy

w (7)
5 ṅx

n I(22) correspond. form
6 ṅy

n I(49)
7 po I(24) correspond. form
8 pw I(25) correspond. form
9 pn I(26) correspond. form
10 p I(27) correspond. form
11 i (5)

For the other variables we again take the corresponding equations of Table 3. Table 9
shows the variables and equations at boundary ④.

Again we show how equation (5) is coded in Fortran for a node i on the boundary ④:
at first auxiliary values are computed before the i-loop:
hU2 = alphac ∗ nc ∗ Fc
hU3 = fvc ∗ ioc
Then in the i-loop for a node i, we have

p(i, 11) = u(i, 11) − hU3 ∗ (u(i, 7)/porefc) ∗ ∗
gammac ∗ exp(hU2 ∗ (U0c− UZc− (8)

dmemc ∗ u(i, 11)/kappac)/RTc

For FDEM such a nonlinear algebraic equation is included in the black-box scheme and
poses no problem.

For the solution of the PDEs by the Newton-Raphson iteration and for the computation
of the error estimate the Jacobian matrices, i.e. the dependence of the differential equa-
tions from the variables and their derivatives are needed. For a system of m PDEs with
m variables we have for the differential operator in 2-D:

Pu ≡ P (x, y, u, ux, uy, uxx, uyy, uxy) = 0 , (9)

with
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u =

⎛
⎜⎜⎜⎝

u1

u2
...
um

⎞
⎟⎟⎟⎠ , Pu =

⎛
⎜⎜⎜⎝

P1u
P2u

...
Pmu

⎞
⎟⎟⎟⎠ . (10)

The Jacobian matrices, see [1, equ. (2.4.6)], are

∂P

∂u
=

⎛
⎜⎝

∂P1
∂u1

. . . ∂P1
∂um

...
...

∂Pm
∂u1

. . . ∂Pm
∂um

⎞
⎟⎠ , . . . ,

∂P

∂uxy
=

⎛
⎜⎜⎝

∂P1
∂u1,xy

. . . ∂P1
∂um,xy

...
...

∂Pm
∂u1,xy

. . . ∂Pm
∂um,xy

⎞
⎟⎟⎠ . (11)

We will not give here the formulas for all Jacobians of the system. We rather want to
illustrate the procedure by a few examples. The first PDE P1u in (10) is in our case the first
equation in Table 3, i.e. I(18), that we use in the formulation of equ. (2). The first variable in
Table 3 is ṅx

o . Thus in (11) ∂P1
∂u1

is the derivative of equ. (2) with respect to ṅx
o . But before we

formulate the derivatives we must check if there are not hidden variables in “coefficients”
that appear in the equation. Fortunately, the coefficients do not depend on ṅxo , so we get

∂P1

∂ṅx
o

=
1

DKno
+

pw

Dow · p +
Pn

Don · p . (12)

However, if we e.g. want to compute ∂P1
∂po

= ∂P1
∂u7

, i.e. the dependency of the first PDE
from the variable po, the permeabilities Bo and Bw depend in a complicated way from po:
In I(31) Bj , j = o,w, n, depends on νj , I(32) that depends on pk, k = o,w, n, and Bj

depends also on η, I(33) that depends on pk, k = o,w, n and finally Bj depends on Kj ,
I(35) that depends by λj on pj , I(36). Therefore we precompute the ∂νi

∂pj
, i, j = o,w, n and

similarly
∂( 1

η
)

∂pj
and ∂Ki

∂pj
. We have I(31)

Bo = DKno
ωνo +Ko

1 +Ko
+
< r2 > ε(x)

τ

8
· p · 1

η
. (13)

With the pre-computed values we can compute with the chain rule for differentiation
e.g.

∂Bo

∂po
= DKno

(1 +Ko)(ω ∂νo
∂po

+ ∂Ko
∂po

) − (ω νo +Ko) ∂Ko
∂po

(1 +Ko)2
+
< r2 > ε(x)

8τ
p
∂( 1

η )

∂po
.

(14)
In the same way all ∂Bi/∂pj and also ∂Bi/∂p are pre-computed and stored for all

nodes i. Note that the expressions for (Djk · p) I(30) do not depend on p.
Now we can formulate ∂P1/∂u7 in the terminology of (11) which is our equ. (2) differ-

entiated to po
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∂P1

∂po
= − ṅx

w

Dow · p − ṅx
n

Don · p − 1
RTp

∂p

∂x
+

∂Bo

∂po
[∗] po

RTp
+
∂p

∂x
+Bo

[
− pw

Dow · p
Bo

∂Bw
∂po

−Bw
∂Bo
∂po

B2
o

− (15)

pn

Don · p
Bo

∂Bn
∂po

−Bn
∂Bo
∂po

B2
o

]
po

RTp

∂p

∂x
+Bo[∗] 1

RTp

∂p

∂x
.

Here [*] denotes the brackets in (2) which saves writing down twice this large expres-
sion. Quite naturally, in the coding one would precompute [*] as an auxiliary variable, so
this form is closer to the coding than the written-out form. If you nevertheless imagine
written out [*] in (15) you get the impression, in which a complicated way the first PDE of
the system depends on the 7th variable. In a similar way the first 6 PDEs depend on the 7th

to 10th variable. It would not be possible to handle these Jacobians without a clear scheme
for intermediate derivatives as it has been presented above. These expressions then must be
translated into Fortran code as it has been shown for equ. (2).

In the same way we must deliver the Jacobians for the BCs. In many cases the interior
PDEs are also used for the BCs, so the Jacobians are the same in these cases.

In Table 9 the equations are shown for boundary ④, the reaction layer. Here the Tafel
equation (5) is the BC for the last variable, the current density i. Therefore ∂P11/∂u11 is
the derivative of (5) with respect to i. That we do not get too complicated expressions and
because intermediate results can be used also in other Jacobians, we precompute auxiliary
values

hu2 = αnF ,
hu3 = ρo i0 ,
hu4 = exp[hu2 ∗ (U0 − Uz − dmem

κmem
i)/(RT )] .

With these values we get for the boundary ④ from equ. (5)

∂p11

∂i
= 1 + hu3 ∗

(
po

pref
o

)γ

∗ hu4 ∗ hu2 ∗ dmem

κmem RT
. (16)

All these Jacobians are entered in a prescribed program frame of FDEM that then exe-
cutes with this information the solution process as described in detail in [1]. So by the PDEs
and BCs and their Jacobians from the black-box solver a solver for the special problem is
created.

Here we present the results that we obtained for the standard data given in Part I for the
(more complicated) Mean Transport Pore Model (MTPM) as an example for the information
that FDEM delivers as result. We computed on the HP XC6000 parallel supercomputer of
the University of Karlsruhe. The processors are Intel Itanium2 processors with 1.5 GHz. We
computed with 32 processors in parallel. The grid was 200 × 201 nodes in x-,y-direction.
We computed with consistency order q = 4. As we have 11 unknowns per node, see
Table 2, we have totally 442, 200 unknows. The computation time was 4123sec on the
master processor 1.
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In Figs. 2–21 the results are plotted as coloured contour plots together with their errors.
These plots are black-and-white in the printed version. So it might be recommended to look
at the pictures at the computer in the on-line version of the paper.

Fig. 1 shows the domain of solution. At the lower boundary we have in the left half
the opening to the oxygen channel and in the right half the domain is closed by the rib.
Therefore we have in the middle of the lower boundary an abrupt change in the BCs that
causes a singularity in the solution because there is mathematically no smooth transition
from the one type of BC to the other type. This singularity is clearly visible in the figures.

