
The Parallelization of the
Mesh Refinement Algorithm in the
Finite Difference Element Method

Program Package

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Dipl.-Math. techn. Torsten Dirk Adolph
aus Marbach am Neckar

Tag der mündlichen Prüfung: 24. November 2005

Erster Gutachter: Prof. Dr. Roland Vollmar

Zweiter Gutachter: Prof. Dr. Willi Schönauer

Abstract

The Finite Difference Element Method program package is a robust and efficient
black-box solver for the solution of arbitrary nonlinear systems of elliptic and par-
abolic partial differential equations under arbitrary nonlinear boundary conditions on
arbitrary domains. As we can generate difference formulas of arbitrary consistency
order, we get from the difference of formulas of different order an easy access to the
discretization error. By the knowledge of this error we can refine the mesh locally in
order to reduce the error to a prescribed relative tolerance.

In this work, we first introduce the Finite Difference Element Method and explain how
we generate the difference and error formulas for the solution of the systems of partial
differential equations and for the error estimate. Further, the determination of the in-
dividual consistency order for each node and the local mesh refinement is described.
The domain may be composed from different subdomains with different partial dif-
ferential equations and different non-matching grids. The subdomains may even slide
relatively to each other. We also explain the concept of the parallelization of the Fi-
nite Difference Element Method on distributed memory parallel computers where we
make use of the basic principle of the separation of the selection and the of processing
of the data to save communication time.

We introduce the mesh refinement algorithm on a single processor where we explain
the basic principles in 2-D and 3-D. The particuliarities of computations with dividing
lines or sliding dividing lines that separate the subdomains are noted separately. The
storage scheme with a maximum of three nodes on an edge of the elements induces
a “refinement cascade”. Afterwards we explain how we overcome the difficulties in
parallelizing the mesh refinement algorithm on distributed memory parallel computers
where the processors have only local data and the refinement must be synchronized
by the message passing paradigm. By the 1-D domain decomposition of the grid we
are able to put up clear rules that fix the owning of the nodes and elements by the
processors, and from these basic rules we derive further rules to control the refinement
process. The passing of messages to neighbour processors is always split up into two
parts: We first only pass to the neighbour processors the message lengths for the data
we really intend to send afterwards. The result of this preparatory communication
step is that each processor has the knowledge which data it will receive from which
processor, and therefore a time- and data-optimized communication is guaranteed for
the following data exchange.

Some examples illustrate the application of the refinement and demonstrate the scala-
bility of the algorithm.

Danksagung

Diese Arbeit entstand im Wesentlichen während meiner Tätigkeit in der Numerikforschungs-
gruppe am Rechenzentrum der Universität Karlsruhe (TH).

Prof. Dr. Roland Vollmar danke ich für die freundliche Übernahme des Referats sowie für
zahlreiche Vorschläge zum Inhalt und zur Darstellung meiner Dissertation.

Zu großem Dank bin ich Prof. Dr. Willi Schönauer verpflichtet, der nicht nur das Thema an-
regte, sondern auch das Fortschreiten der Dissertation mit großem Interesse verfolgte und
das Korreferat übernahm. Die zahllosen mit Prof. Dr. Schönauer geführten Diskussionen
und seine vielen Anregungen waren mir während der gesamten Zeit der Anfertigung der
Dissertation eine große Hilfe.
Durch die langjährige fruchtbare Zusammenarbeit, während der er mich mit seiner Begei-
sterung für die numerische Simulation angesteckt hat, und durch das Vertrauen, das er in
mich gesetzt hat, wurde diese Arbeit erst möglich. Ich danke ihm auch für die Nachsicht,
mit der er meine Launen erduldete.

Besonderen Dank schulde ich auch und vor allem meiner Ehefrau Anja Meisel, die auch
in schwierigen Phasen sehr geduldig war und mich mit all ihrer Kraft großartig unterstützt
hat, sowie meinem Sohn Julian Adolph, dem ich jetzt endlich wieder die Aufmerksamkeit
schenken kann, auf die er viel zu lange verzichten musste.

Contents

1 Introduction 1

2 Nomenclature 5

3 The FDEM program package 13
3.1 The error equation . 13
3.2 The discretization error estimate . 19
3.3 The generation of difference and error formulas 21
3.4 The selfadaptation process . 31

3.4.1 The selfadaptation in time direction 32
3.4.2 The selfadaptation of the consistency order q 34
3.4.3 Mesh refinement . 35

3.5 Coupled domains . 37
3.5.1 Dividing lines . 37
3.5.2 Sliding dividing lines . 40

3.6 Parallelization . 43
3.7 Remarks to LINSOL . 48

4 The algorithm of the mesh refinement 51
4.1 Context . 51

4.1.1 Implementation language . 51
4.1.2 The Portable Message Passing Interface 52
4.1.3 External procedures . 54
4.1.4 Communication patterns . 54

4.2 Refinement nodes and elements . 61
4.3 Refinement cascade . 64

4.3.1 Refinement cascade on a single processor 64
4.3.2 Refinement cascade on a distributed memory parallel computer 75

4.4 Mesh refinement on a single processor . 86
4.4.1 Mesh refinement in 2-D . 86
4.4.2 Extension to 3-D . 103
4.4.3 Mesh refinement with dividing lines in 2-D and 3-D 111

4.5 Mesh refinement on a distributed memory parallel computer 123
4.5.1 Mesh refinement in 2-D . 123
4.5.2 Extension to 3-D . 160
4.5.3 Mesh refinement with dividing lines in 2-D and 3-D 172

4.6 Mesh coarsening . 175
4.7 What we have learned from the mesh refinement algorithm 176

5 Numerical examples 185
5.1 The test PDE . 185
5.2 The test of the Jacobian matrices . 187
5.3 System of PDEs for the 2-D test examples 188
5.4 Approximating a polynomial by pure mesh refinement 190
5.5 Experiments with rectangular grids . 196

5.5.1 Investigating all steps of FDEM . 196
5.5.2 Scaling of the mesh refinement only 201

5.6 Example for 2-D dividing line . 203
5.7 Example for 2-D sliding dividing line . 209
5.8 A 3-D example . 216

6 Summary and Outlook 221

References 225

List of Algorithms 227

List of Figures 227

List of Listings 230

List of Rules 231

List of Tables 231

Introduction 1

1 Introduction

Many problems in physics, chemistry and engineering can be formulated by systems of
partial differential equations. By the discretization of the equations we are able to get a
numerical solution of these systems.

From recent textbooks to the numerical solution of partial differential equations (PDEs),
see [1], [2], we learn that there are basically three main methods for the numerical solution
of PDEs: The first method is the finite difference method (FDM) that dominated the early
development of numerical analysis of PDEs. We search an approximate solution at the
points of a uniform mesh of points, and we approximate the differential equation by replac-
ing the derivatives by difference quotients at the mesh-points which reduces the differential
equation problem to a finite linear system of algebraic equations. The PDEs and boundary
conditions (BCs) can be entered directly, therefore the FDM is best suited for a black-box
solver where the user enters “his” PDEs and BCs explicitly. Usually, the FDM is restricted
to rectangular grids and consistency order 2. The essential drawback of the FDM is the
lack of geometrical flexibility and that the solution of problems with coupled domains with
different PDEs is not possible.
In the 1960s the finite element method (FEM) has been introduced by engineers, and over
the last decades this method has become the most used numerical method for PDEs. This
method is based on the variational formulations of the differential equations and approx-
imates the exact solution by piecewise polynomial functions on some partition of the do-
main under consideration (minimization of a functional). It is more easily adapted to the
geometry of the underlying domain than the FDM, i.e. we get full geometrical flexibility
by unstructured meshes. The theory of the FEM is very complicated and the access to the
error is very difficult, therefore it is not suitable for a black-box solver.
The third method is the finite volume method that is between the FDM and the FEM and
that calculates the values of the variables averaged across the volume. It does not require a
structured mesh, therefore it is powerful on coarse nonuniform grids and in computational
fluid mechanics, above all for compressible flow with singularities (shocks).

Our aim is to design a robust and efficient black-box solver for the solution of all types of
nonlinear elliptic and parabolic systems of partial differential equations with all types of
nonlinear boundary conditions. We want a reliable error estimate so that we can refine the
mesh locally and we can give each node an individual consistency order. The mesh may be
unstructured on an arbitrary domain.

As we use a generalized finite difference method with arbitrary consistency order p in time
direction (for parabolic partial differential equations) and arbitrary consistency order q in
space direction on a typical unstructured finite element method mesh, this method is called
Finite Difference Element Method (FDEM). The FEM mesh is only used to get knowledge

2 Introduction

of the structure of the space but not for the solution of the partial differential equations.

The finite difference element method is an unprecedented generalization of the FDM which
is the reason why there are no related other references. We have full geometrical flexibil-
ity, it is usable also for coupled domains with different PDEs and we can use an arbitrary
consistency order. The PDEs and BCs can be entered explicitly, therefore the method is
well-suited for a black-box. We have a direct explicit error estimate and by the knowledge
of the error we have the possibility to optimize all the many computational parameters.
FDEM is the endpoint of a 25 years’ development. Additionally, there is a code that imple-
ments the method and this code is efficiently parallelized for distributed memory parallel
computers. The next step is to use FDEM together with industrial partners for problems for
which there does not exist standard software. Presently FDEM is used to simulate numeri-
cally PEM and SOFC fuel cells. Up to now nobody has solved the corresponding nonlinear
systems of PDEs with error estimate.

By different consistency orders we get an easy and transparent access to the discretization
error and therefore a reliable error estimate. It is also used for an automatic consistency
order control and for mesh refinement.

To be able to solve problems on domains that are composed from different subdomains with
different partial differential equations we introduced dividing lines/surfaces over which one
cannot differentiate and we couple the subdomains by coupling conditions. The subdo-
mains may even slide relatively to each other and may have non-matching grids.

The FDEM program package is efficiently parallelized by the means of MPI. The nodes
are distributed in equal parts onto the processors serving load balancing and also reducing
the bandwidth of the large linear system of equations by this reordering.

In order to obtain a prescribed tolerance, we refine the given mesh locally depending on
the estimated relative error in the nodes. From the nodes we get the refinement elements
that are refined by halving the edges. On a distributed memory parallel computer there
are many difficulties to overcome such as refinement elements that are not owned by the
same processor as the refinement node or refinement edges that are not owned by the same
processor as the refinement element. If we have elements of different refinement stages we
have to carry out several refinement steps. Here the problem is to distinguish between new
nodes that are owned by a processor and nodes that are in the overlap, i.e. belong to a dif-
ferent processor. Before the next refinement step we have to update the node and element
information at the processor borders.

This paper is organized in the following way:
In chapter 2 we summarize the notation used throughout this work.

Introduction 3

We describe the Finite Difference Element Method in chapter 3. First we introduce the
error equation in 2-D and then explain the means to get there. Afterwards we mention the
differences to 3-D. Then follow the special features of FDEM. These are the selfadaptation
of the consistency order and mesh refinement as well as dividing lines or sliding dividing
lines respectively. We shortly explain the parallelization of FDEM on distributed memory
parallel computers and say some words about the linear solver LINSOL by which we solve
the large sparse linear system of equations arising from the discretization. A basic paper
on FDEM is [3], a progress report is [4]. A detailed report is in preparation, see remark at
the end of the References.

The parallelization algorithm for the mesh refinement is a challenging task. We introduce
this algorithm in chapter 4 where we first explain the necessary steps to refine the mesh,
then we discuss the concept of data exchange between the processors. After defining the
refinement elements and explaining one of our main achievements, the refinement cascade,
we finally consider the real mesh refinement. We begin with the mesh refinement in 2-D
on a single processor, continue with the extensions to 3-D and the problems with dividing
lines or sliding dividing lines, and finally extend the algorithm of the mesh refinement to
distributed memory parallel computers. After some remarks to mesh coarsening we close
this chapter with a short recapitulation about what we have learned from the mesh refine-
ment algorithm.

Results of applying the mesh refinement algorithm to problems in 2-D and 3-D, also prob-
lems with dividing lines and sliding dividing lines will be given in chapter 5.

4 Introduction

Nomenclature 5

2 Nomenclature

In this chapter we introduce the notation that is used thoughout this paper.

Formula Numbers
Equations in section (X.Y) are numbered (X.Y.1), (X.Y.2) etc.

Numbering of figures and tables
Figures and tables in section (X.Y) are numbered (X.Y.1), (X.Y.2) etc.

Numbering of rules and listings
Rules and listings only occur in chapter 4 and therefore are numbered continuously, inde-
pendent from the section number.

Numbering of algorithms
Algorithms are denoted by capital Latin letters. As algorithms also only occur in chapter 4
they are numbered continuously.

Array and message lengths
Lengths of arrays are given by the number of entries an array has got, message lengths are
given in bytes.

Summaries and recapitulations
In chapter 4 we give for difficult passages a summary preceding the passage, introduced by
SUMMARY, and a recapitulation following the passage, introduced by RECAPITULATION.
For further separation we also change the font style here.

Special symbols
We distinguish between symbols used in chapter 3 and names of scalars and arrays used in
chapter 4. In the following table, we do not list each space derivative of a variable but only
the first derivative in x-direction, the derivatives for the y- and z-direction and the second
derivatives are named analogously. We only present those variables that are mentioned
more than once in this work. This goes for all the tables in this chapter.

Nomenclature of chapter 3.

Name Space Description

∂Pu/∂u... IRl×l l × l Jacobian matrices
α IR pivot boundary factor
∆q IN surplus order
∆t IR time step size
∆u IRl Newton correction function

Continued on next page

6 Nomenclature

Name Space Description

∆ud IRl overall error vector
∆uPu IRl Newton correction vector
∆ux IRl space derivative of ∆u in x-direction
∆ux,d IRl difference formula for ∆ux

εpivot IR pivot threshold
ν IN Newton iteration index
ω IR underrelaxation factor for Newton iteration
A IRm×m matrix for coefficients of influence polynomials
a0,. . . ,am−1 IR coefficients of Pq

Dx IRl space discretization error term, Dy and Dxy analogously
dx IRl discretization error estimate for ux,d

dx,q IRl exact discretization error for ux,d,q

dim IN dimension of the computational domain, dim ∈ {2, 3}
epslin IR factor for stopping of LINSOL iteration
fstring INnonmax array for the nearest neighbour ring
idstar INnle3 array for the collected nodes around the central node
inmax IN maximum number of elements a node belongs to
l IN number of equations/components
M IR(m+r)×m matrix for the coefficients for the determination of the influ-

ence polynomials
m IN number of nodes in difference star
m(q) IN number of nodes in difference star of order q
n IN total number of nodes
nek INnolnod array for node numbers of the elements
nekinv IN inmax array for element numbers a node belongs to (inverted nek

list)
nle3 IN maximum number of collected nodes around a central node
nolnod IN maximum number of nodes per element
p IN time consistency order
Pq IR interpolation polynomial of order q
Pq,i IR influence polynomial of order q for point i
|pivot|max IR maximum element in pivot column
|pivot|mean IR mean value in pivot column
Pu IRl general PDE operator
(Pu)d IRl Newton residual vector
q IN space consistency order
Qd IRl large sparse matrix of the linear system of equations
r IN number of surplus nodes for Gauss Jordan algorithm

Continued on next page

Nomenclature 7

Name Space Description

sgrid IR factor for mesh refinement
t IR time variable
tol IR requested relative tolerance on the level of solution
tolg IR tolerance on the level of equation
u IRl solution for the system of PDEs
ud IRl discretized solution vector
ut IRl time derivative of u
ux IRl x-derivative of u
ux,d IRl difference formula for ux

ux,d,q IRl difference formula for ux of consistency order q
x IR x-coordinate of a node, y and z analogously

For the symbols in chapter 4 we distinguish between scalar values and arrays.

Nomenclature of chapter 4 (scalars).

Name Type Description

bdmax I maximum number of external boundaries a node belongs to
elnew I number of additional elements that are generated from a refine-

ment element
elpt I number of corner nodes in an element
inmax I maximum number of elements a node belongs to
ip I number of the regarded processor
mcnt I number of own refinement edges (minus edges from the overlap

of other processors)
ncnt I number of new overlap nodes
ncyc I number of the current computation cycle
nedge I number of edges in an element
nexb I number of external boundaries
ninb I number of dividing lines
nl I number of nodes owned by a processor
nn I number of nodes on a processor incl. overlap
nmax I limit for the number of nodes
nrs I number of nodes before current ref. step on a processor
nsect I number of subdomains
nbmax I limit for the number of boundary nodes
nbm6 I number of entries for a refinement edge in rtl
ne I total number of elements

Continued on next page

8 Nomenclature

Name Type Description

nel I number of elements owned by a processor
nell I number of overlap elements on the left side
nell,max I maximum number of overlap elements on the left side:

nell,max = maxip=1,...,np nell,ip

nelr I number of overlap elements on the right side
nelr,max I maximum number of overlap elements on the right side:

nelr,max = maxip=1,...,np nelr,ip

nemax I limit for the number of elements
nen I number of elements on a processor incl. overlap
nen,max I maximum number of elements on a processor incl. overlap:

nen,max = maxip=1,...,np nen,ip

nere I number of refinement elements in current ref. step on a processor
ners I number of elements before current ref. step on a processor
neb I total number of external boundary nodes
nebl I number of external boundary nodes owned by a processor
nebn I number of external boundary nodes on a processor incl. overlap
nibl I number of dividing line nodes owned by a processor
nibn I number of dividing line nodes on a processor incl. overlap
nnbmax I maximum number of neighbour elements that share an edge
nolnod I maximum number of nodes per element
noni I number of neighbour nodes of node i
nonmax I maximum number of neighbour nodes of a node:

nonmax = maxi=1,...,nl
noni

notp I number of refinement edges of own elements in the overlap
np I number of processors
npmax I maximum of overlap processors (both left and right):

npmax = max(npmax,l, npmax,r)
npmax,l I maximum of overlap processors on the left side:

npmax,l = maxip=1,...,np npsl,ip

npmax,r I maximum of overlap processors on the right side:
npmax,r = maxip=1,...,np npsr,ip

npsl I number of overlap processors on the left side
npsr I number of overlap processors on the right side
nsbl I number of sliding dividing line nodes owned by a processor
rcnt I counter for the edges to be refined by the processor itself
rsmax I highest refinement stage
sdmax I maximum number of sliding dividing lines a node belongs to

I: integer, DP : double precision

Nomenclature 9

For the arrays we do not only give the type (integer, double precision or logical) and a
short description but also—in the last row for each array—the dimension of the array that
is computed with the values of the preceding table. The dimensions are valid both for 2-D
and 3-D unless otherwise noted. If the dimensions change for computations wih dividing
lines/sliding dividing lines this is also noted.