For the fuel cell research the behaviour of the partial pressure po of oxygen, pw of
water vapour, pn of nitrogen and the current density i at the reaction layer are of greatest
interest. Therefore we show in Figs. 22–26 these quantities together with their errors along
the reaction layer. We can see that the singularity of the lower boundary has smoothed
out at the upper boundary of the solution domain. At the top of Fig. 26 the value imean is
presented which is the mean value of the grid points at the reaction layer and is a measure
of the output of the fuel cell. As we have the singularity in the problem, the local error at
the singularity will not decrease with finer grid as fast as we expect from the consistency
order q = 4.

The discussion of the results from the point of view of the fuel cell researcher is pre-
sented in Part I.
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Figure 2: Contour plot of molecular flux density of oxygen in x-direction ṅ x
o .
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Figure 3: Contour plot of the global relative error of ṅx
o .
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Figure 4: Contour plot of molecular flux density of oxygen in y-direction ṅ y
o.
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Figure 5: Contour plot of the global relative error of ṅ y
o.
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Figure 6: Contour plot of molecular flux density of water vapour in x-direction ṅ x
w.
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Figure 7: Contour plot of the global relative error of ṅx
w.
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Figure 8: Contour plot of molecular flux density of water vapour in y-direction ṅ y
w.

x

y

0 0.00025 0.0005 0.00075 0.001
0

5E-05

0.0001

0.00015

0.0002

5.0E-02
4.4E-02
3.9E-02
3.4E-02
2.8E-02
2.2E-02
1.7E-02
1.1E-02
6.0E-03

error-n-dot-w-y

Figure 9: Contour plot of the global relative error of ṅ y
w.
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Figure 10: Contour plot of molecular flux density of nitrogen in x-direction ṅ x
n.
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Figure 11: Contour plot of the global relative error of ṅ x
n.
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Figure 12: Contour plot of molecular flux density of nitrogen in y-direction ṅ y
n.
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Figure 13: Contour plot of the global relative error of ṅ y
n.
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Figure 14: Contour plot of oxygen partial pressure p o.
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Figure 15: Contour plot of the global relative error of p o.
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Figure 16: Contour plot of water vapour partial pressure pw.
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Figure 17: Contour plot of the global relative error of pw.
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Figure 18: Contour plot of nitrogen partial pressure pn.
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Figure 19: Contour plot of the global relative error of pn.
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Figure 20: Contour plot of total pressure p.
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Figure 21: Contour plot of the global relative error of p.
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Figure 22: Oxygen partial pressure po along the reaction layer and its global relative error.
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Figure 23: Water vapour partial pressure pw along the reaction layer and its global relative
error.
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Figure 24: Nitrogen partial pressure pn along the reaction layer and its global relative error.
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Figure 25: Total pressure p along the reaction layer and its global relative error.
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imean = 2981,92                            i
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Figure 26: Current density i along the reaction layer and its global relative error. On top of the
upper frame is the value imean = 2981.92.
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3 The numerical solution of the SOFC PDEs

The model and the PDEs for the SOFC have been presented in Part II. We refer to equations
in Part II, e.g. for equation (1), by II(1), similarly for figures and tables.

Fig. 27 shows the domain of solution and the numbering of the boundaries. Here we
have a coupled domain of anode and gas channel, coupled by the dividing line DL with
side 1 und side 2 where we have coupling conditions (CCs).

Figure 27: Domain of solution and numbering of the boundaries.

Table 10 which corresponds to Table II1 gives the names of the geometrical parameters
in the Fortran code. The last letter “c” denotes that these values are constants. We do not
repeat here the units and values, they are given in Part II. Table 11 shows the 8 dependent
variables with their Fortran names. It combines Tables II3 and II5. In Part II the variables
have different symbols for gas channel, index K (for Kanal, German word for channel)
and index A for anode. However, these are in reality the same variables, only in different
domains. That they are computed by different PDEs in the different domains does not
matter. As the node number i tells where the variable is used, a different indexK orA is not
necessary. In the black-box solver FDEM the variables for node i and solution component j
are denoted by u(i,j). In the Fortran code many loops run over the node number i. If the
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Table 10: Structural and geometrical parameters.

parameter symbol name in code
thickness of anode dA dac

height of gas channel dK dkc
length of gas channel lK lkc

Table 11: Dependent variables with their Fortran names for node i, mf means mole fraction.

no. variable symbol name in code
1 flow velocity in x-direction ux u(i,1)
2 flow velocity in y-direction uy u(i,2)
3 mf of methane YCH4 u(i,3)
4 mf of carbon monoxide YCO u(i,4)
5 mf of hydrogen YH2 u(i,5)
6 mf of carbon dioxide YCO2 u(i,6)
7 mf of steam YH2O u(i,7)
8 pressure p u(i,8)

innermost loop runs over the first index of a multidimensional array, in Fortran the elements
are accessed contiguously which is the most efficient access. Therefore the node number i
is in the first position in u(i,j).

Table 12: Sequence of variables and equations in the channel.

no. variable our notation equation
1 ux ux II(5) in form (17)
2 uy uy II(7) in form (18)
3 YCH4 Y3 II(1) in form (19)
4 YCO Y4 II(2) in similar form
5 YH2 Y5 II(3) in similar form
6 YCO2 Y6 II(4) in similar form
7 YH2O Y7 II(8) in form (20)
8 p p II(6) in similar form to (18)
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Table 12 shows the variables and the equations that we use in the channel. That we do
not have to write the chemical indices like CH4 in YCH4 we have replaced them by numbers
that correspond to the numbering in Table 12, thus instead of YCH4 we write Y3, instead of
YCO we write Y4 etc. These simplified indices are also used for component indices in the
coefficients of the PDEs.

For the numerical solution we must differentiate out the product terms. Therefore the
first equation II(5) (continuity equation) in Table 12 becomes

∂


∂x
ux + 


∂ux

∂x
+
∂


∂y
uy + 


∂uy

∂y
= 0 . (17)

The second equation in Table 12, the y-momentum equation II(7) becomes, as we must
take all terms of the PDEs to the l.h.s.


ux
∂uy

∂x
+ 
uy

∂uy

∂y
+
∂p

∂y
− ∂µ

∂y

(
4
3
∂uy

∂y
− 2

3
∂ux

∂x

)
−

µ

(
4
3
∂2uy

∂y2
+

1
3
∂2ux

∂x∂y
+
∂2uy

∂x2

)
− ∂µ

∂x

(
∂ux

∂y
+
∂uy

∂x

)
= 0 . (18)

The third equation in Table 12, the species balance II(1) for CH4 is with the simplified
chemical indices of Table 12

−∂p
∂x
uxY3 − ∂ux

∂x
pY3 − ∂Y3

∂x
pux − ∂p

∂y
uyY3 − ∂uy

∂y
pY3 − ∂Y3

∂y
puy +

∂D3,gas

∂y

(
∂p

∂y
Y3 +

∂Y3

∂y
p

)
+ (19)

D3,gas

(
∂2p

∂y2
Y3 + 2

∂p

∂y

∂Y3

∂y
+
∂2Y3

∂y2
p

)
= 0 .

The equations no. 4 to 6 in Table 12 are obtained by replacing in Y3 and D3,gas the
index 3 by 4, 5, 6. The 7th equation II(8), Dalton’s law, becomes

Y3 + Y4 + Y5 + Y6 + Y7 − 1 = 0 . (20)

The 8th equation II(6), the y-momentum equation, is written similarly to the x-momentum
equation (18).

In (19) appears the diffusion coefficient D3,gas which is given in II(9) which is in our
notation

Di,gas =
1 − Yi∑

j �=i Yj/Dij
, i, j = 3, 4, 5, 6, 7 . (21)
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However, there appears in (19) also ∂D3,gas/∂y. To get a corresponding expression
from (21), we write out the expression for D3,gas

D3,gas =
1 − Y3

Y4
D34

+ Y5
D35

+ Y6
D36

+ Y7
D37

=
1 − Y3

sum′3
, (22)

where we have abbreviated the denominator by sum′i where sum′ means that the term
Yj/Dij with j = i, in our case Y3/D33, does not appear in sum′3. With the quotient rule
for differentiation we get from (22)

D3,gas

∂y
= −(sum′3)−2

[
sum′3

∂Y3

∂x
+

(1 − Y3)
(

1
D34

∂Y4

∂y
+

1
D35

∂Y5

∂y
+

1
D36

∂Y6

∂y
+

1
D37

∂Y7

∂y

)]
. (23)

The other ∂Di,gas/∂y are computed similarly. For the anode we will need also ∂Di,gas/∂x
that we get by replacing ∂/∂y by ∂/∂x.

In (18) appears the “coeffient” µ (viscosity) that is given by II(11)

µ =
∑

i

Yiµi∑
j Yjψij

, i, j = 3, 4, 5, 6, 7 , (24)

where ψij are values that are computed from II(12)–II(14), but do not depend on the
variables Yj . However, there appears also ∂µ/∂x and ∂µ/∂y in (18). To get these expres-
sions we write out (23):

µ =
Y3µ3

Y3ψ33 + Y4ψ34 + Y5ψ35 + Y6ψ36 + Y7ψ37︸ ︷︷ ︸
sumps3

+

Y4µ4

Y3ψ43 + Y4ψ44 + Y5ψ45 + Y6ψ46 + Y7ψ47︸ ︷︷ ︸
sumps4

+ (25)

...

Y7µ7

Y3ψ73 + Y4ψ74 + Y5ψ75 + Y6ψ76 + Y7ψ77︸ ︷︷ ︸
sumps7

.

By the quotient rule of differentiation we get
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∂µ

∂x
=(sumps3)−2

[
sumps3µ3

∂Y3

∂x
−

Y3µ3

(
ψ33

∂Y3

∂x
+ ψ34

∂Y4

∂x
+ · · · + ψ37

∂Y7

∂x

)]
︸ ︷︷ ︸

∂sumps3
∂x

+

(sumps4)−2

[
sumps4µ4

∂Y4

∂x
− Y4µ4

∂sumps4
∂x

]
+ (26)

...

(sumps7)−2

[
sumps7µ7

∂Y7

∂x
− Y7µ7

∂sumps7
∂x

]
.

In the same way we get ∂µ/∂y by replacing ∂/∂x by ∂/∂y.
For equs. (17) and (18) we need the density ρ and for (17) also its derivatives with

respect to x and y. From II(10) we have

ρ =
p

RMT
, with RM =

R∑
i YiMi

, i = 3, 4, 5, 6, 7 (27)

in our notation. If we write out RM we get

RM =
R

Y3M3 + Y4M4 + Y5M5 + Y6M6 + Y7M7︸ ︷︷ ︸
sumr

(28)

and we have

ρ =
p · sumr
RT

, (29)

∂ρ

∂x
=

1
RT

[
∂p

∂x
sumr + p

(
M3

∂Y3

∂x
+M4

∂Y4

∂x
+ · · · +M7

∂Y7

∂x

)]
. (30)

If we replace ∂/∂x by ∂/∂y we get ∂ρ/∂y.
Now we have available all the necessary information for the coding of the PDEs in the

channel. But before we can give an example for the coding we must give Fortran names to
the parameters in the PDEs, and we want to include here already the parameters for the BCs.
For this purpose we repeat only the symbols of Table II4 and give them the corresponding
Fortran names in Table 13. Some coefficients, e.g. R, T are given below with the anode
data in Table 16.
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Table 13: Symbols for the parameters and their Fortran names for the PDEs and BCs of the
channel.

Fortran Fortran Fortran
symbol name symbol name symbol name
Di,gas digas Y 0

CH4
y03c σH2 sig6c

Dij dijc Y 0
CO y04c σH2O sig7c

MCH4 m3c Y 0
H2

y05c εCH4/k epk3c
MCO m4c Y 0

CO2
y06c εCO/k epk4c

MCO2 m5c Y 0
H2O y07c εCO2/k epk5c

MH2 m6c σCH4 sig3c εH2/k epk6c
MH2O m7c σCO sig4c εH2O/k epk7c
u0

x,max u0xc σ0
CO2

sig5c
Here i or j must be replaced by i, j=3, 4, 5, 6, 7.

Table 14: Symbols and Fortran names for pre-computed “coefficients”.

Fortran Fortran Fortran
symbol name symbol name symbol name
ρ rho ψij psiij ∂µ/∂x muex

∂ρ/∂x rhox µi mui ∂µ/∂y muey
∂ρ/∂y rhoy Ων,i omvi ∂Di,gas/∂x digasx
RM rm µ mue ∂Di,gas/∂y digasy

Here i or j must be replaced by i, j=3, 4, 5, 6, 7.

But we must give for the coding also names for pre-computed “coefficients” that are
given in Table 14. Partly they are mere parameters, partly they contain the variables Yi.
These pre-computed values are stored in corresponding arrays for the nodes i.

Now we give the Fortran coding for the first 3 equations in Table 12. These are the
Newton residuals P1u to P3u in (10). But at first we must say how derivatives of variables
are denoted in the code: for node i the x- and y-derivatives of u(i,1), i.e. of the first solution
component (here ux) are denoted and stored as ux(i,1) and uy(i,1), second derivatives are
denoted by uxx(i,1), uyy(i,1), uxy(i,1). Similarly the derivatives of other components u(i,j)
are denoted by ux(i,j), uy(i,j), uxx(i,j), uyy(i,j), uxy(i,j).

The Fortran code for P1u, equation (17), looks like this for node i:

p(i, 1) = rhox(i) ∗ u(i, 1) + rho(i) ∗ ux(i, 1) +
rhoy(i) ∗ u(i, 2) + rho(i) ∗ uy(i, 2) (31)

The Fortran code for P2u, equation (18), looks like this for node i:
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Table 15: Sequence of variables and equations in the anode.

no. variable our notation equation
1 ux ux II(46) in form (34)
2 uy uy II(48) in form (35)
3 YCH4 Y3 II(42) in form like (34)
4 YCO Y4 II(43) in form like (34)
5 YH2 Y5 II(44) in form like (34)
6 YCO2 Y6 II(45) in form like (34)
7 YH2O Y7 II(49) all terms to l.h.s.
8 p p II(47) in form like (35)

p(i, 2) = rho(i) ∗ u(i, 1) ∗ ux(i, 2) + rho(i) ∗ u(i, 2) ∗ uy(i, 2) +
ux(i, 8) −muey(i) ∗ (4D0 ∗ uy(i, 2)/3D0 − (32)