Nomenclature of chapter 4 (arrays).

Name Type Description
Dimension

bnod I array for external boundary nodes
nebl × 2

bdnr I array for computing new external boundary nodes
nebl × (bdmax + 1)

dl I array for DL numbers for the DL nodes
nibn × (2 · ninb + 1)

dlote I array for starting addresses of DL elements in dloteadr
ldlote

1

dloteadr I array for the twin node information of DL edges
nen

ecnt I counter for the edges in etl
npmax × 2

etl I array for refinement edges in non-refinement elements
((nnbmax + 6) · notp) × npmax × 2

ia I array for starting addresses of influence polynomials in infpol for
end points of the refinement edges
2 · rcnt

iglob I array for starting addresses of own refinement edges in rtl
rcnt

indrel I refinement element list
nel

infarr I array for sending update information
linfarr

2

infpol DP array for the evaluated influence polynomials
linfpol

3

ipadd I array for starting addresses in infpol
nl

lbnd L array for computing 3-D external boundary nodes
nn

Continued on next page

10 Nomenclature

Name Type Description
Dimension

lglob L array for own refinement edges
rcnt

lnpl L array for edge identification
nn × nonmax

lnpl2 L array for edge identification
nn × nonmax

logarr L array for computation of new DL elements in stage rs
nere × nedge

lp I array for numbers of edges to receive
npmax

lprocs L array for the processors etl has to be sent to
np × 2

lsent L auxiliary array for refinement cascade
nell + nelr

narpl I array for number of refinement elements per stage and starting
addresses in indrel
(rsmax + 1) × 2

nb I array for neighbour element numbers in stage rs
2-D: nere × nedge

3-D: nere × (nedge · inmax)
nbadd I array for starting addresses in nb in stage rs

without DL: narpl(rs + 1, 2) × (nedge + 1)
with DL: narpl(rs + 1, 2) × (2 · nedge + 1)

nbrs I array for numbers of nodes, elements, ext. boundary nodes, DL
and SDL nodes (own and overlap)
(rsmax + 2) × 5

nek I array to store node numbers for each element
nen × nolnod

nekinv I array to store element numbers each node belongs to
nn × inmax

nenr I array for global element numbers, subdomain number, DL ele-
ment property and own processor for each local element
nen × 4

nenrs I array to store local element number for a global element number
nen × 2

newbn I array for new external boundary nodes
rcnt × 2

Continued on next page

Nomenclature 11

Name Type Description
Dimension

newsn I array for new sliding dividing line nodes
rcnt × 3

ngrid I array for difference stars of the end points of the refinement edges
2-D: 6 × (2 · rcnt)
3-D: 10 × (2 · rcnt)

nnr I array for global node number, subdomain number, number of cou-
pling domains and own processor for each local node
nn × 4

nnrs I array to store local node number for a global node number
nn × 2

pcnt I counter array for the edges in ptl
npsr

ptl I array for the information of refinement edges owned by overlap
processors
((nnbmax + 6) · notp) × npsr

rcvl I array for updating element information in left overlap
nel × 3

rcvr I array for updating element information in right overlap
nel × 3

refel L array for refinement elements during the refinement cascade
nen,max × rsmax

refpt I array for the refinement nodes
nl

rtl I array for the information of own refinement edges of processor ip
nen · nedge · (nnbmax + 6)

sect I auxiliary array for computation of new DL nodes
nsect

sndlct I counter array for sndlto
npsl × 2

sndlto I array for sending elements to the left during refinement cascade
nell,max × npsl

sndrct I counter array for sndrto
npsr

sndrto I array for sending elements to the right during refinement cascade
nelr,max × npsr

snod I array for sliding dividing line nodes
nsbl × (nsect + 3)

Continued on next page

12 Nomenclature

Name Type Description
Dimension

sdnr I array for computing new SDL nodes
nsbl × (sdmax + 1)

tids I array for the physical processor numbers
np

tnod I array for dividing line nodes
nibl × (nsect + 3)

I: integer, DP : double precision, L: logical
1 see equation (4.3.1)
2 see equation (4.5.38)
3 see equations (4.4.8), (4.4.27)

The FDEM program package 13

3 The FDEM program package

In this chapter we introduce the Finite Difference Element Method we developed in our
research group. We begin with the central linear system of equations that we get from our
discretization method. Afterwards we explain our access to the discretization error and
the way we compute the coefficients of the difference and error formulas. Then we deal
with some features of FDEM such as the selfadaptation of time and space and dividing
and sliding dividing lines. Finally we shortly look at the most important aspects of the
parallelization and give a short summary of the linear solver LINSOL.

3.1 The error equation

The error equation is the basis of our solution method. It has been developed in its basic
form for the FIDISOL program package (see [5]). The most general operator that we admit
for a system of l partial differential equations and boundary conditions is in 3-D for a
solution u(t, x, y, z):

Pu ≡ P (t, x, y, z, ut, ux, uy, uz, uxx, uyy, uzz, uxy, uxz, uyz) = 0, (3.1.1)

where u and Pu are vectors with l components:

u =

⎛
⎜⎝ u1

...
ul

⎞
⎟⎠ , Pu =

⎛
⎜⎝ P1u

...
Plu

⎞
⎟⎠ (3.1.2)

If we include t and ut the system is parabolic, otherwise it is an elliptic system. Basically
it is also possible to solve hyperbolic equations if they do not have discontinuities, but we
do not have experiences with this type of partial differential equations. We now explain the
solution method for 2-D and discuss the extension to 3-D later. The 2-D operator for the
partial differential equations and boundary conditions is obtained by dropping z in (3.1.1):

Pu ≡ P (t, x, y, ut, ux, uy, uxx, uxy, uyy) = 0. (3.1.3)

Pu is an arbitrary nonlinear function of its arguments. Therefore we use the Newton-
Raphson method by the approach

u ⇐ u(ν+1) = u(ν) + ∆u(ν) (3.1.4)

where we immediately drop the iteration index ν and we linearize (3.1.3) in the Newton
correction function ∆u, which means that we get also the corresponding derivatives of
∆u, e.g. ∆uxx. So we get a linear partial differential equation for the Newton correction
function ∆u:

Q∆u ≡ −∂Pu

∂u
∆u − ∂Pu

∂ut
∆ut − ∂Pu

∂ux
∆ux − · · · − ∂Pu

∂uyy
∆uyy =

= P (t, x, y, u, ut, ux, uy, uxx, uxy, uyy) (3.1.5)

14 The FDEM program package

where P (. . .) ≡ Pu ≡ Pu(ν) is the Newton defect or Newton residual for u(ν). If u(ν) was
the exact solution u we would have Pu = 0.

The ∂Pu/∂u... are the l× l Jacobian matrices. For a scalar partial differential equation with
only one unknown variable, it is a scalar value. If we have a system of l partial differential
equations where u and Pu have l components (3.1.2), the Jacobian matrices look like this:

∂Pu

∂u
=

⎛
⎜⎝

∂P1u
∂u1

· · · ∂P1u
∂ul

...
...

∂Plu
∂u1

· · · ∂Plu
∂ul

⎞
⎟⎠ ,

∂Pu

∂ux
=

⎛
⎜⎝

∂P1u
∂u1,x

· · · ∂P1u
∂ul,x

...
...

∂Plu
∂u1,x

· · · ∂Plu
∂ul,x

⎞
⎟⎠ , . . . (3.1.6)

Now we discretize (index d) the linear Newton-PDE (3.1.5) by replacing function values
by their value on the grid and derivatives by difference formulas:

∆u ⇐ ∆ud, ∆ut ⇐ ∆ut,d, ∆ux ⇐ ∆ux,d, . . . , (3.1.7)

where e.g. ∆ux,d is the difference formula for ∆ux. However, the derivatives of the func-
tion u = u(ν) in P (. . .) are replaced by difference formulas plus their error estimates:

u ⇐ ud, ut ⇐ ut,d + dt, ux ⇐ ux,d + dx, . . . , uxy ⇐ uxy,d + dxy, (3.1.8)

where e.g. dx is the discretization error estimate for the difference formula ux,d (see sec-
tion 3.3). For the derivatives of u we do not use error estimates because these would be
errors of errors that go to zero with the Newton correction.

This discretization generates a large sparse matrix Qd. In figure 3.1.1 it is illustrated how
for a scalar partial differential equation the term ∂Pu

∂x
∆ux contributes to row i, where i

denotes the central node of the formula for ∆ux. For a system of l partial differential equa-
tions there are l × l blocks instead of scalar elements.

We now linearize also in the discretization errors which again introduces Jacobian matrices
(3.1.6). These additional error terms on the “level of equation”, i.e. on the consistency
level where we approximate a differential equation by a difference equation, create corre-
sponding error terms on the “level of solution”. If we order the coefficients of the unknown
vector ∆ud that result from the discretization of (3.1.5) in Qd we can formally express the
new error as

level of solution

∆ud = ∆uPu + ∆uDt + ∆uDx + ∆uDy + ∆uDxy =

= Q−1
d · [(Pu)d + Dt + { Dx + Dy + Dxy }]

level of equation

(3.1.9)

3.1 The error equation 15

This is the error equation and the key to the solution process. Q−1
d is the inverse of the ma-

trix Qd of figure 3.1.1 but we do not explicitly compute Q−1
d which would be a full matrix.

Instead, we solve iteratively the corresponding linear system. (Pu)d is the “discretized”
Newton residual, i.e. it is the operator P (. . .) in (3.1.3), where discretized means that all
derivatives have been replaced by difference formulas that are evaluated for ud = u

(ν)
d . The

Dµ are discretization error terms that result from the linearization in the dµ, e.g.

Dt =

(
∂Pu

∂ut

)
d

· dt, Dx =

(
∂Pu

∂ux

)
d

· dx +

(
∂Pu

∂uxx

)
d

· dxx, . . . (3.1.10)

In the parentheses of the second row of (3.1.9) we have error terms that can be computed
“on the level of equation” and that are transformed by Q−1

d to the “level of solution”. These
corresponding errors are arranged above these source terms. So the overall error ∆ud has
been split up into the parts that result from the corresponding terms on the level of equation.
The only correction that is applied is the Newton correction ∆uPu that results from the
Newton residual (Pu)d. It is computed from

Qd∆uPu = (Pu)d. (3.1.11)

The other error terms in the first row of (3.1.9) are only used for the error control. If we
applied these terms we had no error estimate any more.

If we look at the discretization error term Dx in (3.1.10) we can easily see how the x-
discretization errors contribute to the solution: The discretization error estimates dx of ux,d

and dxx of uxx,d are multiplied with their Jacobian matrices, afterwards added and (for-
mally) multiplied by Q−1

d to transfer the error from the level of equation to the level of
solution. It is a major advantage of FDEM that we can follow explicitly the propagation of

�
�

�
�

�
�

�
�

�
�

��

� � � � � �Qd i

∂Pu
∂ux

∆ux ⇒
(

∂Pu
∂ux

)
d,i

(α1∆uν1
+ α2∆uν2

+ · · · + αi∆ui + · · ·)

ν1 ν2 i · · · nodes

� �

�

��

��
ν1

ν2

i

Figure 3.1.1: Illustration for the generation of row i of the matrix Qd for a scalar PDE.

16 The FDEM program package

all errors.

Another question is when we stop the Newton iteration. In order to be able to give an
answer we have to introduce some norms ‖ · ‖. By norms we reach the goal to measure the
accuracy by a single scalar value. As for technical problems always the maximal values,
e.g. stress or velocity, are important, we introduce maximum norms. For the solution ud

we use

‖ud‖ = max |ud,i,k|, (3.1.12)
i = 1, l
k = 1, n

where n is the number of nodes and l the number of partial differential equations. So ‖ud‖
is the maximum over all l components and all n nodes.

For the errors we want to have relative error norms. But we have to think about the possi-
bility that a solution component may have a local zero value which makes a local relative
error unfeasible. So we have to use “global relative” errors. This global relative error is
computed for a component i by

‖∆ud‖rel,i =
max
k=1,n

|∆ud,i,k|
max
k=1,n

|ud,i,k| , (3.1.13)

i.e. we have the maximum error of the component i relative to the maximum of that com-
ponent (but even this global relative error will not make sense if we have a very small
component). As we can compute this global relative error for each component we are able
to check the accuracy individually for each component. The overall global relative error is

‖∆ud‖rel = max
i=1,l

‖∆ud‖rel,i (3.1.14)

i.e. the maximum of the global relative component errors.

The Newton correction ∆uPu is computed from (3.1.11). The Newton residual (Pu)d gives
us the stopping criterion for the Newton iteration:

‖(Pu)d‖ < f · max (0.5 · tolg, ‖{}‖) (3.1.15)

with tolg from (3.4.4) (see explanation in section 3.4 on page 32) and where {} denotes
the space key error as usual, see braces in (3.1.9). f is a tuning factor which we choose
f = 10−3. The smaller we set f the smaller ‖(Pu)d‖ must be to stop the Newton iteration,
i.e. there will be executed more Newton steps. The space key error norm ‖{}‖ must be
computed in each Newton step. But as it is needed for the computation of the error esti-
mate, this may not be too much additional computation time. Especially not, if we compare

3.1 The error equation 17

it to the time needed for the solution of the linear system of equations (3.1.11).

If the solution ud is outside of the convergence radius the Newton-Raphson method will
diverge. Therefore instead of (3.1.4) we use a damped Newton method by

u
(ν+1)
d = u

(ν)
d + ω · ∆u

(ν)
Pu (3.1.16)

with an underrelaxation factor ω. Each Newton iteration step starts with ω = 1. But before
accepting the new iterate u

(ν+1)
d we check if the defect decreases, i.e. if

‖(Pu)
(ν)
d ‖ < ‖(Pu)

(ν−1)
d ‖ (3.1.17)

holds. If (3.1.17) is not true we set ω ⇐ ω/2, recompute u
(ν+1)
d and so on until either

(3.1.17) holds or ω < 10−4. In the latter case the whole solution process of the partial
differential equations is stopped and an error message is printed. This procedure converges
only linearly for ω < 1, but we have a very robust Newton algorithm which switches back
to ω = 1 as soon as possible. The price for the robustness are the additional computations
of the defect if the solution ud is outside of the convergence radius. For the first Newton
step it is possible to allow the Newton residual to become greater than the Newton residual
of the initial solution. This is in some cases where one starts with a zero solution guess the
only possibility to find the way to the solution.

But we do not only check (3.1.15) for the stopping of the Newton iteration. We want to
make sure that the relative norm of the Newton correction ‖∆uPu‖rel is at least below 5%.
Therefore we check together with (3.1.15) by an “and” condition that

‖∆uPu‖rel < 0.05. (3.1.18)

But if (3.1.15) holds with a factor f1/10 = 1
10

· f we stop the iteration regardless of ∆uPu.
If on the other hand the Newton correction is small enough, i.e. if

‖∆uPu‖rel < 0.1 · tol (3.1.19)

holds, the iteration is also stopped (see page 31 for tol). This might be dangerous, be-
cause a slow convergence would look like a high accuracy, while (3.1.19) might be fulfilled
although the iteration is still far from the solution. But together with the quadratic conver-
gence of the Newton iteration and a small tolerance tol the danger is not very high.

Because of the quadratic convergence the defect decreases rapidly near the solution. Usu-
ally the solution will not change much in this situation and we have the possibility to use
the “modified” Newton-Raphson method which means that a Newton step is executed with
the matrix Qd of the preceding step. This is used if the relation

‖(Pu)
(ν)
d ‖ < 0.1 · ‖(Pu)

(ν−1)
d ‖ (3.1.20)

18 The FDEM program package

holds. The iteration converges at least linearly with a convergence factor 0.1, but the com-
putation time for Qd which includes the evaluation of the Jacobian matrices is saved in the
modified Newton-Raphson steps.

Eventually the computation of the Newton correction ∆uPu from (3.1.9) is executed by an
iterative solution of the linear system. If ν denotes the index of the Newton iteration step
we want to solve

Qd · ∆u
(ν)
Pu = (Pu)

(ν−1)
d . (3.1.21)

If this system for the ν th Newton correction ∆u
(ν)
Pu itself is solved by an inner iteration with

iteration index µ we stop this inner iteration if

‖Qd · ∆u
(ν,µ)
Pu − (Pu)

(ν−1)
d ‖ ≤ ‖(Pu)

(ν−1)
d ‖ · epslin (3.1.22)

holds, where

epslin = 0.1 ·max

⎡
⎣(‖∆u

(ν−1)
Pu ‖

‖u(ν−1)
d ‖

)2

,
0.8 · ‖Dx + Dy + Dxy‖

‖(Pu)
(ν−1)
d ‖

,
0.4 · tolg

‖(Pu)
(ν−1)
d ‖

⎤
⎦ . (3.1.23)

We restrict epslin by
10−4 ≤ epslin ≤ 10−1 (3.1.24)

and because we do not have a previous Newton correction for the first Newton step we take

epslin = 0.1 for ν = 1. (3.1.25)

The three elements in the brackets of (3.1.23) have the following meaning: For the first
term we assume that we want to solve iteratively a linear system Ax = b. In the k th

iteration step we have xk and rk = Axk − b and the error is ek = x − xk. As Ax − b = 0,
Aek = A(x − xk) = Ax − b − Axk + b = −rk. In this notation (3.1.22) becomes

‖rk‖ ≤ epslin · ‖b‖
⇐⇒ ‖ − Aek‖ ≤ epslin · ‖Ax‖
⇐⇒ γ · ‖A‖ · ‖ek‖ ≤ epslin · ‖A‖ · ‖x‖
⇐⇒ γ · ‖ek‖

‖x‖ ≤ epslin.

This means that it would be useless to compute by the linear solver digits which are written
over by the next Newton step. In the region of quadratic convergence we expect for the
error ∆x(ν) ≈ (∆x(ν−1)

)2
or a relative error norm

(‖∆x(ν−1)‖/‖x(ν−1)‖)2. In each New-
ton step the number of significant digits is doubled, i.e. later digits are written over by the
following Newton correction.

3.2 The discretization error estimate 19

The second and third term in the brackets mean that no digits should be computed which
are in significance below the digits which are influenced by the space key error or by the
prescribed tolerance tol which is transformed to tolg (see on page 32).

The three coefficients 0.1, 0.8 and 0.4 on the r.h.s. of (3.1.23) are safety factors to take care
of the coarse norm estimates. The restrictions (3.1.24) and (3.1.25) for epslin mean that at
least one and at most four significant digits of the iterated Newton correction are computed
and in the first Newton step one digit is computed.

3.2 The discretization error estimate

In the error equation (3.1.9) we assume that we have estimates for the discretization errors.
We want to explain the approach to these estimates for the disrcetization errors of the
difference formula ux,d. In (3.1.10) we need dx and dxx, the estimates for the discretization
errors of the difference formulas ux,d and uxx,d, see (3.1.8). More precisely, the difference
formula for the derivative ux had to be denoted by ux,d,q which indicates that this formula
is of consistency order q. It holds

ux = ux,d,q + dx,q = (3.2.1)

= ux,d,q+2 + dx,q+2,

where dx,q and dx,q+2 denote the exact discretization errors for the formulas of order q and
q+2. If we resolve the second and the third part of (3.2.1) for the error of the actual order q
and neglect the error of the higher order formula ux,d,q+2 we get the estimate

dx := ux,d,q+2 − ux,d,q {+dx,q+2}. (3.2.2)

In the braces we have indicated the neglected term. So the discretization error of order q is
the difference of the difference formulas of order q + 2 and actual order q. If we resolve
the first and the second part of (3.2.1) for the exact error dx,q = dx, we get

dx = ux − ux,d,q. (3.2.3)

If we compare (3.2.3) to (3.2.2) we see that we have replaced the unknown derivative ux by
a higher order formula ux,d,q+2 for the estimate. That shows that approach (3.2.2) should
only be applied if one is sure that the exact error decreases with increasing order, i.e. the
neglected error dx,q+2 must be smaller than the estimated error dx,q. Numerical investiga-
tions with the FIDISOL program package, see [5], have shown that for the type of “central”
formulas the odd orders are not better than the preceding even orders. Therefore we com-
pute the discretization errors by the difference of the difference formulas of order q +2 and
order q.

20 The FDEM program package

However, one could suppose that higher order means better solution and smaller error es-
timate. But if we have a coarse grid where the function values change rapidly and use a
formula of high order with many nodes, there may be introduced false and irrelevant in-
formation by those nodes that are far away from the central node. So we often see that
on a coarse grid higher order formulas are worse than lower order formulas. High order
formulas only pay if we have high-accuracy requirement which is quite naturally coupled
with a fine mesh. If the assumption of small dx,q+2 does not hold, dx immediately becomes
very large and shows that the estimate is invalid which gives us a built-in self-control of
the estimate (3.2.2). The effect of overdrawing an order lead us to the decision to use only
the orders q = 2, 4, 6 for practical reasons. For the error estimate of the order q = 8 we
needed the difference formula of order q = 10. This formula needed 286 nodes in 3-D (see
(3.3.16)), so this formula is usually overdrawn on practical meshes for technical problems.
The error estimate also gives us the possibility to check which order is the best one for each
node and it allows us to optimize the parameters for the selection of the best m nodes for a
difference formula (see next section).

In order to save time we do not explicitly compute the derivatives of order q + 2 as seen
in (3.2.2) but we directly generate the error formulas (for the computation of the formula
coefficients see section 3.3):

dx := a0u0 + a1u1 + · · · + am(q+2)−1um(q+2)−1 (3.2.4)

− (b0u0 + b1u1 + · · · + bm(q)−1um(q)−1

)
,

where m(q + 2) denotes m for 2-D from (3.3.2) and for 3-D from (3.3.16) and q has been
replaced by q + 2, and m(q) is (3.3.2) or (3.3.16). So we have

dx := (a0 − b0)u0 + (a1 − b1)u1 + · · · + (am(q)−1 − bm(q)−1)um(q)−1 (3.2.5)

+am(q)um(q) + · · · + am(q+2)−1um(q+2)−1.

Then we set

ci :=

{
ai − bi i = 0, . . . , m(q) − 1
ai i = m(q), . . . , m(q + 2) − 1

(3.2.6)

so that we have for the evaluation

dx := c0u0 + c1u1 + · · · + cm(q+2)−1um(q+2)−1. (3.2.7)

For the time derivative ut we use backward difference formulas of order p = 1, . . . , 5, see
figure 3.3.9. Here we estimate the discretization error by the difference of the difference
formula of order p + 1 and order p:

dt := ut,d,p+1 − ut,d,p. (3.2.8)

Basically all the arguments we discussed for the spatial discretization error estimate also
hold for this estimate. The coefficients of the error formulas are also stored directly like in
(3.2.7).

3.3 The generation of difference and error formulas 21

3.3 The generation of difference and error formulas

For the generation of the difference and error formulas we make use of a finite difference
method of order q which means local approach of the solution u by a polynomial of con-
sistency order q. For reasons of simplicity we explain the approach for 2-D in detail and
for 3-D we mention the differences and extensions.

The 2-D polynomial of order q is

Pq(x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + · · ·+ am−1y

q. (3.3.1)

This polynomial has m coefficients a0 to am−1 where

m = (q + 1) · (q + 2)/2 . (3.3.2)

For the determination of the m coefficients a0 to am−1 we need m nodes with coordinates
(x0, y0) to (xm−1, ym−1). For example, for q = 2 we need m = 6 nodes, see figure 3.3.1.

� 1

� 2

� 3� 4

�
5=m-1

��0

Figure 3.3.1: Example of m = 6 nodes for a polynomial of order q = 2.

In order to get difference formulas where the function values ui appear explicitly we make
use of the principle of the influence polynomials. For a point i the influence polynomial
Pq,i of order q is defined by

Pq,i(x, y) =

{
1 for (xi, yi)
0 for (xj , yj), j �= i.

(3.3.3)

This means that the influence polynomial Pq,i has function value 1 in node i and 0 in the
other m − 1 nodes. Then the discretized solution u which we denote by ud (the index d
means “discretized”) can be represented by the composition of the function values and the
influence polynomials evaluated at the formula points (ui = u(xi, yi)):

ud(x, y) := Pq(x, y) =
m−1∑
i=0

ui · Pq,i(x, y) . (3.3.4)

22 The FDEM program package

By the evaluation of Pq,i for a grid point x = xj , y = yj we obtain the coefficients of an
interpolation polynomial at a node j, e.g. in figure 3.3.1 for node 0 where Pq,0 = 1 and
Pq,i,i�=0 = 0 holds.

The difference formulas are the partial derivatives of the interpolation polynomial Pq, i.e.
we have to differentiate (3.3.4). For example, for the difference formula for ux which we
denote by ux,d we get

ux,d :=
∂Pq(x, y)

∂x
=

m−1∑
i=0

ui · ∂Pq,i(x, y)

∂x
. (3.3.5)

The other difference formulas are computed analagously, so we use ∂2ud/∂x2 for uxx,d or
∂2ud/∂x · ∂y for uxy,d.

In order to use these formulas (3.3.4) and (3.3.5) we have to evaluate the Pq,i(x, y) resp.
∂Pq,i(x, y)/∂x for x = xj , y = yj. If we denote

αj = Pq,i(xj , yj) (3.3.6)

βj = ∂Pq,i(xj , yj)/∂x (3.3.7)

we have from (3.3.4) and (3.3.5)

ud(xj , yj) =
m−1∑
i=0

αi · ui (3.3.8)

ux,d(xj , yj) =

m−1∑
i=0

βi · ui . (3.3.9)

But at first we have to determine the coefficients of the influence polynomials Pq,i. There-
fore we put into (3.3.1) the coordinates (xj , yj) of the m surrounding nodes of the central
point. So each of these m nodes creates one equation and one right hand side and we get
m linear systems of equations for each node of the mesh:

i = 0 . . . m − 1
equ. 0 : 1 · a0,i + x0a1,i + · · · + yq

0am−1,i = 1 0
1 · a0,i 0 0

...
...

...
m − 1 : 1 · a0,i + xm−1a1,i + · · · + yq

m−1am−1,i = 0 · · · 1 .

(3.3.10)

If we denote by M the coefficient matrix of the system (3.3.10) and by A the matrix where
we have in the ith column the coefficients of the ith influence polynomial Pq,i this can be
written as

M · A = I (3.3.11)

3.3 The generation of difference and error formulas 23

with

M =

⎛
⎜⎜⎜⎜⎝

1 x0 y0 x2
0 x0y0 y2

0 . . . yq
0

1 x1 y1 x2
1 x1y1 y2

1 . . . yq
1

...
...

1 xm−1 ym−1 yq
m−1

⎞
⎟⎟⎟⎟⎠ . (3.3.12)

The solution of (3.3.11) is
A = M−1 (3.3.13)

which means that the coefficients of the ith influence polynomial are the ith column of the
inverse M−1 of the coefficient matrix M .

But in order to be able to form the matrix M we have to select m nodes out of all surround-
ing nodes of the evaluation node. As we want to have good difference and error formulas
to get a good solution and error estimate, this is one of the most critical sections in the
whole solution process. On the one hand we want the m nodes to be as close as possible
around the evaluation node because we want to have local information in the interpolation
polynomial. Wider difference stars would introduce false information if the function val-
ues change rapidly. Furthermore, they would increase the bandwidth of the resulting large
sparse matrix Qd for the solution of our partial differential equations what would lead to
a larger storage requirement and higher computing time. On the other hand we also need
nodes that are farther away in order to get information about the solution that closer nodes
cannot give.

element nek(e, k)
e k = 1 k = 2 k = 3

1 413 419 395
...

...
...

...
nel 512 496 211

�
�

�

������
�

�
�

��

�
�

�
�

�
�

k = 1
2

3
local
global

Figure 3.3.2: Triangle and corresponding nek array.

The FEM mesh, which consists of linear triangles in 2-D, is generated by a commercial
mesh generator like I-DEAS or PATRAN. Each triangle consists of three nodes that are
stored in an array that is denoted by nek, see figure 3.3.2. For the determination of the
m surrounding nodes we need the inverted nek array that is denoted by nekinv where for
each node the global element numbers of all those elements are stored in which the node

24 The FDEM program package

occurs, see figure 3.3.3.

In order to get this array we first go through all nodes in each column of the nek array and
only count how often each element occurs. The maximum value is denoted by inmax. Now
we can define the array nekinv with length equal to the number of nodes and width equal to
inmax. Now we go again through all nodes in each column of the nek array but this time the
element numbers are stored in the nekinv array. The column number in which the element
number has to be stored is given by an index counter that is increased by one each time a
node occurs.

Now we can determine the nearest neighbour ring for each evaluation node. The nearest
neighbours of a node are all those nodes that occur in the elements the node itself belongs
to, see figure 3.3.4. For each node we go through the nekinv array and get the elements it
belongs to. Then we get all nodes that belong to these elements from the corresponding
rows in the nek array. In order to avoid multiple storing of the same node number we use
a logical array that extends over all nodes and that is initialized by false. In this array we
enter a true for each neighbour node. At the end we also enter a false for the central node.
The nodes that correspond to the columns in the logical array that contain a true at the
end form the nearest neighbour ring. By counting the true entries we get the number of
neighbours noni for node i. The maximum number nonmax of true entries is computed and
an integer array that we denote by fstring (first ring) is defined with the width equal to this
maximum. Now the logical array can be transformed into an integer array, see figure 3.3.5.

With the aid of this array fstring it is now easy to determine the next rings around the central
node. For the determination of the next neighbour ring we again use a logical array for the
same reason as above. This array is initialized by false. We have to go through all nodes
of the current ring and have to enter a true into a logical array for all the neighbour nodes
of every node in the ring (the logical array is used for the same reason as above). Then we
enter a false for all nodes we already collected in earlier rings. Now we have stored a true

node index
nr. counter k nekinv(i, k)
i incnt 1 2 3 4 5 6 7 8= inmax

1 5 2 6 3 12 9 0 0 0
2 6 6 3 1 18 8 16 0 0
...

...
...

...
...

...
...

...
...

...
nl 8 61 58 64 62 60 51 69 70

�i

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
��k=1

2

3

4

5
k=6

Figure 3.3.3: Array nekinv which gives for each node the element numbers in which it occurs.

3.3 The generation of difference and error formulas 25

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

��

�� �� �� ��
�� �� �� ��

�� �� �� ��
�� �� �� ��

�� �� �� ��
�� �� �� ��

�� �� �� ��
�� �� �� ��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�

Order 2
Order 4
Order 6

Order 8

Figure 3.3.4: Nearest neighbour ring and 3 further rings for inner node.

for each node belonging to the next neighbour ring and we transform the logical array into
an array that is denoted by idstar with length equal to n and width equal to nle3 where n
is the number of nodes and nle3 is the maximum number of nodes to collect for a central
node. As we do not know the maximum number of nodes that will be collected for a central
node in advance, we set nle3 to an order depending value at the beginning. If the width is

node index
nr. counter k fstring(i, k)
i noni 1 2 3 4 5 6 7 8=nonmax

1 5 2 3 5 8 12 0 0 0
2 6 1 3 5 7 9 11 0 0
...

...
...

...
...

...
...

...
...

...
nl 8 46 48 54 56 60 63 64 68

�i

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
��

k=1 2

3

45k=6
=noni

Figure 3.3.5: Array fstring with the node numbers of the nearest neighbour ring.

26 The FDEM program package

insufficient, we increase this value by 500 and restart the point collection.

As we saw above we only need m nodes for the determination of the matrix M (3.3.12)
because we have m coefficients in each of the m influence polynomials. But then there is
the risk that the matrix could become singular if the m nodes are linearly dependent. This
occurs easily for a rectangular grid. So we do not search only for nodes up to order q.
Instead we search for nodes up to order q + ∆q where ∆q is the so-called surplus order.
∆q must be at least equal to 2 because the error formulas we generate are formulas of or-
der q + 2. So usually we set ∆q = 4 because we also need additional nodes for the error
formulas in order to avoid linear dependencies.

Another criterion that the collected nodes must fulfil is that we have to collect enough
rings. In figure 3.3.6 we need for the central node at the boundary for the order q = 2 at
least 3 nodes in the x-direction, i.e. 2 rings, and for the error order q +2 = 4 we need even
4 rings. Therefore we collect q + 2 rings around each node. The number of surplus nodes
we have collected is denoted by r.

It depends on the mesh which of the two limits is decisive and it has not to be the same for
each node of the mesh. For example, on a rectangular mesh shown in figure 3.3.6 for an
inner node the second limit is stronger and for a corner node it is the first one.

a)

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�

b)

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�

Figure 3.3.6: Illustration of node collection limits for the order q = 2 on a rectangular mesh
a) for an inner node, b) for a boundary node.

Now the problem is to select the best m nodes out of the m + r nodes we have collected.

3.3 The generation of difference and error formulas 27

The situation is illustrated in figure 3.3.7. We need the m × m matrix M (3.3.12) but by
the surplus nodes we have the (m + r)×m matrix “M”. The problem is, how to select the
matrix M out of the matrix “M”.

m

r

m

“M”
ring

limits

Figure 3.3.7: Illustration for the selection of m equations out of m + r equations.

In order to get the matrix A we have to invert the matrix M (3.3.12). This is done by the
Gauss Jordan algorithm with row pivoting to avoid the selection of two linearly dependent
nodes. We search for the largest absolute value in the pivot column below the main diagonal
element, shift all rows from the actual row to the row with the pivot element down by one
and the pivot row replaces the actual row. To avoid difference stars with nodes that are
far away from the central node we arrange the collected nodes or equations resp. in the
matrix “M” in the sequence of the rings, see figure 3.3.7. The pivot search starts in the
actual ring with the main diagonal element and is continued up to the last element in the
actual ring. Then we compare the maximal value in this ring with a prescribed value εpivot

and only accept the found pivot element if

|pivot| ≥ εpivot. (3.3.14)

28 The FDEM program package

If (3.3.14) does not hold we cross the ring limit and continue the search in the next ring.

This strategy gives narrow difference and error formulas of high quality. The two parame-
ters ∆q and εpivot are the key parameters for the generation of the formulas and therefore the
key parameters for the whole solution process. The value of εpivot depends on the order q
and may also depend on the type of grid. Quite robust values are

εpivot =

⎧⎨
⎩

10−2 for order 2
5 · 10−3 for order 4

10−3 for order 6.

The algorithm we just described has been developed for 2-D examples. However, it failed
for certain 3-D examples. So we had to change some details which we will describe in the
following.

A 3-D polynomial of order q is now

Pq(x, y, z) = a0 + a1x + a2y + a3z + a4x
2 + a5xy + a6xz + a7y

2 +

+ a8yz + a9z
2 + a10x

3 + · · ·+ am−1z
q. (3.3.15)

This polynomial has m coefficients a0 to am−1, where

m = (q + 1) · (q + 2) · (q + 3)/6. (3.3.16)

These coefficients are determined as in 2-D, see [6]. For the selection of the nodes for the
matrix “M” we have now nearest neighbour balls but for reasons of simplicity we will call
them “rings” as in 2-D. In the matrix “M” we first form new rings with the nodes of 2 old
rings each. Then we sort the nodes by distance to the central node in each of the new rings.
So there are the sorted nodes of ring 1 and 2, followed by the sorted nodes of ring 3 and 4,
etc.

For the pivot search we do not only prescribe a value εpivot but also a second value α.
During the elimination process we determine the mean pivot element |pivot|mean and the
maximum pivot element |pivot|max in the pivot column where we take into consideration
only the elements below the diagonal element. In the pivoting process we now do not
pay any attention to the ring borders. We go down in the pivot column, starting with the
diagonal element, and accept an element as pivot element if

|pivot| ≥ min (εpivot, α · |pivot|mean, |pivot|max) . (3.3.17)

The greater we choose εpivot and the smaller we choose α the more the second criterion is
decisive. If we choose the values the other way round the first criterion is decisive. And if
we choose a greater value for both εpivot and α the |pivot|max term is equal to the minimum

3.3 The generation of difference and error formulas 29

(note that here α > 1 must hold).

If we find an element that fulfills (3.3.17) in row k this row becomes the new pivot row and
all rows from the old pivot row to row k − 1 are shifted down by one.
A typical value for α is α = 10−3 (εpivot is chosen like in 2-D) but again for some grids or
problems a different value may result in a better error estimate. So the error estimate can
be used to optimize α for a certain class of problems.

In the matrix “M” are the values of the coordinates xi, yi and higher powers of these
coordinates according to (3.3.12). So in the pivoting process we would prefer nodes that
have larger values of x or y. Therefore we transform the set of nodes that has been selected
so that the central node becomes the origin and the largest x- or y-coordinate is at x = ±1
and y = ±1, see figure 3.3.8.

y0

x0

��0
�4

�
5

�3

�2

�1
x

y

a

b

��0′
�4′

�3
′

�2′

�1′
�5′

x′

y′

-1 1

-1

1

Figure 3.3.8: Illustration for the coordinate transformation (x, y) → (x′, y′).