2D0 ∗ ux(i, 1)/3D0) −mue(i) ∗ (4D0 ∗ uyy(i, 2)/3D0 +
uxy(i, 1)/3D0 + uxx(i, 2)) −muex(i) ∗ (uy(i, 1) + ux(i, 2)

The Fortran code for the third component of the Newton defect P3u, equation (19), is

p(i, 3) = −ux(i, 8) ∗ u(i, 1) ∗ u(i, 3) −
ux(i, 1) ∗ u(i, 8) ∗ u(i, 3) − ux(i, 3) ∗ u(i, 8) ∗ u(i, 1) −
uy(i, 8) ∗ u(i, 2) ∗ u(i, 8) − uy(i, 2) ∗ u(i, 8) ∗ u(i, 3) −
uy(i, 3) ∗ u(i, 8) ∗ u(i, 2) + uy(i, 8) ∗ u(i, 2) ∗ u(i, 3) − (33)

uy(i, 2) ∗ u(i, 8) ∗ u(i, 3) − uy(i, 3) ∗ u(i, 8) ∗ u(i, 2) +
d3gasy(i) ∗ (uy(i, 8) ∗ u(i, 3) + uy(i, 3) ∗ u(i, 8)) +

d3gas(i) ∗ (uyy(i, 8) ∗ u(i, 3) + 2D0 ∗ uy(i, 8) ∗ uy(i, 3) +
uyy(i, 3) ∗ u(i, 8))

So we recognize that by the chosen name conventions and precomputation of the “co-
effients”, that themselves depend on variables, it is quite easy to translate the equations to
Fortran code.

The next problem are the PDEs in the anode (up to now we had discussed the PDEs in
the channel). Table 15 shows which equation is used in which position of the r.h.s. (Newton
residual) of the linear system for the computation of the Newton correction. It should be
recalled that we do not use the indicesK andA for variables in the channel and in the anode.
For FDEM these are the same variables, only in different domains and the node number i
tells where the position is. Here we show the form of the first 2 equations prepared for the
coding, the other equations are of the same type or trivial (7th equ.). For the preparation
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Table 16: Symbols for the parameters and their Fortran names for the PDEs and BCs for the
anode.

Fortran Fortran Fortran
symbol name symbol name symbol name

Deff
i,gas digas kp kpc UNernst,CO uneco

DK
CH4

dk3c patm patc UNernst,H2 uneh2
DK

CO dk4c R rc U0
Zelle,CO uzcoc

DK
H2

dk5c RA,CO raco U0
Zelle,H2

uzh2c
DK

CO2
dk6c RA,H2 rah2 YO2 yo2c

DK
H2O dk7c RK rk ε epsc
F fc Rohm rohmc τ tauc
jCO jco T tc rCH4 rch4
jH2 jh2 U uc rs rs

Here i must be replaced by 3, 4, 5, 6, 7.

of equation II(46) which is the first equation in Table 15, we multiply the equation by
RT which brings this term as a factor to the last term in II(46). We must differentiate
out all terms. In II(46) there are effective diffusion coefficients Deff

i,gas that are computed
from II(50). Here, i is the component index that takes values 3 to 7 in our notation. In
the equations and in the node we drop the upper index “eff” because in the anode domain
the Di,gas are computed from II(50) so that we do not need a special identification in the
formulas or code. So II(46) becomes

−∂p
∂x
uxY3 − ∂ux

∂x
pY3 − ∂Y3

∂x
pux − ∂p

∂y
uyY3 − ∂uy

∂y
pY3 −

−∂Y3

∂y
puy +D3,gas

(
∂2p

∂y2
Y3 + 2

∂p

∂y

∂Y3

∂y
+ p

∂2Y3

∂y2

)
+ (34)

∂D3,gas

∂y

(
∂p

∂y
Y3 +

∂Y3

∂y
p

)
+D3,gas

(
∂2p

∂x2
Y3 + 2

∂p

∂x

∂Y3

∂x
+ p

∂2Y3

∂x2

)
+

∂D3,gas

∂x

(
∂p

∂x
Y3 +

∂Y3

∂x
p

)
− RT

dA
r3 = 0 .

The equation II(48) which is the equation in the second position in Table 15 becomes

∂p

∂y
+
µ

kp
uy = 0 . (35)

Now we have prepared the basic types of the equations for the anode, the other equations
have quite similar form, see Table 15. The functions rCH4 = r3 and rs that appear in the
equations II(43)–(46) are computed from II(53), (54).
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In Table 16 we have listed the parameters of Table II4 with their Fortran names. As
mentioned above, we named the Deff

i,gas by Di,gas in the anode domain. However, they are
computed there from II(50) in which appear the Di,gas computed from II(9) or from (22)
for the example of D3,gas. In order to distinguish the two Di,gas we denote the Di,gas from
II(9) by D∗

i,gas and its derivatives computed like (22) by ∂D∗
i,gas/∂x or ∂D∗

i,gas/∂y. Now
we need for the equations the derivatives ∂Di,gas/∂x and ∂Di,gas/∂y in the anode which
are in reality the “eff” values. From II(50) we get in the present notation, resolving for
Di, gas:

Di,gas =
ε

τ
DK

i

D∗
i,gas

ε
τD

∗
i,gas +DK

i

(36)

with i = 3, 4, 5, 6, 7 in our notation. From (36) we get the partial derivative (with
intermediate calculation)

∂Di,gas

∂x
=
ε

τ

DK
i

( ε
τD

∗
i +DK

i )2
∂D∗

i

∂x
, (37)

with ∂D∗
i

∂x as shown for ∂D∗
3

∂y in (22). The formula for ∂Di,gas/∂y is obtained by replac-
ing ∂/∂x by ∂/∂y.

The formal translation of these equations is executed as we have shown it above for the
translation of (19) to (33) so that there is no new information.

Now we have finished the discussion of the programming of the PDEs in the interior
of the domain for the channel, Table 12, and for the anode, Table 15. The next problem is
the discussion of the BCs. As we have 8 variables, we need at each boundary a system of
8 equations. Often at a boundary only a few conditions are precribed, e.g. the pressure at
the exit of the channel. Then we “fill up” the set of the equations by appropriate equations.
The domain with its boundaries is shown in Fig. 27. We discuss the boundaries without
their corners and discuss the conditions at the corners later.

We start with the BCs for boundary ①, the left entry of the anode, which is assumed
to be permeable. For ux we take the Darcy law II(47) in the form of the 8th equation of
Table 15. The value uy = 0 is prescribed which fulfils with the condition for p: ∂p/∂y = 0
Darcy’s law II(48). The condition ∂p/∂y = 0 means constant pressure along ①. We will
later take the pressure from the channel at the lower corner of ①. The Yi are prescribed by
their entry values Y 0

i . In Table 17 the boundary equations for boundary ① are compiled.
For boundary ②, the boundary between anode and electrolyte, the conditions II(61)–

(65) are given. For ux we prescribe Darcy’s law like on boundary ①. There is uy = 0
because of closed wall. For p we prescribe Darcy’s law II(48), which is no.2 in Table 15.
The other conditions are given. For Y4 we have II(62) which is in our notation and product
differentiation

−D4
1
RT

(
Y4
∂p

∂y
+ p

∂Y4

∂y

)
− j4

1
2F

= 0 . (38)
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The other conditions are in similar form. The equations for boundary ② are shown in
Table 17. For these BCs the values jH2 = j5 II(67) and jCO = j4 II(68) must be pre-
computed for the nodes of boundary ②, except for the first node (left corner) where for the
entry values Yi a singular value would result. However, for the computation of j4 and j5
we need intermediate values RA,H2 , RA,CO, RK , UNernst,H2 and UNernst,CO which are
given in II(69)–(73). These values are also pre-computed for the nodes of boundary ②. For
the given entry value Y o

CO2
= 0 we get a singular value for II(73). Therefore we do not

compute the j4, j5 for the entry values of Yi.
For boundary ③, exit of anode, which is assumed to be “open”, there is prescribed only

p = patm. So we use for ux Darcy’s law II(47) (no.8 in Table 15) and for the equations in
position 2–7 those of the interior, Table 15. The equations are compiled in Table 17.