If a and b are the maximal distances of a node in x- and y-direction from the central node
and x0 and y0 are the coordinates of the central node, we have

x = a · x′ + x0, x′=
1

a
· (x − x0),

y = b · y′ + y0, y′ =
1

b
· (y − y0). (3.3.18)

Now in the pivoting process we would prefer nodes that are far away from the central node.
To avoid this we normalize the matrix “M” to absolute row sum equal to one, i.e. we divide
each element in a row by the sum of the absolute values of all elements of the row.

30 The FDEM program package

We determine the coefficients of the influence polynomials in the transformed and normal-
ized system, so the resulting coefficients are a′

i and the polynomial (3.3.1) now writes

Pq(x, y) = a′
0 + a′

1

(
1

a
(x − x0)

)
+ a′

2

(
1

b
(y − y0)

)
+

+ a′
3

(
1

a
(x − x0)

)2

+ · · ·+ a′
m−1

(
1

b
(y − y0)

)q

. (3.3.19)

Afterwards this polynomial is differentiated so that we then get the coefficients of the deriv-
atives of the m influence polymials in the transformed and normalized system.

In order to get the coefficients ai of the original system we have to multiply the derivatives
of each influence polynomial by the absolute row sum of the corresponding row, i.e. the
derivatives of influence polynomial 1 must be multiplied by the absolute row sum of row 1,
the derivatives of influence polynomial 2 must be multiplied by the absolute row sum of
row 2 etc. Now the x-derivatives of the influence polynomials must be multiplied by 1

a
, the

y-derivatives must be multiplied by 1
b
, the xx-derivatives by 1

a2 and so on. Then we have
computed the coefficients of the derivatives of the influence polynomials in the original
system.

One should imagine what happens in 3-D: E.g. for a 100 × 100 × 100 unstructured tetra-
hedral FEM mesh, generated by a mesh generator, for each of the one million nodes the
nearest neighbour ring (ball) must be determined, and from that the necessary set of nodes
for the (m+ r)×m matrix “M”. For each “M” the m appropriate nodes for the difference
(and error) formulas of arbitrary order q must be selected with the criterion (3.3.17). This
must be done for interior nodes and boundary nodes. As FDEM is a black box solver one
never knows what mesh a user puts into the algorithm. Later we discuss the selfadapta-
tion of the mesh and even of the order q. So the mesh and the difference formulas may
be changing during the solution process. All these items necessitate an extremely robust
algorithm. In such a situation it is mandatory to have an error estimate that tells us if our
solution is reliable and how good it is.

Here are some remarks to “mesh-free” methods. We use in 2-D the triangular and in 3-D the
tetrahedral FEM mesh only for the structure of the space, to determine the neighbourhood
relations between the nodes. If we have determined for each node its nearest neighbour
ring (ball), we forget the FEM mesh. From this point on we have a “mesh-free” method
that operates only on the nodes. So one could use instead of the FEM mesh an arbitrary set
of points in the 2-D or 3-D space, with the information which of the points are boundary
points. Then one had to invent an algorithm to determine the nearest neighbour ring for
each point. The simplest but most expensive algorithm is the search for the distance. But
then there is the question how to distribute the nodes in the computational space. Such a

3.4 The selfadaptation process 31

distribution will be made efficiently by a triangular or tetrahedral grid that gives automati-
cally the structure of the space. And thus we are back at our FDEM.

Up to here we have discussed the generation of 2-D or 3-D difference formulas for spatial
direction. For parabolic partial differential equations we need 1-D formulas in time for the
time derivative ut. We use backward difference formulas of consistency order p that lead in
FDEM to fully implicit methods for parabolic equations. Figure 3.3.9 shows symbolically
the formulas for the orders p = 1 to 3. For stability reasons we use the formulas only up
to the order p = 5. The generation of such 1-D interpolation and difference formulas of type

Pp(t) = b0 + b1t + b2t
2 + · · · + bpt

p (3.3.20)

has been presented in detail in [7]. We use the Newton interpolation polynomial for the gen-
eration of the p + 1 influence polynomials that are easily determined by Newton’s scheme
of divided differences. Basically they also could be determined by a 1-D version of our
space method.

� � � ��

� � ��

� ��

ti−3 ti−2 ti−1 ti

∆ti

p = 3

p = 2

p = 1

Figure 3.3.9: Illustration for the difference formulas of order p for ut.

3.4 The selfadaptation process

Before we discuss the selfadaptation for time and space we need a scale for the accuracy on
the level of equation in the sense of the error equation (3.1.9). Therefore the user prescribes
a global relative tolerance tol for the solution and stops the refinement process if

‖∆ud‖rel ≤ tol (3.4.1)

holds. For the control of the solution process we need a corresponding value on the level
of equation. So we use the argument that the tolerances on the level of equation and on
the level of solution behave like the norms of the errors on the level of equation (‖(Pu)d‖,
Newton residual) and on the level of solution (‖∆uPu‖rel, relative Newton correction). So

32 The FDEM program package

we get the following relation for tolg on the level of equation:

tolg

tol
=

‖(Pu)d‖
‖∆uPu‖rel

. (3.4.2)

With the relative Newton correction

‖∆uPu‖rel =
‖∆uPu‖
‖ud‖ (3.4.3)

it holds for tolg

tolg = tol · ‖(Pu)d‖/‖∆uPu‖rel

= tol · ‖ud‖ · ‖(Pu)d‖
‖∆uPu‖ . (3.4.4)

3.4.1 The selfadaptation in time direction

Now the control procedure in t-direction, i.e. in the initial-value direction of parabolic
partial differential equations, is discussed. This contains the computation of the time step
size ∆t and of the consistency order p in time direction for parabolic problems. As already
mentioned we use backward difference formulas of the type of figure 3.3.9 and error esti-
mates of type (3.2.8). The user has to give the starting solution of his parabolic problem at
the initial time t0. At the time tk we want to compute a time increment ∆tk+1 for the next
time step that makes the size of the time discretization error term Dt (3.1.10) about 1/3 the
size of the space key error term ‖Dx + Dy + Dxy‖ in the error equation (3.1.9) in the sense
of error balancing, or about 1/3 the size of tolg. If we have equidistant time step size ∆t
the time discretization error is ∼ (∆t)p. Then the time step size ∆tk+1 to calculate the next
time step

tk+1 = tk + ∆tk+1 (3.4.5)

is determined by the smallest necessary step size over all l components

∆tk+1 = min
i=1,l

([
1

3
max(tolg,

‖Dx,i + Dy,i + Dxy,i‖)
‖Dt,i‖

]1/p

k

)
· ∆tk. (3.4.6)

The space discretization error Dx +Dy +Dxy only depends on the space grid and the space
consistency order and therefore plays the role of a key error to which the time discretization
error Dt has to be adapted by a suitable choice of the time step size. Therefore we check at
the time tk+1 whether the following condition holds

‖Dt,i‖ < max (tolg, ‖Dx,i + Dy,i + Dxy,i‖) (3.4.7)

3.4 The selfadaptation process 33

for all i = 1, . . . , l. If (3.4.7) does not hold, the solution is cancelled and a new value ∆tk+1

is computed using the values of tk+1 instead of tk.

The initial time step size ∆t1 is prescribed by the user. Also limits ∆tmin and ∆tmax for
the step sizes must be given. If (3.4.6) results in ∆tk+1 < ∆tmin the computation is con-
tinued with ∆tmin, if ∆tk+1 > ∆tmax the computation is continued with ∆tmax to get a
sufficiently dense information.

If the next time step tk+1 is determined, FDEM extrapolates an initial solution for this time
step from the solution of the preceding time step tk. If the Newton-Raphson iteration does
not converge with this initial solution, the time step size ∆tk+1 is reduced by a factor of 0.5.
If Newton-Raphson diverges twice, then also the consistency order p is reduced by one. If
in this way ∆tmin is reached the computation is stopped.

Now we will explain the control of the consistency order p. For all components i = 1, . . . , l
we compare the norm of the discretization error for the actual order p and the neighbouring
orders p− 1 and p + 1. If for only one component i holds ‖Dt,i‖p−1 < ‖Dt,i‖p, the order is
reduced by one. The order is increased by one, if for all components i ‖Dt,i‖p > ‖Dt,i‖p+1

holds. If neither the first nor the second situation is fulfilled, the order is maintained.

The computation starts with three steps of order p = 1 where the time step size is adapted
to (3.4.6), then there is enough information to decide if the order p = 2 would be better.
After the next time step there is the information for the order p = 3 available and so on. But
there is one peculiarity: We start with two time steps with the prescribed time step size ∆t1

and then we are able to estimate the error for the first time step by the difference of the first
order backward difference formula and the second order central difference formula for t1.
Then ∆t1 is adapted until the condition (3.4.6) holds.

Furthermore it is possible to get together with the solution the global error (accumulated
error of all time steps). At each time step tk there is a local error in time direction that
is computed from the error equation (3.1.9). But this would be the correct error only if
the solution in the preceding time steps tk−ν was exact. If one wants to compare the error
estimate with the exact error for a known test-PDE, one has to take the global error. To
calculate this global error, an additional term Dfix

t for the error of the preceding time steps
is appended in the error equation (3.1.9):

∆ud,g = Q−1
d ·
[
(Pu)d + Dt + {Dx + Dy + Dxy} + Dfix

t

]
, (3.4.8)

where

Dfix
t =

∂P

∂ut

· dfix
t . (3.4.9)

34 The FDEM program package

The value dfix
t is fixed in the current time step and is computed by

dfix
t =

p+1∑
k=2

∆uk
∂Pp,k

∂t
(t) (3.4.10)

where ∆uk = ∆u(tk) (k = 2, . . . , p + 1) are the global errors on the level of solution of
the preceding time steps and Pp is (3.3.20). So the error profiles of each time step must be
stored. We store the last seven profiles because of the error estimate by the order p = 6 for
the maximal consistency order p = 5 in time direction.

3.4.2 The selfadaptation of the consistency order q

Our goal is that each node can have its individual optimal consistency order q which is a
unique feature that becomes possible only by our simple and explicit discretization error
estimate. So first we compute the coefficients of the error formulas for the three consistency
orders q = 2, 4, 6 for each node. For the optimization of the order we compute in each
node i for the current solution (independent of its consistency order) the local space key
error norm (see (3.1.9)) for the orders q = 2, 4, 6:∥∥{Dx + Dy + Dxy}i

∥∥
q=2,q=4,q=6

, (3.4.11)

i.e. we compute this norm using difference formulas of order q = 2, 4, 6. What is the
optimal order q for each node? One would tend to select the order with the smallest space
key error norm. However, higher order is more expensive because higher order difference
formulas have more nodes in the difference star, so that the corresponding rows in the large
sparse matrix Qd (see figure 3.1.1) contain more nonzero entries. Therefore we accept the
higher order only if

‖{}i‖higher order ≤ f · ‖{}i‖lower order (3.4.12)

with f as a tuning parameter that is chosen to minimize the overall computation time.
Presently we take

f2↔4 = 0.5, f4↔6 = 0.01 (3.4.13)

which means that the space key error norm of order q = 6 must be below 1% of the space
key error norm of order q = 4 to choose the order q = 6.

As we have to store the coefficients of the difference and error formulas of order q = 2, 4, 6
for each node the possibility to set the consistency order individually for each node is very
expensive. An example will illustrate this: For a 100 × 100 × 100 unstructured tetrahedral
FEM mesh in 3-D we have m(2) = 10, m(4) = 35, m(6) = 84 and m(8) = 165 (for the
error of order q = 6). We have 9 derivatives (ux, uy, uz, uxx, uyy, uzz, uxy, uxz and uyz) and

3.4 The selfadaptation process 35

length1 of array for
order difference formulas error formulas

2 686.65 2403.26
4 2403.26 5767.82
6 5767.82 11329.65

1 in MByte

Table 3.4.1: Length of arrays for difference and error formulas for the orders q = 2, 4, 6.

thus the arrays for the difference and error formulas have the lengths shown in table 3.4.1.

These values are computed the following way:

mem =
n · nd · m(q) · memdp

fmb
(3.4.14)

where

n = 106 = number of grid nodes

nd = 9 = number of derivatives

memdp = 8 = number of bytes for a double precision variable

fmb = 10242 = factor to convert bytes into Megabytes.

So the total memory needed for all difference and error formulas is 27.69 GByte! In com-
parison, the length of the large sparse matrix Qd for order q = 4 of a system of 6 partial
differential equations and 106 nodes is 9.39 GByte. As many of the matrix entries are com-
puted zeros the amount of nonzeros is only about one third of this value. Of course, the
time consumption also increases, especially for order q = 6 in 3-D. However, it gives the
most reliable error estimate because in each node it is checked if the order is overdrawn
which is visible by a larger space key error term for the higher order.

3.4.3 Mesh refinement

The user prescribes a global relative error tol that is checked against (3.1.14) so that finally
(3.4.1) holds. The computation starts with an initial mesh from a mesh generator. If the
requested accuracy tol is smaller than ‖∆ud‖rel the only possibility is to refine the mesh
locally. So we check at each node if

‖{Dx + Dy + Dxy}i‖ ≤ sgrid · tolg. (3.4.15)

36 The FDEM program package

Here sgrid again is a tuning parameter that must be determined to minimize the solution
time. The optimal value depends on the type of problem to be solved so that no special
value can be recommended.

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

� �� �

� �

�
�

���
�

��
� �

�

(4)

value from
2-D interpol.

order = min(left,right)

Figure 3.4.1: Refinement of a linear triangular element.

A node where (3.4.15) fails is a refinement node. If in an element at least one node is a re-
finement node, the whole element will be refined by halving the edges, so that four similar
triangles result, see figure 3.4.1.

According to this locally refined meshes result. One of the four new elements gets the
number of the old element and three new element numbers are generated. If the neighbour
triangle is also refined the node on the shared edge is generated only once, of course. The
function value ud for a newly-created node is determined in the following way: We inter-
polate from both end points of the subdivided edge the function value for the mid-point by
a 2-D interpolation formula of order qi (3.3.8) for the end point i. Then we take the mean
value of the interpolated values. The order of the new node is the minimum of the orders
of its two neighbours.

In figure 3.4.2a) node 1 is a refinement node because of the error so that we have to refine
element A. The result is the grid shown in figure 3.4.2b). Note that triangle B has two
edges with two nodes and one edge with three nodes after the refinement process. If in a
second refinement step node 2 becomes a refinement node we have to refine the triangles
C, D and E. If the left neighbour triangle B is not refined, there would be more than three
nodes on an edge of this triangle (node 3 would be the fourth node on this edge, see fig-
ure 3.4.2c)). For the basic organization of the element arrays we therefore limit the number
of nodes on an edge to three (see Rule 2 on page 65). If a fourth node would be created on
an edge, the larger triangle also must be refined (result shown in figure 3.4.2c)), but now
not because of the error but for reason of data storage scheme. This induces the so-called
refinement cascade.

The whole refinement process is described in detail in chapter 4.

3.5 Coupled domains 37

a)
�1

A
B

b)

�
2B

CD

E

c)

�
3

B

d)

Figure 3.4.2: Illustration of the refinement cascade on a single processor: a) original grid,
b) grid after one refinement, c) grid after two refinement steps without refinement
cascade, d) grid after two refinement steps with refinement cascade.

3.5 Coupled domains

The finite difference element method needs uniform field equations on the whole domain.
However, in technical applications we often have coupled domains with different partial
differential equations. It is not possible to differentiate across these dividing lines or sur-
faces because there may be a jump in the derivative (figure 3.5.1a)) or even in the function
itself (figure 3.5.1b)).

3.5.1 Dividing lines

In figure 3.5.2 we have a block composed of four different materials with different heat
conduction coefficients. If we want to compute the heat flux in the whole block subjected
to some boundary condition, we can discretize the whole solution domain, but we cannot
differentiate across a material boundary. Therefore we must compute the solution sepa-
rately in the subdomains and couple the different solutions.

So first each geometrical dividing line node which we get from our mesh generator (see left
side of figure 3.5.2) has to be transformed to ndl logical dividing line nodes where ndl is the
number of domains a geometrical dividing line node belongs to. One of these logical nodes
keeps the old node number, the other ones get new numbers. So each of the logical nodes
belongs afterwards to exactly one domain and has different difference stars and therefore a
different solution and thus is unique. This is shown on the right side of figure 3.5.2.

38 The FDEM program package

The ndl domains are coupled by ndl coupling conditions. We do not have two crossing
dividing lines but four dividing lines that meet in a quadruple point. The user must spec-
ify which coupling condition is valid for which part of the multiple node. The coupling
conditions have the following form:

i, j : (P1u)d,i + (P2u)d,j = 0 (3.5.1)

j, i : (P3u)d,j + (P4u)d,i = 0.

The first one is for dividing line nodes on domain i that couples to domain j, and the second
is for dividing line nodes on domain j. These coupling condition operators have the same
form as the operator for the partial differential equations.

For a simple dividing line we have symmetric coupling conditions which means that they
also can be interchanged without any difference for the result. For the heat conduction
problem we have equal temperature and equal heat flux which means

T1 = T2,

λ1T1,x = λ2T2,x

with heat conduction coefficients λ1 and λ2 (see figure 3.5.2). For nodes of the first domain
we have equal temperature as coupling condition, and for nodes on the second domain we
need equal heat flow. This could also be the other way round.

As we saw before a geometrical node on ndl domains needs ndl coupling conditions but
here we have to pay attention because it is for example not allowed to give the following

a) b)

�
�

������

�
�

��

�
�

��

x x

T ci

membrane

P1u P1uP2u P2u

jump in
derivative

jump in
function

Figure 3.5.1: Illustration for dividing lines (DLs) and coupling conditions (CCs) with a) jump
in derivative, b) jump in function.

3.5 Coupled domains 39

PDE1 PDE2

PDE3PDE4

�

�

�

�

1

4

2

3

T1 = T2

λ1T1,x = λ2T2,x

quadruple
point

coupling conditions

�

�

1 node 2 variables

4 variables

Figure 3.5.2: Illustration of heat flux problem.

coupling conditions for a quadruple point:

1, 2 : T1 − T2 = 0

2, 3 : T2 − T3 = 0

3, 4 : T3 − T4 = 0

4, 1 : T4 − T1 = 0.

The reason is that there is no unique solution because the coupling conditions are linear
dependent. So we have to change at least one of the coupling conditions, for example we
change the last one into

4, 1 : λ4T4,y − λ1T1,y = 0.

The coupling conditions need values of both sides of the dividing line as we can see in
figure 3.5.2. Here we need the temperature of the first and the second domain for the first
coupling condition and the same goes for the derivative Tk,x that we need for the second
coupling condition.

As we cannot differentiate across a dividing line we use one-sided difference stars at the
dividing lines that use function values of the corresponding subdomain. Thus the dividing
lines are treated as “interior” boundaries. As a mesh generator delivers a configuration as
shown on the left side of figure 3.5.2, at the beginning of the solution process the new vari-
ables must be generated so that the logical configuration at the right of figure 3.5.2 results.
Here we have a grid that goes straight through the whole domain, i.e. we have matching

40 The FDEM program package

grid on both sides of the dividing lines.

One geometrical dividing line node produces ndl logical dividing line nodes and each of
these ndl logical dividing line nodes produces l rows in the large sparse matrix Qd. Each of
these rows consists of two parts. One that is computed from the difference formulas and the
Jacobian matrices from the own node and the other part is computed from the difference
formulas and the Jacobian matrices of the opposite twin node.

3.5.2 Sliding dividing lines

In practical applications the subdomains may slide relatively to each other and they may
need quite different grids, see figure 3.5.3.

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

slides

SDLfree
boundary

Figure 3.5.3: Illustration for sliding dividing line (SDL).

Here the nodes of the lower boundary of the upper domain and the nodes of the upper
boundary of the lower domain may be free or coupling boundary nodes. Such an inter-
face is called sliding dividing line (SDL). The problem is that we do not have two or more
coupled nodes that result from one geometrical node like for the dividing lines with the
matching grid. So how can we couple the solutions of the subdomains across a sliding
dividing line? The solution is illustrated in figure 3.5.4. A geometrical node on a sliding
dividing line generates a fictitious opposite node on the other subdomain. However, for a
finite difference method function values and derivatives are only known at the geometrical
nodes. In order to get these values for the fictitious opposite node (e.g. node B in fig-
ure 3.5.4) we first search for the nearest geometrical node of B on the sliding dividing line
which is node A. For this node A we know the coefficients of the influence polynomials.
Now these polynomials are not only evaluated for xA, yA to get interpolation, difference
and error formulas at A but also for xB , yB so that we get the coefficients of the difference

3.5 Coupled domains 41

and error formulas for node B. These formulas for the fictitious opposite node B are used
in the coupling conditions between the geometrical node and its fictitious twin node like
for the matching dividing line nodes. Node B is an “artificial” matching node.

SDL
Tup = Tlo

λupTy,up = λloTy,lo

geometrical
node

fictitious
opposite
node

use polynomial of A to get formulas of B:
A B→

Figure 3.5.4: Illustration of the coupling across a sliding dividing line.

In contrast to the dividing lines where we have two equations for the two logical variables
(see (3.5.1)) we have at a coupling node of a sliding dividing line only one variable for
the geometrical node. The formulas of the fictitious opposite node contain the variables of
the formulas of the nearest opposite geometrical node, but no new variable. Therefore we
prescribe in the example of the heat conduction problem in figure 3.5.4 for the geometrical
nodes of the upper domain equal temperature Tup = Tlo and for the geometrical nodes of
the lower domain equal heat flux λupTy,up = λloTy,lo.

As already mentioned the nodes on the sliding dividing lines may be free boundary nodes
or coupling boundary nodes. We will present now the 2-D algorithm to determine which
node has which property. The exemplary problem is illustrated in figure 3.5.5.

We have one domain that slides from the left to the right and back below two static do-
mains that are coupled by a dividing line. So there are sliding dividing lines on the lower

42 The FDEM program package

��
��
1 ��

��
2

��
��
3

� � �� � � � � � �
��
��
1 ��

��
2

��
��
3

P

P1 N2,1 N2,2

N1,1 P2

Figure 3.5.5: Illustration of algorithm for property free/coupling node.

boundaries of the two upper domains and on the upper boundary of the lower domain. We
want to show how a node on the sliding dividing line on the lower domain gets the property
free or coupling node. If it is a coupling node we have to know to which of the two upper
domains the node couples.

So first we search for each sliding dividing line node of the lower domain for its next node
on each sliding dividing line of each upper coupling domain. When we do this for the first
time, we compute the distance to each node on the coupling sliding dividing line for the
first node. Then we continue with the neighbours of the first node and begin the search of
their next upper sliding dividing line nodes with the already found next nodes of the first
node. We repeat this step until all sliding dividing line nodes have found their next nodes on
all upper coupling sliding dividing lines. Now we must check which of the next nodes on
the other domains is the next opposite node. In figure 3.5.5 the situation is illustrated: We
search the next opposite node for node P on domain 3. We find a next node P1 on domain 1
and a next node P2 on domain 2. The neighbour nodes of the nodes Pi are denoted by Ni,j

where Ni,j is the jth neighbour node on the sliding dividing line of node Pi on domain i.
Now we check for each coupling domain i and each neighbour node Ni,j if∣∣PNi,j

∣∣ ≤ ∣∣PiNi,j

∣∣ (3.5.2)

holds. This means that the distance between node P and the neighbour node Ni,j of the
investigated node Pi is smaller than the distance between the investigated node Pi and its
neighbour Ni,j, i.e. the position of node P is between these two nodes. This criterion can
be fulfilled once at most. If it is fulfilled for a node Pi and one of its neighbours this node Pi

is the fictitious opposite node and we can continue with the next sliding dividing line node.
If it is not fulfilled for any of the nodes Pi the node P gets the property “free boundary
node” because in this case is not between the investigated next nodes and their neighbour
nodes on any of the coupling domains. In the next time step we start the search for the next
nodes on the other sliding dividing lines at the next node of the current time step.

3.6 Parallelization 43

In figure 3.5.6 you can see an exemplary situation for three domains where we have sliding
dividing lines between the two upper domains and the lower domain. As the mesh on the
lower domain is coarser than those of the upper domains, there are some sliding dividing
line nodes that have the same fictitious opposite node, especially on domain 1. The two
sliding dividing line nodes at the left end of the sliding dividing line do not find a fictitious
opposite node on one of the coupling sliding dividing lines as described above and there-
fore are free boundary nodes.

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

free boundary nodes

��
��
1 ��

��
2

��
��
3

couples to

Figure 3.5.6: Illustration of property free/coupling node.

At the end of this subsection we repeat the properties of the mesh refinement at dividing
lines and sliding dividing lines. In the case of dividing lines we always must have matching
grids. So if we half an edge on a dividing line the corresponding edge on the other grid
must also be halved. This means that the refinement cascade is continued across dividing
lines and the refinement in a domain is not independent of the other domains. As we have
non-matching grids for sliding dividing lines we can refine the domains separately from
each other. The refinement on an edge of a sliding dividing line has no consequences for
the grid on the other side and the refinement cascade stops at the domain border.

3.6 Parallelization

The numerical solution of partial differential equations needs much computation time and
memory. These are the two main reasons for parallel computation. Especially in 3-D we
have very large problems with many unknowns where the matrix Qd needs much space and
where the arrays, especially for computations with order control, for the coefficients of the
difference and error formulas are even larger as shown in section 3.4 on page 35. Further-
more, the solution time increases. Therefore we need an efficiently parallelized program
that is executed on a distributed memory parallel computer with message passing (MPI).
Here the essential drawback is the communication. If we only use local data the execu-
tion time depends on the bandwidth and the latency of the cache hierarchy or of the much

44 The FDEM program package

slower memory. But if we need to access data from other processors, the bandwidth and
the latency of the communication network are essential parameters.

Of course, it makes no sense to store all data locally on a distributed memory parallel com-
puter, so the essential goal of the parallelization is the minimization of communication.
Principally, you have two possibilities: the first is to exchange data exactly at the moment
one processor needs data from another. Here the requesting processor has to wait until the
data have arrived without doing anything but waiting. The second possibility is to exchange
the data that is needed on each processor in a preparatory step, following the principle of
the separation of selection and processing of the data. This means that the same data have
to be stored on several processors, which means storage overhead, but on the other hand it
avoids communication and therefore saves computation time, see [8]. The FDEM program
package has been designed with this principle in mind.

As one of our goals was that FDEM should run on all types of parallel computers with
shared and distributed memory, the only possible choice is message passing. Therefore we
use the quasi-standard MPI, because it has been demonstrated in many examples that MPI
is more efficient than the shared memory quasi-standard OpenMP even if there is a global
address space over the distributed memory.

on processor

1 2 3 4
proc. ip−1 ip ip+1

overlap overlap

nodes needed for proc. ip

Figure 3.6.1: Illustration of the distribution of the data to the processors.

At the start of the program the following information is given by the (commercial) mesh
generator: We have an element array where for each global element are given the global
node numbers that are contained in this element. In the coordinate array there are the
values of the coordinates for each global node and in the boundary node array(s) there is
stored which nodes are external (and internal) boundary nodes and on which boundary they
are. For the generation of the difference and error formulas we need rings of neighboured
nodes. Therefore we sort the nodes by their x-coordinate, at first locally on each of the
np processors, then globally by a special algorithm by which up to np/2 processors are

3.6 Parallelization 45

active in parallel. By the sorting the nodes are distributed with increasing x-coordinate in
np (nearly) equal parts on the np processors. This results in an automatic one-dimensional
domain decomposition, see figure 3.6.1. Note that FDEM is also a black-box solver with
respect to the domain: We do not know which 2-D or 3-D domain the user will deliver. The
same sorting takes place after each mesh refinement to guarantee an efficient load balanc-
ing.

Now we sort the elements on the processors. An element belongs to a processor if it has
a node on this processor. If an element has nodes on two processors it always belongs to
the left one which is shown in figure 3.6.2. Here we make use of the “basket principle”:
Each processor puts its old, static information in a basket that is sent around in a nearest
neighbour ring in np tacts. Here the np processors are conceptually treated as a linear
arrangement with wrap-around, or more precisely as a ring. In each tact the processors take
out of the current basket the information they need, see figure 3.6.3 for np = 4 processors.

												�
�

�
�

�
�

�
�

�
�

��

�����������������������

�

�

�

proc. ip proc. ip+1 proc. ip+2

A

B

C

Figure 3.6.2: Illustration for the owning of triangles.

For the exchange of data we have in many cases the problem that the receiving processor
of the MPI messages must have the information about the length of the data they receive
in advance. As this information often is unknown the processors must exchange it in a
preparing step and afterwards exchange the real data.

As we mentioned before, we want to execute the generation and evaluation of the differ-
ence and error formulas, the generation of the right hand side (Pu)d and of the large sparse
matrix Qd purely local on the processors, without communication. So we must store on

46 The FDEM program package

proc. 1 2 3 4

�� �� �� ���� �� �� ��

�� �� �� ��

new
data

�� �� �� ���� �� �� ��

�� �� �� ��

old
data

(static)

shifted in ring

Figure 3.6.3: Illustration of the basket principle for np = 4 processors.

each processor also the data of the adjacent processor(s) that are needed for the rings of
neighboured nodes. This is indicated as overlap data (see figure 3.6.1). Note that an over-
lap may extend over several processors. In order to determine the width of the overlap we
first compute the average edge length hmean of the elements. On page 26 in section 3.3
we explained the two possible ring limits. We want to form the formula for the width of
the overlap if the first ring limit is decisive. If we choose the consistency order q for the
computation of the solution, we must collect nodes up to order q̄ = q+∆q for the error for-
mulas. Furthermore, we assume that we have a mesh consisting of squares, see figue 3.6.4.
With the help of this mesh we can estimate the necessary overlap for a triangular mesh as
the overlap for this mesh is wider than for a triangular mesh.

We must now compute how many rings of squares we need to collect m(q̄) nodes. For one
ring we have nine nodes, for two rings we have 25 nodes and for x̃ rings we have (2x̃ +1)2

nodes. So we set
m(q̄) = (2x̃ + 1)2 (3.6.1)

and therefore yield

x̃ =
1

2

(√
m(q̄) − 1

)
. (3.6.2)

To be on the safe side we use a safety factor aoverlap ≥ 1 and with the average edge length
hmean we compute the width of the overlap by

xoverlap,1 =
1

2
· aoverlap · hmean ·

(
dim
√

m(q + ∆q) − 1
)

(3.6.3)

where dim denotes the dimension of the computational domain, i.e. the formula is also
valid for 3-D. This is because in 3-D it holds

m(q̄) = (2x̃ + 1)3. (3.6.4)

3.6 Parallelization 47

�

x̃2

x̃1

Figure 3.6.4: Illustration of rings for a rectangular mesh.

If the second ring limit is decisive, the overlap width is

xoverlap,2 = aoverlap · hmean · (q + ∆q) . (3.6.5)

Here the formula is easier to explain. We need q + ∆q rings and each ring has an average
width of hmean, so that we get formula (3.6.5) when we use the safety factor aoverlap.

Now we compute xoverlap which is the maximum of xoverlap,1 and xoverlap,2 and then store
the nodes of the left and right processors

from xleft = xmin − xoverlap (3.6.6)

to xright = xmax + xoverlap. (3.6.7)

There is an array where for each processor is stored the information about the x-coordinates
of its own leftmost and rightmost node xmin and xmax. This array is available on each
processor so that it knows which data are stored on which processor. By this knowledge
each processor knows with how many processors it has to exchange data on the left and on
the right side. The transfer of the overlap data is made in such a way that the whole data
of these concerned processors is stored on the own processor and then superfluous data (of
the last overlap processors on the left and right side) is deleted.

After the overlap of the node data is created, the element overlap is generated. This is done
in the same way we distributed the elements to their own processors.

The solution process of the partial differential equations starts with the data distributed onto
the processors where on each processor a local numbering over all own and overlap data

48 The FDEM program package

Qd (Pu)d

on proc. 1

2

3

4

Figure 3.6.5: Distribution of the matrix Qd and the r.h.s. (Pu)d in row blocks to np = 4
processors.

is used. So each processor can compute its part of the matrix Qd (see Fingure 3.1.1) and
the right hand side (Pu)d (see (3.1.11)) completely independent of the other processors
without communication as if it would be a single processor and not only one processor in a
parallel computer, see figure 3.6.5 for np = 4 processors.

The key for this seemingly quite simple procedure is the overlap and the local numbering.
It is clear that after each Newton step the values for ud for the overlap nodes must be
exchanged between the processors.

3.7 Remarks to LINSOL

LINSOL (LINear equation SOLver) is responsible for the iterative solution of the large
sparse linear systems

Ax = b, A ∈ IRn×n, x, b ∈ IRn, n ∈ IN (3.7.1)

which arises in the FDEM computations (see (3.1.11)). LINSOL has been developed to-
gether with the previous PDE solvers FIDISOL [5], Chapter 17 and CADSOL [9] and has
been enhanced continuously since that time. It is now publicly available, see [10] and the
references given there.

After a processor has computed its part of the linear system of equations, see figure 3.6.5,
LINSOL is called independently so that the processors are automatically synchronized by
the data.

To solve such large systems of linear equations we require two properties of the linear
solver: robustness and efficiency. Because of reasons of storage limitations LINSOL orig-
inally was a purely iterative solver with different types of CG (conjugate gradient) meth-
ods (presently implemented: 14 CG methods). With these methods we generate several
polyalgorithms with automatic method switching from very efficient but less robust to less
efficient but highly robust methods. We switch to the next method if the convergence of the

3.7 Remarks to LINSOL 49

currently used method is not satisfying any more.

As many of our technical problems could not be solved efficiently by pure CG methods we
developed a very sophisticated parallelized (I)LU preconditioning [11] (this reference can
be accessed via [10], documentation). For full LU preconditioning one has a direct solver
with automatic post-correction. LINSOL also has three efficient bandwidth optimizers [12]
which are indispensable especially for 3-D problems.

The matrix Qd may be stored in eight different data structures: full and packed diagonals,
rows and columns, main diagonal and starry sky. It is possible to use several data structures
in the same matrix; the matrix is composed by these basic elements and an information
array gives the necessary information. For FDEM we only use packed rows. The data
structures are split up into row and column blocks to support an efficient parallelization of
the matrix-vector multiplication [8] which is the kernel operation of all iterative solvers.
For the (I)LU factorization we use a single wrap-around over the processors with an active
buffer window for efficient load balancing. The factorized parts L and U then are reor-
ganized in packed rows and columns for an efficient forward elimination and backward
substitution, again following the principle of the separation of selection and processing of
the data.

50 The FDEM program package

The algorithm of the mesh refinement 51

4 The algorithm of the mesh refinement

The mesh refinement consists of two main parts. The first part is this: We determine all
elements that have to be refined, either because of the error or because of the refinement
cascade. Therefore we check for each node if (3.4.15) holds and if not, all elements that
contain this node become refinement elements (see section 4.2). Then we start the refine-
ment cascade (see section 4.3) whereby also elements become refinement elements that
would get a fourth node on one of their edges by the refinement of a neighbour element.

The second part is this: We begin with the largest refinement elements (refinement stage 0)
and generate new nodes on the mid-points of the edges. Here we must pay attention to
avoid multiple generation of the same physical node. The new nodes must also be stored
in the neighbour elements. The function values of the new nodes are interpolated by the
interpolation formulas of the two end points of the edge, the order q is the minimum of the
orders of the two end points. Then we check which of the new nodes are external boundary
nodes, dividing line or sliding dividing line nodes. Now we generate the new elements,
one element gets the old element number, the other ones get new global element numbers.
This is explained for a single processor in section 4.4 and for distributed memory parallel
computers in section 4.5. Then we do the same for the second largest elements (refinement
stage 1), then for the third largest elements etc. We call the refinement of the elements of a
certain refinement stage a refinement step.

On a distributed memory parallel computer we have to execute after each refinement step
an intermediate step to update the element information on the processors before we can
continue with the elements of the next refinement stage.

4.1 Context

Here we consider the basics that are used throughout the mesh refinement algorithm. The
realization of the communication is discussed as well as frequently used communication
patterns and procedures that we adopt from the LINSOL program package.

4.1.1 Implementation language

The FDEM program package is implemented in Fortran 90. Fortran has been designed
for efficient scientific computing. Although there are many people saying Fortran was
a dead language and ennoble functional languages, there is not any alternative concern-
ing efficiency and performance on a distributed memory parallel computer at the moment.
Therefore the LINSOL package is also implemented in Fortran 90.