Now follow the BCs for the channel. At boundary ④, the right exit of the channel,
there only p = patm is prescribed, II(41). The other equations are like in the interior of the
channel, i.e. the same as positions 1–7 in Table 12. The boundary equations for boundary ④

are compiled in Table 18.
The BCs for boundary ⑤, the rib wall, are given in II(15)–(21), these are the no-slip

conditions for the velocity components and zero gradient normal to the wall for the Yi. For
the pressure we take the x-momentum equation II(6) like in the interior (no.8 in Table 12).
The boundary equations for boundary ⑤ are compiled in Table 18.

The boundary conditions for boundary ⑥, the channel entry, are given in II(34)–(41).
Here values are prescribed for all variables except the pressure which is computed from the
x-momentum equation II(6) (no.8 in Table 12). For ux a parabolic profile is prescribed with
the maximal velocity ux,K,max in the middle of the channel and no-slip condition ux = 0 at
the rib wall and at the anode, equ. II(40). However, we must have the same ux in the channel
and in the anode at the interface DL, see Fig. 27. We compute at the anode interface ux from
Darcy’s law II(47) and we take this as slip for the channel flow at the anode interface. We
call this the “modified parabola II(40)”. Else we would have a jump in ux at the interface.
The boundary equations for boundary ⑥ are compiled in Table 18.

The next problem are the coupling conditions (CCs) at the dividing line DL, see Fig. 27.
The DL is geometrically one line, but logically two lines: side 1 belongs to the channel,
side 2 to the anode. The CCs are given in II(22)–(33). However, we must clearly distinguish
which conditions are applied at side 1 and side 2. The variables are computed at one side
and their value is transferred to the other side. In the code the logical nodes on side 1 and
2 have different node numbers i, so the variables can be easily distinguished. In the writing
down of the CCs we distinguish the variables and also the variable-dependent coefficients
by the index K for channel and A for anode. We have compiled the CCs in Table 19 which
we now will discuss.

The value of ux is computed from Darcy’s law in x-direction II(47), the equation is that
of position 8 in Table 15, i.e. it is computed with the variables in the anode, index A. So this
is the equation for ux on side 2. This value is taken to the channel, side 1, by the condition
ux,K = ux,A, this is the slip velocity.
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Table 17: Boundary equations for the anode for boundaries ①–③.

no. var. boundary ① boundary ② boundary ③

1 ux no.8 in Tab. 15 no.8 in Tab. 15 no.8 in Tab. 15
2 uy uy = 0 uy = 0 no.2 in Tab. 15
3 Y3 Y3 − Y 0

3 = 0 ∂Y3/∂y = 0 no.3 in Tab. 15
4 Y4 Y4 − Y 0

4 = 0 II(62) in form (38) no.4 in Tab. 15
5 Y5 Y5 − Y 0

5 = 0 II(63), similar form no.5 in Tab. 15
6 Y6 Y6 − Y 0

6 = 0 II(64), similar form no.6 in Tab. 15
7 Y7 Y7 − Y 0

7 = 0 II(65), similar form no.7 in Tab. 15
8 p ∂p/∂y = 0 no.2 in Tab. 15 p− patm = 0

no.8, Tab. 15 means the equation in row 8 of Table 15.

Table 18: Boundary equations for the channel for the boundaries ④–⑥.

no. var. boundary ④ boundary ⑤ boundary ⑥

1 ux like ux = 0 ux=mod.par. II(40)
2 uy positions uy = 0 uy = 0
3 Y3 1–7 ∂Y3/∂y = 0 Y3 − Y 0

3 = 0
4 Y4 in ∂Y4/∂y = 0 Y4 − Y 0

4 = 0
5 Y5 Table 12 ∂Y5/∂y = 0 Y5 − Y 0

5 = 0
6 Y6 ∂Y6/∂y = 0 Y6 − Y 0

6 = 0
7 Y7 ∂Y7/∂y = 0 Y7 − Y 0

7 = 0
8 p p− patm = 0 no.8 in Tab. 12 no.8 in Tab. 12

mod.par. II(40) means modified parabola II(40), see text.

Similar conditions hold for uy . The Yi are computed in the anode from the equality
of the diffusion transport for channel and anode, II(22)–(26). From II(22) we get in our
notation, differentiating out the products and taking all terms to the l.h.s., the equation for
Y3:

D3,gas,A

(
∂pA

∂x
Y3,A + pA

∂Y3,A

∂x

)
−D3,gas,K

(
∂pK

∂y
Y3,K + pA

∂Y3,K

∂y

)
= 0 . (39)

Here D3,gas,A is computed from (36) with the Yi,A and D3,gas,K is computed from
type (22) with the Yi,K . Similar relations hold for the Y4 to Y7. These values are taken by
Yi,K = Yi,A to the channel side 1.

The pressure pk is computed from the x-momentum equation II(6) in the channel which
is the equation of position 8 in Table 12. This value is transferred by pA = pK to the anode
side. This discussion of the CCs at the DL is an illustrative example of the use and of the
possibilities of a dividing line. It couples by CCs the two domains channel and anode in
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Table 19: Coupling conditions (CCs) at dividing line DL. IndexK is variable in channel, index
A in anode.

no. var. side 1, channel side 2, anode
1 ux ux,K − ux,A = 0 no.8 in Tab. 15
2 uy uy,K − uy,A = 0 no.2 in Tab. 15
3 Y3 Y3,K − Y3,A = 0 II(22) in form (39)
4 Y4 Y4,K − Y4,A = 0 II(23) in similar form
5 Y5 Y5,K − Y5,A = 0 II(24) in similar form
6 Y6 Y6,K − Y6,A = 0 II(25) in similar form
7 Y7 Y7,K − Y7,A = 0 II(26) in similar form
8 p no.8 in Tab. 12 PA − PK = 0

no.8 in Tab. 12 means the equation in position 8 in Table 12.

which hold quite different PDEs. We get a global solution over the two domains with global
error estimate.

The next problem are the corners. They belong to two boundaries. At first sight it
seems to be of no importance which conditions we take. However, the present problem is
very critical and we had experienced that we got large errors and even divergence of the
Newton iteration if we did not take the “correct” conditions at the corners. We report here
those conditions that we take presently which does yet not mean that these are the optimal
conditions. One has to look at Fig. 27 for the corners.

Upper left corner, intersection of boundaries ① and ②: we take the equations of bound-
ary ①, Table 17.

Upper right corner, intersection of boundary ② and ③: For position 1 to 7 we take the
equations of boundary ③, Table 17, for position 8 we take p−patm = 0. At first we had used
the conditions of boundary ② for 1 to 7 and p− patm = 0 for 8. With this choice the errors
were 1 to 2 orders of magnitude larger. This shows the extreme sensibility of the problem
to such seemingly tiny changes and it shows that the corner nodes play an important role
for the solution of the whole problem.