52 The algorithm of the mesh refinement

4.1.2 The Portable Message Passing Interface

Generally, we can categorize programming models by how memory is used. In the distrib-
uted global shared memory model each process accesses a shared address space, while in
the message passing model an application runs as a collection of autonomous processes,
each with its own local memory. In the message passing model processes communicate
with other processes by sending and receiving messages. When data is passed in a mes-
sage, the sending and receiving processes must operate to transfer the data from the local
memory of one processor to the local memory of the other.

Message passing is used widely on parallel computers with distributed memory and on
clusters of servers. Besides the high efficiency the advantages of using message passing
include portability and universality as message passing is implemented on most parallel
platforms and the model makes minimal assumptions about underlying parallel hardware.
However, creating message-passing applications may require more effort than letting a par-
allelizing compiler produce parallel applications.

In section 3.6 we already mentioned that the concept for the parallelization we have chosen
for FDEM is the message passing paradigm. This has been done for reasons of efficiency—
the virtual shared memory programming model is easier to program but it is never as effi-
cient as using explicit message passing—and because FDEM should be portable to a high
degree. Message passing libraries exist on shared and distributed memory multiprocessors
but these libraries did not have a common subset of basic message passing routines in the
early days of MPI. So you had to adapt your routines to the message passing library for
each desired target system. As this made the code hardly portable we have developed the
portable message passing interface (P MPI) in our research group, see [10], that we still
use although it was not necessary nowadays and that we want to explain shortly in the fol-
lowing. Additionally, P MPI is an essential simplification compared to MPI as it uses only
the small subset of operations that we need for FDEM.

P MPI, in contrast to MPI or PVM, does not support different types of send and receive,
no group functions and only one kind of collective communication which is gather and
scatter, but as this is not used in the refinement process we do not deal with this any fur-
ther. Apart from that we only provide interfaces for six important basic message passing
routines—four point-to-point communication routines plus a start-of-communciation and
an end-of-communication routine—with parameters that are common to all usual message
passing interfaces. The interface is written entirely in Fortran 77.

So P MPI contains the subroutines COMBGN for the initialization and COMEND for the clo-
sure of the communication. COMBGN returns some important communication parameters to
the user such as the number of processors np and a one-dimensional integer array tids that

4.1 Context 53

i 1 2 3 · · · i · · · np logical number
tids(i) 0 1 2 · · · i − 1 · · · np − 1 physical number

Table 4.1.1: Array tids with physical processor numbers.

contains the physical processor numbers for each logical processor, see table 4.1.1. This
array tids is an input parameter for the send and receive routines.

MPSNDA(tidrcv, typemsg, lmsg, msg, idmsg, err)
MPSNDW(tidrcv, typemsg, lmsg, msg, idmsg, err)
MPRCVA(tidsnd, typemsg, lmsg, msg, idmsg, err)
MPRCVW(tidsnd, typemsg, lmsg, msg, idmsg, err)

parameter type property meaning

tidrcv I in physical processor number of the receiving processor
tidsnd I in physical processor number of the sending processor
typemsg I in message type
lmsg I in length of the message (in bytes)
msg I starting address of the first element of the message of

R length lmsg that may be of type I , R, DP or C∗1
DP in input parameter for MPSNDA and MPSNDW
C∗1 out output parameter for MPRCVA and MPRCVW

array: msg(lmsg)
idmsg I message id (identifies matching start and wait rou-

tines)
in input parameter for MPSNDA and MPSNDW
out output parameter for MPRCVA and MPRCVW

err I out error number
I: integer, R: real, DP : double precision, C ∗ 1: character

Table 4.1.2: Parameter list of the communication routines.

These communication routines are MPSNDA, MPSNDW, MPRCVA and MPRCVW. The non-
blocking send call MPSNDA indicates that the system may start to copy data out of the send
buffer and the nonblocking MPRCVA indicates that the system may start to write data into
the receive buffer. To complete a nonblocking communication we use the routines MPSNDW
and MPRCVW that have the functionality of waits. These four communication routines all
have the same parameter list, see table 4.1.2.

As the send and receive routines are asynchronous, we are able to proceed with the pro-

54 The algorithm of the mesh refinement

gram execution while the messages are exchanged. Theoretically, we can hide the com-
munication overhead completely behind the computational effort if the computer provides
autonomous communication units—process communication can overlap process computa-
tion. An example of such a computer was the Fujitsu VPP with its autonomous DTU (Data
Transfer Unit) and crossbar switch.

4.1.3 External procedures

We use five external procedures from the LINSOL core package in the mesh refinement
algorithm. The first two routines LL4INM and LL4RNM compute a global maximum of
integer vectors or double precision vectors, respectively. The third one (LL4ISM) computes
a global sum of integer vectors.

LL4INM global integer maximum
LL4RNM global double precision maximum
LL4ISM global integer sum
HEAPSORTIX heap sort
SECONDS get CPU time and wall clock time

Table 4.1.3: List of external procedures.

These routines first compute the local result of the operation, e.g. the maximum of their in-
put vector, and afterwards the global result is computed by the means of the P MPI routines
of subsection 4.1.2. The routines are symmetric, i.e. if the completion is successful each
processor has got the result. We often use these routines to compute intermediate results
which must be available on each processor, e.g. a maximum number in order to be able to
allocate a send or receive buffer with the necessary length.

If we exchange node or element numbers between processors, this can only be done by
global numbers. So the receiving processors must transform these global numbers to their
own local numbers to process the received data. This transformation is done locally by a
binary search in the array of global node or element numbers. But a binary search is only
possible if the nodes and elements are sorted by ascending numbers. So we first have to
sort the nodes and elements for what we use the routine HEAPSORTIX.

Finally, routine SECONDS is used for measuring the consumed CPU time and wall clock
time.

4.1.4 Communication patterns

Here we present two communication patterns that are frequently occurring in the imple-
mentations. As each processor is processing the refinement of its elements independently,

4.1 Context 55

the processors have no information about the activities of the neighbour processors. So
when we come to a point where the processors have to exchange data with some of their
neighbour processors, the target processor has no information about the length of the mes-
sage it will receive from which processor and, even worse, the processors do not have the
information if they will receive a message at all.

So one possibility was to send a message with a global length that is computed by the max-
imum length of the data that any processor has to send. Then we would send messages
with this length to all overlap processors. But usually only data at the processor borders,
i.e. only a small part of the data a processor owns, is concerned. Thus, firstly we would
waste time by sending superfluous data to neighbour processors. There we even waste time
twice because the time for sending the message increases and then the target processor must
extract the data from the received message it is really in need of. And secondly we would
waste even more time by sending superfluous messages to overlap processors that will fail
to extract useful data from the message afterwards.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��proc. 4

proc. 3

proc. 2

proc. 1

��
��

��
��

sending of data

receiving of data

storing data in array

tact 1 tact 2 tact 3

Figure 4.1.1: Illustration of the passing of the message lengths to the right for np = 4 proces-
sors and npmax,r = 3.

So we split the communication into two parts. In the first part we only send the lengths
of the messages, the real data follow in the second part. This first part consists of npmax,r

cycles for the passing of the messages to the right and npmax,l for the passing of the mes-
sages to the left. Here, npmax,r and npmax,l are the maximum number of overlap processors
on the right side and on the left side, respectively. The passing of the message lengths

56 The algorithm of the mesh refinement

in npmax,r = 3 tacts to the right is illustrated in figure 4.1.1 for np = 4 processors. At
the beginning each processor stores the message lengths (number of elements to be sent)
of the messages it must pass to the neighbour processors in a send buffer sndbuf with
length (number of elements) equal to lsndbuf . In sndbuf(1) we store the message length for
the direct neighbour processor, in sndbuf(2) the message length for the second neighbour
processor and so on, see table 4.1.4.

send to right send to left
i sndbuf(i) target proc. sndbuf(i) target proc.

1 17 ip + 1 9 ip − 1
2 13 ip + 2 0 ip − 2
3 1 ip + 3 2 ip − 3

Table 4.1.4: Example of storage scheme of send buffer sndbuf , i is the cycle number.

If the messages must be sent to the right all processors

from ip = i

to ip = np − 1

send their current buffer sndbuf to their direct right neighbour processor in each cycle i.
These messages have the length (in bytes)

	 = lsndbuf · memint (4.1.1)

where memint is the memory requirement for an integer variable. The processors

from ip = i + 1

to ip = np

are waiting for a message from their direct left neighbour processor that is written into the
buffer rcvbuf . The length of rcvbuf must be greater or equal to lsndbuf . Usually, lsndbuf is
computed by

lsndbuf = npmax,r (4.1.2)

where
npmax,r = max

ip=1,...,np
npsr,ip (4.1.3)

and npsr,ip is the number of overlap processors on the right side (index r) to which proces-
sor ip may have to send information, i.e. npmax,r is a global maximum. After having
received the message the processors take out the relevant data and in the next cycle the
just received message is sent to the right neighbour processor. The relevant information in

4.1 Context 57

the received message of cycle i is sndbuf(i) because in the first cycle the first right neigh-
bour processor receives the data, in the second cycle the second right neighbour processor
receives the data etc. In the later communication step where the data is sent, we save com-
munication by omitting the exchange of information if the length of a message is zero,
e.g. in 3-D it may be the situation that the refinement elements in the overlap are only on
the direct neighbour processors. Then we only send messages to these processors and skip
sending messages to the other overlap processors. The code for this communication pattern
is shown in listing 1 for the passing of a single integer value to the right.

! tp: physical number of target processor
tp = tids(myproc+1)
! sp: physical number of source processor
sp = tids(myproc-1)

! for each communication cycle
do i = 1,np_maxr-1
! processors from ip=i to ip=np-1 send
! integer variable ival_snd to tp
if ((myproc >= i).and.(myproc < np)) then

call MPSNDA(tp,nmsg+myproc,iint,ival_snd,mids,ierr)
call MPSNDW(tp,nmsg+myproc,iint,ival_snd,mids,ierr)

end if
! processors from ip=i+1 to ip=np receive
! integer variable from sp in ival_rcv
if (myproc > i) then

call MPRCVA(sp,nmsg+sp+1,iint,ival_rcv,midr,ierr)
call MPRCVW(sp,nmsg+sp+1,iint,ival_rcv,midr,ierr)
{ processing of ival_rcv }
! set ival_snd for next communication cycle
ival_snd = ival_rcv

end if
end do
! increase message counter nmsg
nmsg = nmsg+np

Listing 1: Code for communication pattern used to send message lengths to the right.

If we have to send data to the left overlap processors all processors

from ip = 2

to ip = np + 1 − i

send their current buffer sndbuf to their left neighbour processor in each cycle i. The
maximum number of overlap processors npmax,l on the left side (index l) by which we
compute the buffer length lsndbuf is computed by

npmax,l = max
ip=1,...,np

npsl,ip (4.1.4)

58 The algorithm of the mesh refinement

where npsl,ip is the number of overlap processors on the left side to which processor ip
may have to send information, i.e. npmax,l is a global maximum like npmax,r. The passing
of the message lengths to the left is illustrated in figure 4.1.2 again for np = 4 processors
but this time the maximum number of overlap processor is 2, i.e. it holds npmax,l = 2.
The similarity of figure 4.1.1 and 4.1.2 is palpable, only the processor numbers on the left
side are changed. So this part of the communication can be done by the same procedure
regardless of the direction of the communication.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

proc. 1

proc. 2

proc. 3

proc. 4

��
��

��
��

sending of data

receiving of data

storing data in array

tact 1 tact 2

Figure 4.1.2: Illustration of the passing of the message lengths to the left for np = 4 processors
and npmax,l = 2.

After this preparatory step the information is available on each processor which of its neigh-
bour processors will send messages and, equally important, the length of each message it
will receive is also known. So the second part of the communication can start where the
real data is passed to the neighbour processors. This part consists of

npmax,r

npmax,l

}
cycles for sending to the

{
right
left.

We begin with the communication to the direct neighbour processor and continue with
the next neighbour processor until the communication with the last overlap processor is
finished. For the communication to the right, processor ip sends the message for proces-
sor ip + i to this processor in communication cycle i if

ip ≤ np − i ∧ 	msg > 0 (4.1.5)

4.1 Context 59

r e c e i v i n g p r o c e s s o r

1 2 3 4 5 6 7 8

s
e
n
d
i
n
g

p
r
o
c
e
s
s
o
r

1

2

3

4

5

6

7

8

L1

L1

L1

L1

L1

L1

L1

L2

L2

L2

L2

L2

L2

L3

L3

L3

L3

L3

R1

R1

R1

R1

R1

R1

R1

R2

R2

R2

R2

R2

R2

R3

R3

R3

R3

R3

Figure 4.1.3: Illustration of the communication pattern for np = 8 processors and npmax,r =
npmax,l = 3.

holds. All processors with
ip > i ∧ 	msg > 0 (4.1.6)

become the target processors for this cycle. The message length 	msg is known on the target
processor by the formerly introduced communication pattern. The code for the communi-
cation pattern is shown in listing 2 for the passing of messages to the right.

For the communication to the left, processor ip sends the message for processor ip − i to
this processor in communication cycle i if

ip > i ∧ 	msg > 0 (4.1.7)

holds. The processors with

ip ≤ np − i ∧ 	msg > 0 (4.1.8)

are ready to receive a message from processor ip − i. The communication pattern for this
second step of the communication is illustrated in figure 4.1.3 for np = 8 processors.

60 The algorithm of the mesh refinement

! set message counter for comm. to global message counter
msgcnt = nmsg
! for each right overlap processor
do i = 1,np_maxr

! increase message counter
msgcnt = msgcnt+1

! tp/sp: physical number of target/source processor
tp = tids(myproc+i)
sp = tids(myproc-i)

! processors with target proc.<=np and message length>0
! send data in sndbuf to the target processor
if ((myproc <= np-i).and.(sndcnt(i) > 0)) then
! l_msg: message length in bytes
l_msg = sndcnt(i)*mem_int
call MPSNDA(tp,msgcnt,l_msg,sndbuf,mids,ierr)
call MPSNDW(tp,msgcnt,l_msg,sndbuf,mids,ierr)

end if

! processors with source proc.>i and message length>0
! receive data in rcvbuf from the source processor
if ((myproc > i).and.(rcvcnt(i) > 0)) then
! l_msg: message length in bytes
l_msg = rcvcnt(i)*mem_int
call MPRCVA(sp,msgcnt,l_msg,rcvbuf,midr,ierr)
call MPRCVW(sp,msgcnt,l_msg,rcvbuf,midr,ierr)

end if
end do
! set global message counter to message counter for comm.
nmsg = msgcnt

Listing 2: Code for communication pattern used to send messages to the right.

The letter “L” means sending to the left, “R” stands for sending to the right and the num-
bers 1 to 3 are the cycle numbers. So if we send to the right, processor 3 passes the data for
processor 5 in the second cycle (“R2”), for example.

This two-stage execution of the communication is the key for an optimal data exchange
in this environment: After getting knowledge of the number of communication tacts by
computing the global maximum of the number of overlap processors npmax,l and npmax,r,
the processors first get the information which data they will receive from which proces-
sor. Afterwards the exchange of the real data will take place with minimal communication
overhead.

4.2 Refinement nodes and elements 61

In this kind of communication is implied another important characteristic concerning per-
formance on distributed memory parallel computers. Before the data exchange we collect
all data that must be passed to an overlap processor and try to send as few messages as
possible because the performance would suffer badly if we exchanged the data for each
node or element individually by a separate message because of the startup time, the time
until the communication network is ready to send the first byte to the target processor.

Remark: Strictly speaking, the term processor is different from the term process. A proces-
sor is a hardware unit of a computer on which one or several processes can be executed,
and a process is an instance of a program executing autonomously. However, assuming the
most common situation where only one process within a parallel computation is executed
on one processor, we loosely use these two terms interchangeably in the rest of this chapter.

4.2 Refinement nodes and elements

At the beginning of each section or, if necessary, each subsection we introduce the most
important notations, that you must remember to understand the following text, in a box.

Important notations:

nekinv: integer array for elements a node belongs to
refel: logical array for refinement elements
refpt: integer array for refinement node numbers

SUMMARY: We refine the mesh by dividing the elements into four elements in 2-D or
eight elements in 3-D, respectively, by bisection of the edges. As we compute our solu-
tion and the error estimate for the nodes of the mesh, we must determine those nodes
for which the error exceeds a given tolerance first, and from these refinement nodes we
get the elements that have to be refined in the current cycle. Therefore we have to put
up our first rule for the mesh refinement.

For the mesh refinement we first have to compute tolg (3.4.4)—which is the tolerance on
the level of equation, see on page 32—after the end of the Newton iteration as we saw
in subsection 3.4.3. For (3.4.4) we need the relative norm of the corrections and the last
defect of the Newton iteration. The value tolg is compared to the space key error term
‖Dx + Dy + Dxy‖i of each component i of a node. If for one of the components the
accurcy check (3.4.15) does not hold, the node becomes a refinement node (because of the
error). All refinement node numbers are stored in a one-dimensional integer array refpt
of length nl, see listing 3. nl is the number of nodes owned by each processor, on a single
processor it holds nl = n (total number of nodes). The “exit” in listing 3 means that we do
not regard the remaining components if we already found one for which (3.4.15) does not
hold, but we continue with the next node. This accuracy request is done by each processor

62 The algorithm of the mesh refinement

independently. If we want to refine the mesh locally but there are not any refinement nodes
in a cycle, we reduce the safety factor sgrid by

sgrid,new = 0.1 · sgrid,old (4.2.1)

and again check (3.4.15) for each component of each node. This is repeated until there is at
least one refinement node. Here you must remember that we go into the refinement process
if the global relative error ‖∆ud‖rel (3.1.14) does not meet the given relative tolerance tol.
If we do not find refinement nodes, we must reduce the corresponding tolerance tolg by
reducing the (empirical) safety factor sgrid, i.e. we must “sharpen” the accuracy request on
the level of equation by (4.2.1).

! compute tolg on level of equation
tolg = tol*def_max/du_max

! initialize number of ref. nodes
nrofrp = 0
! for each local node
do i = 1,n_l

! for each component
do j = 1,l

! compute absolute value of disc.err.term
dis_l = dabs(dis((i-1)*l+j))

! check if node is ref. node
if (dis_l > s_grid*tolg) then
! increase number of ref. nodes
nrofrp = nrofrp+1
! insert node into refpt
refpt(nrofrp) = i
! continue with next node
exit

end if
end do

end do
! insert number of ref.nnodes into refpt
refpt(n_l+1) = nrofrp

Listing 3: Code for determination of refinement nodes.