Lower right corner, intersection of boundary ④ and ⑤: we take the equations of bound-
ary ⑤, Table 18, for positions 1 to 7 and for position 8 we take p− patm = 0.

Lower left corner, intersection of boundary ⑤ and ⑥: we take the equations of bound-
ary ⑥.

The next problem are the left and right end nodes of the dividing line. Here we have for
the one geometrical node again two logical nodes at the end and we have to differ between
side 1 (channel) and side 2 (anode). We depict our choice of all CCs in Table 20, it is
self-explaining.

Now we have prepared all the information for the coding of the r.h.s. of the linear system
for the computation of the Newton correction. You have seen that there was still much to
do to formulate clearly the problem. The BCs and CCs have been given “shortly” in Part II,
but these are only the given conditions that must be “filled up” by other equations to get
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Table 20: CCs at left and right end of DL. IndexK is variable in channel, index A in anode.

left end right end
side 1 side 2 side 1 side 2

no. var. channel anode channel anode
1 ux ux,K − ux,A = 0
2 uy uy = 0 uy = 0 position position
3 Y3 Y3,K − Y 0

3 = 0 Y3,K − Y 0
3 = 0 1 to 7 1 to 7

4 Y4 Y4,K − Y 0
4 = 0 Y4,K − Y 0

4 = 0 like like
5 Y5 Y5,K − Y 0

5 = 0 Y5,K − Y 0
5 = 0 side 1 side 2

6 Y6 Y6,K − Y 0
6 = 0 Y6,K − Y 0

6 = 0 Table 19 Table 19
7 Y7 Y7,K − Y 0

7 = 0 Y7,K − Y 0
7 = 0

8 p no.8, Tab. 12 PA − PK = 0 p− patm = 0 p− patm = 0
no.8, Tab. 12 means the equation in position 8 in Table 12.

the necessary 8 equations. And in Part II nothing is said about the corners. So the user
of FDEM is forced to formulate exactly all the details of his problem to get the equations
that finally are entered in FDEM. The formal translation to Fortran code is easy as has been
shown exemplarily in equs. (31)–(33) for the channel flow.

The matrix Qd of the linear system is composed by FDEM from the difference formulas
and the Jacobian matrices, that are also needed for the computation of the error estimate,
see the basic paper [2] or the detailed report [1]. The meaning and the form of the Jacobian
matrices has been explained above in the equations (9)–(11) and the corresponding context.
The system of PDEs for the SOFC is extremely nonlinear, above all by the nonlinear coeffi-
cients, e.g. the Di,gas or µ. It will be impossible to give here the formulas for the Jacobian
matrices, they would fill many pages with formulas that nobody would read. We rather want
to show the procedure how to get the Jacobian matrices in our case.

Let uns consider equ. (17), this is the first equation in Table 12 and therefore P1u in
the notation of (10). for the Jacobians we must look for the dependencies of (17) from the
variables. Equ. (17) depends explicitly from ux = u1, the first variable, from its x-derivative
∂ux/∂x = u1,x, from uy = u2, from its y-derivative ∂uy/∂y = u2,y in the terminology
of (9)–(11). If ρ would be a constant, these would be the (explicit) dependencies of the
operator P1u (17). However, ρ depends by (29) from sumr and sumr depends by (28)
from the variables Y3 = u3 to Y7 = u7, and ρ depends on p = u8. These are implicit
dependcies. So we have purely formal
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P1u = P1(u1, u2, u3, u4, u5, u6, u7, u8, u1,x, u2,y)

= P1(ux, uy, Y3, Y4, Y5, Y6, Y7, p,
∂ux

∂x
,
∂uy

∂y
)

= P1(ux, uy,
∂ux

∂x
,
∂uy

∂y
, ρ(p, sumr(Y3, · · ·, Y7)), (40)

∂ρ

∂x
(p,

∂p

∂x
, sumr(Yi),

∂sumr

∂x
(
∂Yi

∂x
)),

∂ρ

∂y
(p,

∂p

∂y
, sumr(Yi),

∂sumr

∂r
(
∂Yi

∂y
))) .

From (17), (28)–(30) we get

∂P1

∂u1
=
∂P1

∂ux
=
∂ρ

∂x
(dependence 1st PDE from 1st variable),

∂P1

∂u2
=
∂P1

∂uy
=
∂ρ

∂y
(dependence 1st PDE from 2nd variable),

∂P1

∂u3
=
∂P1

∂Y3
=

(
∂ux

∂x
+
∂uy

∂y

)
∂ρ

∂Y3
+ ux

∂( ρ
∂x)
∂Y3

+ uy

∂( ρ
∂y )

∂Y3
, (41)

similarly
∂P1

∂Y4
to

∂P1

∂Y7

∂P1

∂u8
=
∂P1

∂p
=

(
∂ux

∂x
+
∂uy

∂y

)
∂ρ

∂p
+ ux

∂( ρ
∂x )
∂p

+ uy

∂( ρ
∂y )

∂p
.

This ends the dependencies of P1 from the variables ux to p. Now come the dependen-
cies from the x-derivatives of the variables:

∂P1
∂ux
∂x

= ρ (there is no dep. on
∂uy

∂x
),

∂P1

∂Y3
∂x

= ux
∂( ρ

∂x)
∂Y3
∂x

, similarly for
∂Y4

∂x
to

∂Y7

∂x
(42)

∂P1

∂p
∂x

= ux
∂( ρ

∂x)
∂p
∂x

,
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∂P1
∂uy

∂y

= ρ,

∂P1
∂Y3
∂y

= uy

∂( ρ
∂y )

∂Y3
∂y

, similarly for Y4 to Y7 (43)

∂P1

∂p
∂y

= uy

∂( ρ
∂y )

∂p
∂y

.

All intermediate quantities are pre-computed and stored, e.g. sumr, ∂sumr/∂x, ∂sumr/∂y
and their derivatives with respect to the variables. From (28)–(30) we get e.g.

∂ρ

∂Y3
=

p

RT

∂sumr

∂Y3
,

∂sumr

∂Y3
= M3,

∂(∂ρx

∂x )
∂Y3

=
1
RT

∂p

∂x

∂sumr

∂Y3
, (44)

∂(∂ρx

∂x )
∂Y3
∂x

=
1
RT

p
∂(∂sumr

∂x )
∂Y3
∂x

,

∂(∂sumr
∂x )

∂Y3
∂x

= M3 .

This should be sufficient to show you how the Jacobians (11) are computed and why
we do not list them all here. We have developed a formalism where we reduce the com-
plicated expression by a chain of intermediate values for which we apply the chain rule of
differentiation, so that even the most complex expressions get back to their simple origins.
Nevertheless, the formulation of the Jacobians is a hard mental training.

It is now also clear that the Jacobians are the main part of the implementation—and
that they are rather error-prone. Therefore we have developed the Jacobi tester, where we
check the elements of the Jacobi matrices by difference quotients, see [1]. And indeed, there
were a lot of errors found, but finally the Jacobi tester did no longer show errors. Then the
numerical solution started.