Now we go through the array of refinement nodes, and for each refinement node we get
the element numbers it belongs to from the integer array nekinv, i.e. the inverted integer
array nek where we store the structure of the space, see section 3.3 on page 23. These
elements are refinement elements, see rule 1.
For the determination of the refinement elements we use a logical array refel with length
equal to the maximum number of elements nen,max on a processor (including the overlap)

4.2 Refinement nodes and elements 63

Rule 1
All elements that contain a refinement node have to be refined and therefore become refine-
ment elements.

and width equal to the number of refinement steps that already have taken place, starting
with 0. For a single processor it holds nen,max = ne. The array refel has the shape shown
in table 4.2.1 and is initialized with false. We enter the value true into refel in the row of
the local number of the refinement element and the column of its refinement stage. The
code for this part is shown in listing 4. The refinement stage is 0 for the original elements
from the mesh generator and is increased by one for each refinement of these elements.
The array refel has the following purpose: A refinement node usually belongs to several
elements. These elements may have still further refinement nodes. We have to care that
these elements occur only once in the list of refinement elements. The refinement takes
place in “refinement steps”. A refinement step is the refinement of all refinement elements
of a certain refinement stage, starting with the basic mesh of refinement stage 0. Therefore
we must know separately the refinement elements for each refinement stage. This can be
seen in refel.

element refinement refel
number stage stage 0 stage 1 stage 2 stage 3

1 1 false true false false
2 0 true false false false
3 3 false false false true
4 2 false false false false
...

...
...

...
...

...
nel 0 true false false false

Table 4.2.1: Shape of the logical array refel. true means that the corresponding element in the
corresponding refinement stage is a refinement element. A true can occur only in
the refinement stage of the corresponding element. The element 4 is not refined.

Optionally, it is possible to refine the whole subdomain if at least one node of this subdo-
main is a refinement node. Then for each element in this subdomain a true is entered in the
column that corresponds to its refinement stage.

At the end of this first step of the mesh refinement we have an array refel where all the
refinement elements are marked by true so that all elements that have to be refined because
of the error are known now. The refinement nodes that we had to determine first are of no

64 The algorithm of the mesh refinement

! initialize refel
refel = .false.

! for each ref. node
do j = 1,nrofrp

! ptnr: number of current ref. node
ptnr = refpt(j)
! for each element ptnr belongs to
do i = 1,inne(ptnr)

! elnr: number of current element
elnr = nekinv(ptnr,i)
! rst: refinement stage of element
rst = refst(elnr)
! insert true in refel for element elnr
refel(elnr,rst) = .true.

end do
end do

Listing 4: Code for entering refinement elements because of the error into refel.

account for the further mesh refinement and therefore the array refpt is deallocated.

4.3 Refinement cascade

Now we want to explain the refinement cascade that has been already mentioned in subsec-
tion 3.4.3, in detail. We look for elements that have to be refined not because of the error
but for reason of data storage scheme. For these elements we also enter a true in the logical
array refel for the refinement elements. Here we want to recall: In order to have a clear
and fixed storage scheme, we have for a triangle six nodes: the first three are the corner
nodes (always present), the next (optional) three nodes are nodes in the mid of the edges
that result from a refinement of neighbour elements. If there are no nodes on the edges,
these storage locations remain empty. For a tetrahedron in 3-D we have four nodes for the
corners and six possible nodes on the edges. The triangles in 2-D and tetrahedrons in 3-D
of the initial grid always have 3 and 4 nodes, respectively. It should also be recalled that
the triangles and tetrahedrons only serve for the structure of the space, i.e. to search for
neighbour nodes.

4.3.1 Refinement cascade on a single processor

SUMMARY: Here we first introduce the refinement cascade on a single processor and
put up our second rule that gives the reason for the refinement cascade. Afterwards
we mention the difficulties that come from the dividing lines and explain the method to
overcome them. At the end of this subsection we will see that the logical array refel for

4.3 Refinement cascade 65

the refinement elements is unsuitable for the further mesh refinement process so that
we have to transform it.

Important notations:

dlote: integer array for twin node information of dividing line edges
dloteadr: integer array for starting addresses of dividing line elements in dlote
indrel: integer array for refinement element numbers
narpl: integer array for information about storage of data in indrel
nek: integer array for node numbers of the elements
nekinv: integer array for elements a node belongs to
refel: logical array for refinement elements

On a single processor we only have to go once through the logical refinement element array
refel for each refinement stage (beginning with the highest refinement stage). For each re-
finement element we examine the three edges in 2-D. Let the refinement stage of the actual
element be s. If an edge already is subdivided by a third node we do not need to make any
further investigations because then the neighbour elements of this edge must be of a higher
refinement stage s + 1 (see figure 4.3.1a)). If there is no third node on the edge, the neigh-
bour elements may be of the same refinement stage (see figure 4.3.1b)) or of refinement
stage s − 1 (figure 4.3.1c)). In the latter case neighbour elements of this type must also
be refined because else four nodes would be on an edge. The difference of the refinement
stages of neighboured elements after refinement must be at most 1, see rule 2. The code for
the execution of the refinement cascade is shown in listing 5.

Rule 2
The difference of the refinement stages of two neighboured elements must be at most 1, i.e.
the number of nodes on an edge of an element is limited to three.

But how do we find the neighbour elements of a refinement element that are of refinement
stage s−1, see figure 4.3.1c)? For each refinement element that must be refined because of
the error we look for each edge if the neighbour element is of a lower refinement stage. For
the current edge we look for the elements the first end point of this edge belongs to in the
nekinv array where we store the elements a node belongs to. Then we look in the nek array,
i.e. the array with the node numbers of each element, if these elements also contain the sec-
ond end point of the edge. Here we must only look in the entries elpt + 1, . . . , elpt + nedge

for the nodes where elpt is the number of corner nodes per element and nedge is the number
of edges per element. This is because the first elpt nodes are the corner nodes and the
second node must be the mid-point of an edge of the searched neighbour element, see fig-

66 The algorithm of the mesh refinement

ure 4.3.1c). Afterwards we change the roles the two nodes play and look in each element
that contains the second end point if the first one is the mid-point of an edge in this element.
All elements where both nodes are contained—one as end point, the other as mid-point of
an edge—are neighbour elements of a lower refinement stage (of course, the own element
is excluded), see figure 4.3.2. We search for the neighbour element of element 202 for the
edge with the end points 11 and 102. We get the elements node 11 belongs to from the
nekinv array. Then we look for these elements in the nek array if node 102 occurs in one of
the columns 4 to 6 because there the numbers of the mid-points are stored. We can affirm
this for element 21 and thus element 21 gets a true in the array refel and must be refined
because of the cascade. In the elements node 102 belongs to we cannot find node 11 in the
last 3 columns. So element 21 is the desired neighbour element. The code for the neighbour
search is shown in listing 6. In 2-D there is only one neighbour element, in 3-D there may
be many elements that contain the same edge.

For a problem with domains coupled by dividing lines the search for the neighbour elements
is not that easy. For each dividing line edge we also have to search for the corresponding
dividing line edge on the other side of the dividing line and have to store these edges be-
cause we need the information during the refinement process later.

If a refinement element of stage s is a dividing line element, i.e. at least one of its edges is
a dividing line edge, we do not only examine if there are neighbour elements on this side
of the dividing line, but we also look for neighbours on the other side because we always
must have matching grids on both sides of the dividing line and therefore we have to insert
the new nodes into the dividing line elements on both sides of the dividing line. By “this
side” we denote the subdomain the refinement element belongs to, the “other side” is the
coupling subdomain for the edge curently under consideration. Therefore we look if both
end nodes of the examined edge are dividing line nodes on the same dividing line. If yes,

a)

�
�

�
�

��

�
�

�
�

��

�
��

b)

�
�

�
�

��

�
�

�
�

��

c)

�
�

�
�

��

�
�

�
�

�
�

�
�

�
��

investigated element and edge (bold)

Figure 4.3.1: Illustration of neighboured elements: neighbour element of left element is of
a) higher, b) same, c) lower refinement stage.

4.3 Refinement cascade 67

!** elements to be refined because the difference of their
!** refinement stage and that of one of their neighbour
!** elements that has to be refined would be greater than 1

! initialize counter cnt
cnt = 1

! for each refinement stage
do s = rs_max,0,-1
! set starting address of current ref. stage
narpl(s+1,1) = cnt

!** for each refinement element look for the neighbour
!** elements on those edges that have no middle point

! for each local element
do i = 1,ne_l

! check if element is ref. element
if (refel(i,l)) then

! insert element into indrel and increase cnt
indrel(cnt) = i
cnt = cnt+1

! for each mid-point
do j = elpt+1,nolnod
! check if mid-point is nonexistent
if (nek(i,j) == 0) then

! set end points of the current edge
nod_1 = nek(i,hlpnek(j-elpt,1))
nod_2 = nek(i,hlpnek(j-elpt,2))

! if edge in overlap increase counter notp
if ((nod_1 > n_l).and.(nod_2 > n_l))

& notp = notp+1

! search for neighbour elem. of lower ref. stage
call NEIGHB22(iinfo,nek,nenr,nekinv,inne,refel,

& sent,sndrct,sndlct,sndrto,sndlto,
& rcvr,nod_1,nod_2,s,nnr)

end if
end do

end if
end do

! set number of ref. elem. for current stage
narpl(s+1,2) = cnt-narpl(s+1,1)

end do

Listing 5: Code for determination of local refinement elements due to the cascade rules.

68 The algorithm of the mesh refinement

! initialize counter ctr
ctr = 0

! for each mid-point
do i2 = elpt+1,nolnod

! for each element node nod_1 belongs to
do i1 = 1,inne(nod_1)

! elnr: number of current element
elnr = nekinv(nod_1,i1)
! check if examined node of elem. elnr is nod_2
if (nek(elnr,i2) == nod_2) then
! increase ctr and insert element into nbe
ctr = ctr+1
nbe(ctr) = elnr

end if
end do

! for each element node nod_2 belongs to
do i1 = 1,inne(nod_2)

! elnr: number of current element
elnr = nekinv(nod_2,i1)
! check if examined node of elem. elnr is nod_1
if (nek(elnr,i2) == nod_1) then
! increase ctr and insert element into nbe
ctr = ctr+1
nbe(ctr) = elnr

end if
end do

end do

Listing 6: Code for neighbour element search.

we take their twin nodes on the other side of the dividing line and look for all neighbour
elements that contain both of them. If there are elements of refinement stage s − 1 these
elements also become refinement elements because of the refinement cascade and we enter
a true into the corresponding row of the refel array in column s − 1. This is illustrated in
figure 4.3.3.

As we need the neighbour elements on the other side of a dividing line later again, we
also store the neighbour relations on a dividing line in an appropriate form. So we have
to know for each element if it is a dividing line element at all, and if yes, which of its
edges are dividing line edges, how many coupling subdomains there are and we need the
numbers of the respective twin nodes. For the storage of this information we allocate two

4.3 Refinement cascade 69

nekinv(node, k)
node k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

11 21 22 202 205 207 210
102 21 201 202 203 0 0

gives element numbers for node number

nek(el, k)
el k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

21 11 12 14 102 0 0
22 11 14 13 0 0 106
201 12 102 101 0 0 0
202 11 103 102 0 0 0
203 101 102 103 0 0 0
205 11 104 103 0 0 0
207 11 105 104 0 0 0
210 11 106 105 0 0 0

gives node numbers for element number

�

�101

103

104 105 107

13

1412

11

102

106

21

22

201

202

207 212

203

205 210 211

Figure 4.3.2: Illustration of the search for neighbour elements of lower refinement stage.

one-dimensional integer arrays that are denoted by dloteadr and dlote. The array dloteadr
must have as much entries as we have elements, so its length is equal to ne where ne is the
number of mesh triangles in 2-D. The computation of the length of array dlote is not that

70 The algorithm of the mesh refinement

easy as we do not want to waste storage:

ldlote = nDL elem. · nedge + nDL edges · (3 · nCSD,max + 1) (4.3.1)

where nCSD,max is the maximum number of coupling subdomains a dividing line edge is
coupling to and nDL elem. and nDL edges is the number of dividing line elements and dividing
line edges, respectively. These values are known from the generation of the new logical
dividing line nodes at the beginning of the program execution, see section 3.5. nedge has
already been introduced on page 65, it is the number of edges in an element. The formula
for ldlote is explained in the following when we describe the contents of the array dlote.

In dloteadr we store in row el the address addrel of the beginning of the data in dlote for
element el:

dloteadr(el) = addrel, (4.3.2)

i.e. if an element el is not a dividing line element, it holds dloteadr(el) = 0.

For the understanding of the following, you should always have a look at figure 4.3.4. In the
entries addrel, . . . , addrel+nedge−1 of dlote we again store addresses, this time the starting
addresses for the data of edge 1, . . . , nedge—that we denote by addredge 1 to addredge nedge

—
in dlote itself:

dlote(addrel) = addredge 1
...

...
dlote(addrel + nedge − 1) = addredge nedge

.

(4.3.3)

This explains the first part of formula (4.3.1) as we need nedge entries for each dividing line
element in dlote. The real data for edge j of element el starts at addredge j in dlote. Here

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

� �

�

�

�

� �
DL

refinement
element

Figure 4.3.3: Illustration of the neighbour element search with dividing lines.

4.3 Refinement cascade 71

we enter the number of subdomains nsect,j edge j is coupling to:

dlote(addredge j) = nsect,j. (4.3.4)

In 2-D this number is always one, but in 3-D it may be any number, e.g. it is three for
a cross of dividing surfaces. We need one entry for each dividing line edge to store this
number in dlote, see (4.3.1). In addredge j+3·k−1 and addredge j+3·k we store the numbers
nod1,j,k and nod2,j,k of the twin nodes on the other side of the dividing line for the k th

coupling subdomain:

dlote(addredge j + 3 · k − 1) = nod1,j,k (4.3.5)

dlote(addredge j + 3 · k) = nod2,j,k. (4.3.6)

At the moment, we leave free entry addredge j +3·k−2, there we will store the number of
elements that share edge j on the other side of the dividing line later (see on page 112).
So we need another 3 · nCSD entries in dlote per dividing line edge with nCSD being the
number of coupling subdomains for the respective edge. For the allocation of dlote we need
the length ldlote in advance, so we simply compute the maximum of coupling subdomains
nCSD,max by

nCSD,max = max
DL edges

nCSD. (4.3.7)

The storage scheme of the arrays dlote and dloteadr is illustrated in figure 4.3.4 for the
case of a cross of four dividing lines. Let element 100 be a refinement element. So in
dloteadr(100) we store the address of the beginning of the data for element 100 in dlote
which is denoted by addr100 here. In dlote(addr100) to dlote(addr100 + 2) we store the
entry in dlote itself where the data for edge 1 to 3 begins. As edge 3 is not a part of any
dividing line the value is not changed and remains zero. The edge data consists of the num-
ber of subdomains the edge is coupling to (in this case 1), the zero that reserves a location
for the number of neighbour elements on the other side of the dividing line that is inserted
later, and the two node numbers of the twin nodes, 7499 and 7500 for edge 2 and 2501 and
2551 for edge 3. As there is no data for edge 3 the data for the edges of the next dividing
line element follows directly behind the data for edge 2 of element 100. The code for this
is shown in listing 7.

For sliding dividing lines there is nothing to do, because the refinement stops at the bound-
ary of a subdomain.

For the real refinement of the elements the logical array refel, where we inserted a true into
the rows of the refinement elements in the column that corresponds to the refinement stage
of the element, is rather impractical because we had to go through the columns and had to
check for each element if the entry in the array refel is true. As it affects the performance
we want to avoid this kind of if-construct and want to introduce an integer array where

72 The algorithm of the mesh refinement

! insert address of edge j into dlote
dlote(addrold+j-1) = addr
addr = addr+1

! for each dividing line
do i = 1,2*n_inb

! check if both end points belong to same DL
if (dlsect(new_1,i).and.dlsect(new_2,i)) then

! sect: number of subdomain the end points belong to
sect = tnodst(new_1,3)

! initialize potsect
potsect = .false.
! for each subdomain
do k = 1,n_sect
! check for end points if they couple to sub-
! domain k and if this is true for both nodes
! we set potsect(k,1) = true
if (tnodst(new_1,3+k) > 0) potsect(k,1) = .true.
if (tnodst(new_2,3+k) > 0) potsect(k,2) = .true.
potsect(k,1) = potsect(k,1).and.potsect(k,2)

end do
! set potsect = false for own subdomain
potsect(sect,1) = .false.

! for each subdomain
do k = 1,n_sect
! if subdomain k is coupling subdomain
if (potsect(k,1)) then

! insert twin node numbers into newpt and dlote
newpt(k,1) = tnodst(new_1,3+k)
newpt(k,2) = tnodst(new_2,3+k)
cnt = cnt+1
! insert twin nodes into dlote
dlote(addr+1) = tnodst(new_1,3+k)
dlote(addr+2) = tnodst(new_2,3+k)
addr = addr+3
! insert number of subdomain into indbd
intbd(cnt) = k

end if
end do
exit

end if
end do

Listing 7: Code for twin node search for dividing lines.

4.3 Refinement cascade 73

� �
� � �

��

�
�

�
�

�
�

��

49 50

7499 7500

100 2551

2501
1

23
100

Domain 1 Domain 2

Domain 3 Domain 4

elnr dloteadr(elnr)

1 1
2 4
...

...
100 addr100

...
...

nen addrnen

addr dlote(addr)
...

...
addr100 addr100 + 3
addr100 + 1 addr100 + 7
addr100 + 2 0
addr100 + 3 1
addr100 + 4 0
addr100 + 5 7499
addr100 + 6 7500
addr100 + 7 1
addr100 + 8 0
addr100 + 9 2501
addr100 + 10 2551

...
...