However, the situation was not quite as simple as it seems to be. For the PEMFC
we got rather final models that worked nearly immediately. The situation is much more
complicated for the SOFC, especially because of the methane reforming process and by the
coupling of the two domains of anode and gas channel. Only by solving the PDEs we could
check their validity. At the same time also the used values for the many coefficients that
came from different sources were not “safe” values and had to be adapted. So we had to
improve the model of the PDEs and the values of the coefficients until we finally came up
with the model that has been presented here. Because changing the model means changing
the Jacobi matrices this is a hard work.
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Table 21: Maxima of the solution components and of the relative global error estimates for the
computation with the 2 mm anode.

channel anode
no. var. solution error solution error
1 ux 0.6733E+00 0.36E-02 0.2287E-01 0.76E-01
2 uy 0.1749E-01 0.39E-01 0.1749E-01 0.91E-02
3 YCH4 0.3300E+00 0.19E-02 0.3300E+00 0.96E-02
4 YCO 0.2022E+00 0.15E-01 0.2022E+00 0.42E-01
5 YH2 0.5754E+00 0.64E-02 0.5752E+00 0.18E-01
6 YCO2 0.8065E-01 0.82E-02 0.1269E+00 0.36E-01
7 YH2O 0.6700E+00 0.89E-02 0.6700E+00 0.31E-01
8 p 0.1013E+06 0.11E-05 0.1082E+06 0.16E-02

The numerical experiments showed that the SOFC PDEs are very critical because of
their extreme non-linearity which can be seen by the complicated Jacobian matrices. We
computed solutions for 3 different thicknesses dA of the anode, 0.05, 1 and 2 mm. We could
get the solution for 2 mm only by computing the solution for 0.05 mm, using this as starting
solution for 1 mm and this solution as starting solution for 2 mm. When we used the entry
values of x = 0 for the variables as starting values, the Newton iteration diverged. We used
the consistency order q = 4. With the order q = 2 we got errors 10 to 100 times larger.
When we used the order q = 6, the Newton iteration diverged, even with the solution of
order 4 as initial solution. We used a grid of 80 nodes in the x-direction. When we used for
accuracy tests a grid of 160 nodes we could get the solution of order 4 only by computing
a solution for order 2 and using this as starting solution for order 4. These experiences
illustrate how critical the SOFC PDEs are.

The results that we present below were computed on the HP XC6000 parallel super-
computer of the University of Karlsruhe. The processors are Intel Itanium2 processors with
1.5 GHz. We computed with 8 processors in parallel. The grid was 80 nodes in x-direction
and 41 nodes in y-direction in the channel and 41 nodes in the anode. We computed with
consistency order 4. We will present below the results for the anode with dA = 2 mm,
ε/τ = 0.21, Rohm = 1.63 · 10−6, see the section “Parameter Variation” in Part II. We
used as starting values the solution for dA = 1 mm and needed 4 Newton iterations. The
execution time on the master processor 1 was 510 sec, of which are needed 508 sec by the
linear solver LINSOL. As we have 80× 82 nodes and 8 unknowns per node, the number of
unknows was 52480.

In Table 21 the maxima of the solution components and the maxima of the estimated
relative global errors are compiled for channel and anode. Before we will discuss these
numbers we look at the result plots in Figs. 28–59. These figures are in grayscale in the
printed version of the report, but they are in colour in the on-line version. Therefore you
should look at these figures at the computer screen.

We discuss at first the results for the channel, Figs. 28–43. Our discussion is purely
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about the numerical behaviour. The physical behaviour is discussed in Part II. The plot for
ux, Fig. 28, shows that in the middle of the channel ux grows from the entry value of 0.5
m/s to its maximal value 0.67, see Table 21, and then goes down again. The error plot,
Fig. 29, shows that the maximal relative error of 0.36E-2 or 0.36% occurs in a small region
at the exit. Except this region the error is much smaller. The plot of uy , Fig. 30, shows that
the maximal value of 0.017 m/s, Table 21, occurs close to the entry in the upper part which
results from the influence of the anode, see Fig. 46. The error plot, Fig. 31, shows a small
error below 1%, the max. error of 1.7% of Table 21 is not visible and obviously occurs
in a very small region at the exit of the channel. The plots for the chemical components,
Figs. 32–41, speak for themselves. It is interesting to see that YCH4 and YH2O drop quite fast
from their entry values to lower values by the chemical reactions of the reforming process.
The errors of the Y ’s are quite small, their maximal values occur either in the entry or in the
exit region of the channel. The pressure is shown in Fig. 42, you can see in the scale to the
right of the plot that the change from entry to exit is only in the 5th digit, this is in the range
of the discretization error whose max. value is 0.11E-5 from Table 21. Therefore the error
plot, Fig. 43, looks a little weird, but this comes only from the smallness of the error.

Now we want to discuss shortly the results for the anode, Figs. 44–59. The velocity
components ux and uy are small. The maximal error of ux of 7.6%, the largest error that
occurs in Table 21, is practically not visible in Fig. 45 because it occurs obviously just at the
entry. This indicates that there is a singularity or an incompatibility in the BCs at the entry
of the anode. The second largest error in Table 21 occurs in the anode for YCO. Fig. 51
shows that this error occurs in a small region at the exit of the anode, indicating a singularity
or incompatibility in the BCs at the exit of the anode. Also for the other Y ’s the max. errors
occur in very small regions at the entry or exit of the anode. The variation of the pressure in
the anode, Fig. 58, is much larger than in the channel and is surely caused by the diffusion
process of the chemical species.

From the numerical point of view these results are very convincing by the small esti-
mates of the errors. The system of the SOFC PDEs is strongly non-linear and numerically
very critical, and it is solved on a coupled domain with different PDEs in channel and anode.
How should we trust our solution without the error estimate?
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Figure 28: Contour plot of velocity ux [m/s] in the channel.
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Figure 29: Contour plot of the global relative error of u x in the channel.
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Figure 30: Contour plot of velocity uy [m/s] in the channel.

x

y

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
3.5E-02
3.0E-02
2.5E-02
2.0E-02
1.5E-02
1.0E-02
5.0E-03

Channel
error-u-y

Figure 31: Contour plot of the global relative error of u y in the channel.

III.48



x

y

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010
0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

Channel
Y-CH4

Figure 32: Contour plot of mole fraction YCH4 in the channel.
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Figure 33: Contour plot of the global relative error of YCH4 in the channel.
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Figure 34: Contour plot of mole fraction YCO in the channel.
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Figure 35: Contour plot of the global relative error of YCO in the channel.
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Figure 36: Contour plot of mole fraction YH2 in the channel.
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Figure 37: Contour plot of the global relative error of YH2 in the channel.
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Figure 38: Contour plot of mole fraction YCO2 in the channel.
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Figure 39: Contour plot of the global relative error of YCO2 in the channel.
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Figure 40: Contour plot of mole fraction YH2O in the channel.
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Figure 41: Contour plot of the global relative error of YH2O in the channel.
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Figure 42: Contour plot of pressure p [Pa] in the channel.
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Figure 43: Contour plot of the global relative error of p in the channel.
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Figure 44: Contour plot of velocity ux [m/s] in the anode.
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Figure 45: Contour plot of the global relative error of u x in the anode.
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Figure 46: Contour plot of velocity uy [m/s] in the anode.
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Figure 47: Contour plot of the global relative error of u y in the anode.
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Figure 48: Contour plot of mole fraction YCH4 in the anode.
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Figure 49: Contour plot of the global relative error of YCH4 in the anode.
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Figure 50: Contour plot of mole fraction YCO in the anode.
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Figure 51: Contour plot of the global relative error of YCO in the anode.
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Figure 52: Contour plot of mole fraction YH2 in the anode.
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Figure 53: Contour plot of the global relative error of YH2 in the anode.

III.59



x

y

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

0.12
0.11
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Anode
Y-CO2

Figure 54: Contour plot of mole fraction YCO2 in the anode.
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Figure 55: Contour plot of the global relative error of YCO2 in the anode.
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Figure 56: Contour plot of mole fraction YH2O in the anode.
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Figure 57: Contour plot of the global relative error of YH2O in the anode.
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Figure 58: Contour plot of pressure p [Pa] in the anode.
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Figure 59: Contour plot of the global relative error of p in the anode.
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jmean = 6860,67                             j
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Figure 60: Current densities j, jCO and jH2 [A/m2], jmean = 6860.67.
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Channel
max. mean max. mean

u-x 3,6E-03 9,4E-04 9,1E-02 4,6E-03
u-y 2,6E-01 4,3E-03 1,1E+00 7,1E-03
Y-CH4 8,1E-04 5,0E-04 8,2E-04 4,2E-04
Y-CO 5,1E-03 1,2E-03 3,3E-02 8,5E-03
Y-H2 1,7E-03 6,3E-04 1,3E-02 5,4E-03
Y-CO2 3,8E-03 8,0E-04 2,0E-02 5,8E-03
Y-H2O 2,8E-03 6,6E-04 1,8E-02 6,0E-03
p 1,3E-06 8,0E-07 7,9E-06 5,2E-06

Anode
max. mean max. mean

u-x 1,9E-01 2,9E-03 1,7E-01 1,4E-03
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Y-CH4 7,8E-04 4,8E-04 8,2E-04 4,2E-04
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Y-H2 1,7E-03 6,1E-04 1,3E-02 5,3E-03
Y-CO2 7,2E-03 7,7E-04 2,2E-02 5,9E-03
Y-H2O 4,0E-03 6,5E-04 1,8E-02 5,8E-03
p 4,0E-05 1,5E-05 9,6E-05 2,8E-05
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Figure 61: Comparison of max. and mean error for grid 80× 41 and 160× 81 for channel and
anode.

For the output of a SOFC the current densities at the interface of the anode to the elec-
trolyte are an essential result. Fig. 60 shows the current densities j [A/m2], equ. II(74),
jCO, equ. II(68) and jH2 , equ. II(67). We have also computed the arithmetic mean of j of
the node values at boundary ② which is jmean = 6860.67 A/m2. For these quantities we
cannot give error estimates as we did it for the PEMFC in Fig. 26, there the current density
is named i. For the PEMFC i was a variable that had a meaning only at the reaction layer. If
we needed error estimates for jCO and jH2 (j is trivial by equ. II(74)), we had to introduce
them as variables that have a physical meaning only at the interface to the electrolyte, just
as we did it for i in the PEMFC. However, this would increase the number of variables to
10. But as the entries in the formulas for the j’s have errors in the 1% range, we can assume
that the j’s are accurate also in the 1% range.

As mentioned above the system of SOFC PDEs is numerically very critical and there
is the suspicion of a hidden singularity or incompatibility of the BCs. If this would be the
case the errors would grow if we use a finer grid because the singularity is better detected,
or at least would not go down as expected from the consistency order q = 4. Halving the
step size would theoretically reduce the error by a factor (1/2)4 = 1/16 or roughly one
order of magnitude. Therefore we computed the solution with a grid of 160 × 81 for the
channel and for the anode and compared the errors to those of 80 × 41. As we have seen
in the (coloured) figures the error is usually small in the main part of the domain and gets
larger values only in very small regions at the entry or exit. Therefore we investigated also
the mean error, i.e. the arithmetic mean value of the errors in the domain. The max. and
mean errors for grid 80 × 41 and 160 × 81 for channel and anode are depicted in Fig. 61.
What can we learn from these 64 numbers? Where we have small max. errors, the mean
error is not much smaller, so we have a “flat” error distribution. However, where we have
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large max. errors (compared to their neighbouring values), the mean error is by one to two
orders of magnitude smaller, see the following examples in Fig. 61:

channel, uy: 2.6E-1→ 4.3E-3, 1.1E0→ 7.1E-3 ,
anode, ux: 1.9E-1→ 2.9E-3, 1.7E-1→ 1.4E-3 .

This shows clearly that there are error “peaks” that indicate a singularity or incompat-
ibility, presumably in the BCs. This is what the comparison of max. and mean error tells
us.

Now we compare the errors of the two grids. Where we have large errors, e.g. for uy in
the channel, the max. and mean errors for the fine 160-grid are both larger than those of the
coarser 80-grid. For uy we have for max. and mean error:

2.6E-1 → 1.1E0, 4.3E-3 → 7.1E-3 .
All max. errors go up from the 80-grid to the 160-grid except ux, uy in the anode. Also
most of the mean errors go up from the 80-grid to the 160-grid. This shows that there is not
the theoretically expected behaviour of an error reduction by a factor of 1/16. This confirms
the assumption of a singularity/incompatibility in the system of PDEs and BCs and CCs.
This needs further investigation of the problem. However, because the financial means were
very short there was not the time to do this. Nevertheless we can trust our results for the
80-grid. This ends the discussion of numerical solution of the SOFC PDEs.

4 Concluding remarks

In chapter 1 we gave a short survey of the FDEM program package and its possibilities. The
essential advantage of this exceptional black-box PDE solver is the error estimate. This is a
unique feature. To our knowledge nobody else can solve such general nonlinear systems of
PDEs with a reliable error estimate. FDEM is an unprecedented generalization of the FDM.
As large technical problems make the use of large parallel supercomputers mandatory: Also
in this respect the FDEM program package is exemplary because it is efficiently parallelized
with MPI for shared and distributed memory parallel computers.

In Chapter 2 we report on a fruitful cooperation with the ZSW Ulm to solve the PDEs
of PEMFCs. We solved several models with increasing complexity. Only if one solves the
PDEs of a certain model numerically, the properties of the model come to light. Our partner,
in this case ZSW, is responsible for the PDEs, we are responsible for the numerical solution.
The partner will immediately ask us: How good is the solution, can I trust it? He takes it for
granted, that we can solve his PDEs. But he expects also that we can tell him the quality of
the solution. As the PEMFCs were rather critical, ZSW asked us for solutions on finer grids
until they were satisfied with the errors. In chapter 2 we described how we implemented
their most elaborate model in FDEM and we discussed the properties of the PDEs from the
point of view of numerics.

In Chapter 3 we report about the numerical solution of the SOFC PDEs that were partly
established and improved in a vital cooperation with the IWE of our university. The problem
of SOFCs is rather complicated by the methane reforming process and hence there are many
parameters in the system that must carefully be adapted to get useful solutions. So much of
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the project time was used to tune the model. We report here on the implementation of the
final model. Again the knowledge of the error of the numerical solution was an invaluable
help that opened the eyes to us and to IWE. As in the PDEs are many “coefficients” that
themselves depend in a multistage way on the variables, the generation and implementation
of the Jacobian matrices that describe the dependency of the PDEs from the variables was a
really hard task. The PDEs of the SOFC are numerically very critical as has been shown in
Chapter 3.

For us the cooperation with the ZSW and IWE was extremely useful to demonstrate
with practical industry-near problems the usefulness of FDEM and we want to thank the
colleagues of these institutes for their engaged cooperation.

As it will be our task to demonstrate the usefulness of FDEM by possibly many exam-
ples, we are looking for further cooperation partners to solve in common research projects
their problems. The problems may be any type of numerical simulation. If you are inter-
ested you may contact us.
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