⎫⎪⎪⎬
⎪⎪⎭⎫⎪⎪⎬
⎪⎪⎭

edge 1

edge 2

Figure 4.3.4: Illustration of the arrays dlote and dloteadr.

the numbers of the refinement elements are stored explicitly. We start in refel with the
rightmost column and go through one column after the other until we completed column 1.
The elements of refinement stage s are stored in column s + 1 of refel (remember that
the largest elements have refinement stage 0). For the elements that have a true-entry in
the current column s (elements of refinement stage s − 1!) we search for the neighbour
elements of refinement stage s that must also be refined because of the refinement cascade.
As we store the information for these elements in column s− 1 we have to insert a true for
these elements into refel in column s − 1. This means that we do not add any elements in
the current column s but only in the column s− 1 that will be treated next, i.e. all elements
of the current refinement stage are known when we go through this column. So we can
transform the logical array refel to a one-dimensional integer array indrel with length nel

after having determined the refinement elements of a refinement stage (see listing 5). In
indrel we store the numbers of the refinement elements sorted by refinement stage, starting
with the finest elements. The starting address of each refinement stage is stored in an

74 The algorithm of the mesh refinement

integer array narpl with length equal to rsmax + 1 and width equal to 2, see figure 4.3.5,
where rsmax is the highest refinement stage and it holds

rsmax = ncyc − 1 (4.3.8)

where ncyc is the number of the current computation cycle. This is because the elements of
the initial grid (ncyc = 1) have refinement stage 0. So in narpl(rs+1, 1) is stored the start-
ing address of the refinement elements of refinement stage rs in indrel. In narpl(rs + 1, 2)
we store the number of refinement elements of refinement stage rs. The refinement cascade
on a single processor is illustrated in figure 3.4.2, the algorithm for this preparation step of
the mesh refinement is shown in algorithm A.

element refel
number stage 0 stage 1 stage 2 stage 3

1 false true false false
2 true false false false
3 false false false true
4 false false false false
...

...
...

...
...

nel − 3 false true false false
nel − 2 false false false true
nel − 1 false false false false

nel false false true false

narpl ref. addr of number
stage 1st el. of el.

0 85 35
1 42 43
2 17 25
3 1 16

i indrel(i)
1 3
...

...
16 nel − 2
17 7
...

...
41 nel

42 1
...

...
84 nel − 3
85 2
...

...
119 471

stage 3

stage 2

stage 1

stage 0

Figure 4.3.5: Illustration for the transformation of the array refel to the arrays indrel and narpl.

RECAPITULATION: By the means of the refinement cascade we ensure that the mesh
does not become degenerated in the next cycle and that the storage scheme is kept.
The scheme of information of the array refel, see table 4.3.1, is the basic key for the
refinement cascade. We only have to care about neighbour elements of refinement
elements that have a lower refinement stage so that the difference of the refinement
stages does not become greater than one after the refinement and we have not more

4.3 Refinement cascade 75

than three nodes on an edge. After the refinement cascade we transform the logical
array refel for the refinement elements into an integer array indrel that is suitable for the
fast processing of the refinement of the elements. The refinement cascade continues on
the other side of dividing lines as we have matching grids. In the array dlote we have to
store the twin nodes on the other side of the dividing line for each dividing line edge of
each dividing line element, and in 3-D also the number of dividing lines an edge couples
to. For sliding dividing lines the refinement does not continue on the other side of the
sliding dividing line so that the refinement cascade is limited to the subdomain where
it has been started.

indrel: integer array for refinement element numbers
refel: logical array for refinement elements
refpt: integer array for refinement node numbers

A1 Determine refinement nodes because of the error (store in refpt).

A2 Determine refinement elements because of the error (store in refel).

A3 Determine refinement elements because of the refinement cascade (store in refel).

A4 Transform logical array refel to integer array indrel.

Algorithm A: Algorithm for the preparation step of the mesh refinement on a single processor.

After the execution of the refinement cascade we check if we will exceed the limit for
the number of elements if we refine the mesh as desired. The user prescribes the maximum
number of elements nemax that determines the length of the arrays for the element informa-
tion. If this number is exceeded we must stop the computation and the user must increase
this value. So we must

check if ne + elnew ·
rsmax∑
rs=0

narpl(rs + 1, 2) > nemax

and if yes, we print out an error message and stop the computation.

4.3.2 Refinement cascade on a distributed memory parallel computer

SUMMARY: On a distributed memory parallel computer it must be clear which proces-
sor is authorized to refine a refinement element. It is not of necessity that this is the
processor the refinement of the element originates from. We put up two more rules that
ensure the assignment of a refinement element to a single processor. So we determine
the refinement processor for each refinement element that is in the overlap, collect all

76 The algorithm of the mesh refinement

these elements for each processor in special arrays and finally send them to the proces-
sors that must refine them. We have to avoid multiple sending of the same element
numbers. The receiving processors must insert the new elements into their refinement
element arrays.

Important notations:

indrel: integer array for refinement element numbers
lsent: logical array for elements that have already been sent to an overlap processor
narpl: integer array for information about storage of data in indrel
nenr: integer array for element information
nenrs: integer array for corresponding local number for a global element number
rcvl: integer array for updating element information in left overlap
rcvr: integer array for updating element information in right overlap
refel: logical array for refinement elements
sndlct: integer array, counter for sndlto
sndlto: integer array for elements to be sent to the left during ref. cascade
sndrct: integer array, counter for sndlto
sndrto: integer array for elements to be sent to the right during ref. cascade

Now we want to discuss the refinement cascade on a distributed memory parallel computer.
Here we determine all refinement elements that must be refined because of the error exactly
like on a single processor. As it must be clear by which processor an element is refined, we
put up another rule:

Rule 3
The refinement of an element is always done by the processor that owns the refinement
element.

But in order to know what to do with this rule, we need yet our fourth rule that we already
mentioned in section 3.6:

Rule 4
An element is always owned by that processor its leftmost node is owned by.

Because of rule 3 we have to take care of the refinement elements in the left overlap. These
elements are not refined by the processor that owns the refinement node (of course, there
may be another refinement node of the same element on the own processor) and therefore
the own processor of the refinement node must send this information to the own processor

4.3 Refinement cascade 77

of the refinement element. For the right overlap there is nothing to do for the time being,
because the elements always belong to the processor where the leftmost node belongs to
and therefore the own processor of all elements that have to be refined because of the error
is the own processor of the refinement node at the same time.

�1

�
2 refinement

node

D

C

B

A

proc. 1 proc. 2 proc. 3 proc. 4

Figure 4.3.6: Illustration of the refinement cascade on np = 4 processors.

An exemplary situation is illustrated in figure 4.3.6 for four processors. Note that the same
situation has been illustrated in figure 3.4.2 for a single processor. Let node 1 be a re-
finement node because of the error. The triangles A, B and C (solid lines) are refinement
elements of refinement stage s. By the refinement of element B there would be created
a fourth node (node 2) on the right edge of element D. As the refinement node 1 is on
processor 4, but neither element A nor B nor C are elements owned by processor 4, this
processor has to send the information about the necessary refinement of the three elements
to processor 3 (for element A) and processor 2 (for elements B and C). On processor 2 we
look for the neighbours of element B and see that element D is of refinement stage s − 1
and therefore has to be refined. But element D is on processor 1, so that processor 2 has to
send the information about the refinement of element D to processor 1. There the element
must be marked as a refinement element, so we must enter a true into the logical array refel
of processor 1, in the row that corresponds to the local element number in column s − 1 to
be specific.

But how is this complex algorithm implemented? We have to allocate five additional ar-
rays with the names, lengths and types shown in table 4.3.1. The efficiency of the mesh
refinement goes down drastically, if all the element numbers are sent individually. There-
fore we compile all the element numbers to be sent to the left and right in special arrays.

78 The algorithm of the mesh refinement

These arrays are sndlto for the element numbers to be sent to the left where sndlct is the
corresponding counter array for the overlap processors that counts the number of elements
in the columns of sndlto. For the element numbers to be sent to the right we have the ar-
rays sndrto and sndrct. In the one-dimensional logical array lsent we store a true for all
element numbers that we already sent to the left or right in order to avoid multiple sending
of the same element number.

name dimension of array type

sndlto nell,max × npsl integer
sndrto nelr,max × npsr integer
sndlct npsl × 2 integer
sndrct npsr integer
lsent nell,ip + nelr,ip logical

Table 4.3.1: Length and type of arrays for refinement cascade.

In table 4.3.1 nell,ip and nelr,ip are the numbers of elements in the left and right overlap of
processor ip, nell,max and nelr,max are the maximum numbers of elements in the left and
right overlap (maximum over all processors):

nell,max = maxip=1,...,np nell,ip

nelr,max = maxip=1,...,np nelr,ip.
(4.3.9)

npsl and npsr are the numbers of overlap processors on the left and right side to which we
may have to send information.

When we determine the refinement elements that have to be refined because of the error
we have to take a look at those elements that are in the left overlap. As we explained above
these elements can only be refined by their own processor. So for each processor in the left
overlap we have one column in the array sndlto, from column 1 for the leftmost overlap
processor to column npsl for the direct left neighbour processor, see table 4.3.3. For each
element we know which processor ipown is its own processor, this information is stored in
the element information array nenr of integer type, where we store in the first column the
global element number, in the second column the number of the subdomain the element be-
longs to, from the third column we know if an element is a dividing line or sliding dividing
line element, and in the fourth column we store the owning processor of the elements. The
contents of array nenr is illustrated in table 4.3.2.

We determine the relative position iprel of processor ipown to processor ip by

iprel = ipown − ip. (4.3.10)

4.3 Refinement cascade 79

local nenr(elem, k)
elem. k = 1 k = 2 k = 3 k = 4

1 global sub- number of number of
... element domain coupling owning

ne number number subdomains processor

Table 4.3.2: Illustration of the contents of array nenr.

Note that iprel is negative for left neighbour processors. As the difference between the
processor number ip and the processor number of the leftmost neighbour processor is npsl

the corresponding column ipcol in sndlto can be computed by

ipcol = iprel + 1 + npsl. (4.3.11)

In column ipcol in sndlto the element number has to be inserted. With our construction we
always have the data of the leftmost processor to send data to in the first column. This is
only to save memory because otherwise we would always have the data that has to be sent
to processor 1 in column 1 of sndlto although only few processors really need to send data
to this processor so that on most of the processors there would be no entries and therefore
we would waste memory.

As we will see later, we must distinguish between the refinement elements in the left over-
lap that have to be refined because of the error and those of which the refinement results
from the refinement cascade. This is the reason why we have two columns in the counter
array sndlct. In the first column of sndlct we only count the elements that have to be refined
because of the error, in the second column we count all refinement elements including the
refinement elements because of the refinement cascade and because of the error.

Before the refinement cascade is started for the first time, we insert the refinement elements
because of the error into sndlto, so if a refinement element is in the left overlap we increase
the overlap element counter sndlct for this column by one:

sndlct(ipcol, 1) = sndlct(ipcol, 1) + 1. (4.3.12)

This counts the position in sndlto at the same time, so we store the global element number
nrel,g that we get from the first column of the element information array nenr in sndlto:

sndlto(sndlct(ipcol, 1), ipcol) = nrel,g. (4.3.13)

Furthermore, we enter a true into the logical array lsent. This array only comprises the
elements of the left and right overlap, so the true for the local element nrel,l is entered at
position nrel,l − nel:

lsent(nrel,l − nel) = true. (4.3.14)

80 The algorithm of the mesh refinement

The array lsent is to guarantee that the same element information is not sent more than once
to the concerned processor and is initialized with false. For example, if an element in the
left overlap must be refined because of the error, its number is sent to the left. At the same
time, the processor receives some refinement element numbers from the left and starts the
local refinement cascade again. By this cascade the element must be refined again, this time
because of the refinement cascade. So we would send its number to the left again. There-
fore we enter a true into lsent for the elements we insert into sndlto and sndrto. Before we
insert an element number into these arrays when executing the local refinement cascade we
check if its entry in lsent is already set to true. The code for the inserting of the element
numbers into sndlto of those elements that have to be refined because of the error is shown
in listing 8.

a)
sndlto(i, j)

i j = 1 j = 2 j = 3

1 103 111 113
2 104 112 115
3 0 114 116
4 0 0 118
5 0 0 0
...

...
...

...
nell,max 0 0 0

send to
proc. ip − 3 ip − 2 ip − 1

sndlct(j, k)
j k = 1 k = 2
1 0 2
2 2 3
3 4 4

b)
sndrto(i, j)

i j = 1 j = 2 j = 3

1 207 208 214
2 210 211 222
3 212 216 0
4 213 0 0
5 0 0 0
...

...
...

...
nelr,max 0 0 0

send to
proc. ip + 1 ip + 2 ip + 3

sndrct
j (j)
1 4
2 3
3 2

Table 4.3.3: Illustration of the arrays a) sndlto and sndlct, b) sndrto and sndrct for processor ip,
i is number of entry, j identifies number of processor to send data to.

When we search for the neighbour elements that are of lower refinement stage, i.e. for
the elements that have to be refined because of the refinement cascade, and find one that
is an overlap element in the left overlap, we also have to enter the global element number
into sndlto, i.e. the array with the refinement element numbers in the left overlap. As
the second column of sndlct counts all refinement elements in the left overlap, we set the

4.3 Refinement cascade 81

! compute auxiliary value for ip_col
ip_hlp = myproc-1-np_sl

! for each element in the left overlap
do l = ne_l+1,ne_l+ne_ll

! check if element is ref. element
if (refel(l,refst(l))) then
! compute relative proc. number to send data to
ip_col = nenr(l,4)-ip_hlp
! increase counter and insert global elem. nr. into sndlto
sndlct(ip_col,1) = sndlct(ip_col,1)+1
sndlto(sndlct(ip_col,1),ip_col) = nenr(l,1)
! insert true into sent for current element
lsent(l-ne_l) = .true.

end if
end do

Listing 8: Code for inserting data into arrays sndlto, sndlct and lsent.

second column equal to the first one before we start the refinement cascade:

sndlct(ipcol, 2) = sndlct(ipcol, 1) for ipcol = 1, . . . , npsl, (4.3.15)

and if we find a new refinement element during the execution of the refinement cascade
that has to be sent to processor ipown, we compute the corresponding column in sndlto by
(4.3.10) and (4.3.11) and increase the counter in the second column of sndlct by one:

sndlct(ipcol, 2) = sndlct(ipcol, 2) + 1. (4.3.16)

At the end of the local refinement cascade the counters in the second column of sndlct
comprise all refinement elements that have to be sent to the corresponding processors—
refinement elements because of the error and because of the cascade—whereas in the first
column only the numbers of refinement elements because of the error are stored. In sndlto
we do not make any difference between the stored elements, we only know by the counter
sndlct which is the first refinement element because of the refinement cascade. The coun-
ters for the refinement elements because of the error in the first column of sndlct are only
greater than zero for the first step of the refinement cascade, i.e. during the first deter-
mination of the elements to be refined because of the cascade condition, as we store all
refinement elements because of the error before we start the cascade. In later steps we only
have refinement elements because of the refinement cascade. We will see at the end of this
subsection why we have to distinguish between the origin of the refinement elements.

If we search for the cascade find an element of lower refinement stage that is in the right
overlap, we have to enter the element number into sndrto. The arrays sndrto and sndrct

82 The algorithm of the mesh refinement

have the same meaning as sndlto and sndlct, but there the refinement elements of the right
overlap are stored. Note that there are not any refinement elements in the right overlap be-
cause of the error, but only because of the refinement cascade! This is because an element
can be a refinement element because of the error only if one of its nodes is a refinement
node. But as an element is owned by the processor the leftmost node belongs to (rule 4), the
element would be owned by the refinement processor itself if one of its nodes is owned by
this processor, but it can never be in the right overlap. This explains why the array sndrct
needs no second column as sndlct (see table 4.3.1).

Now for the first time of the refinement process we need communication between the
processors. The arrays sndlto and sndrto must be exchanged. If there are not any re-
finement elements in the overlap of any processor, here nothing has to be done and the
preparing step of the mesh refinement is done. Otherwise, we first send the refinement ele-
ment array sndrto to the right. The receiving processor has no information about the length
of the message it will receive. So we split up the communication as described in subsec-
tion 4.1.4 and first send the number of elements stored in sndrto to the right in np−1 cycles.

Then it is known on each processor how many element numbers it will receive and so the
real element data can be sent. As the exchange of data can only be made by global element
numbers, the receiving processors first must determine the corresponding local element
numbers. This is done by a binary search in the integer array nenrs—nenrs is the in-
verted first column of the element information array nenr, i.e. we store the corresponding
local element number for a global one in nenrs—that is sorted by ascending global element
number. For each element we enter a true into the logical array refel, i.e. the array for
the refinement elements, in the column of its refinement stage. After the execution of each
local refinement cascade we transform the refel array to the integer arrays indrel and narpl
and afterwards initialize refel with false so that there are only true entries for the element
numbers the processor just received.

After all processors have sent, received and processed the data to the right, we continue
with the element information that has to be sent to the left. Here we proceed in the same
way, i.e. we first send the message lengths stored in sndlct to the left in np − 1 cycles and
afterwards send the real element data to the concerned processors, in this case we send the
array sndlto with the global element numbers of the refinement elements in the left overlap.
The receiving processors insert the data into their refel array in the correct column. For
the entering of the elements into refel the reason for the refinement of an element is of no
importance so we make no difference between refinement elements because of the error
and refinement elements because of the refinement cascade.

A processor may receive the numbers of refinement elements from an overlap processor that
it already has to refine himself by its own information and therefore already has inserted

4.3 Refinement cascade 83

indrel: integer array for refinement element numbers
refel: logical array for refinement elements
refpt: integer array for refinement node numbers

B1 Determine refinement nodes because of the error.

B2 Determine refinement elements because of the error.

B3 Determine refinement elements because of the refinement cascade.

B4 Transform logical array refel to integer array indrel.

B5 Check if there are any refinement elements in the left or right overlap of any
processor. If not, exit.

B6 Re-initialize refel by false.

B7 Pass message lengths for refinement elements in the right overlap to the own
processors of these elements.

B8 Pass global refinement element numbers in the right overlap to the own
processor of these elements.

B9 Receiving processors:

a) Transform received global element numbers to local element numbers.

b) Enter true into refel for each received refinement element.

B10 Pass message lengths for refinement elements in the left overlap to the own
processors of these elements.

B11 Pass global refinement element numbers in the left overlap to the own
processors of these elements.

B12 Receiving processors:

a) Transform received global element numbers to local element numbers.

b) Enter true into refel for each received refinement element.

B13 Determine new refinement elements because of the refinement cascade.

B14 Insert new refinement elements into array indrel.

B15 Continue with step B5 (local refinement cascade may lead to new
refinement elements in the overlap).

Algorithm B: Algorithm for the preparation step of the mesh refinement on a distributed mem-
ory parallel computer.

84 The algorithm of the mesh refinement

the element numbers into its indrel array, i.e. the integer array for the refinement element
numbers. We must avoid that the same element number is inserted twice into indrel, and
we want to have all refinement elements of a stage stored directly one after the other. So we
make a local copy of the indrel array which is denoted by indcp and update indrel during
the refinement cascade. The local refinement cascade consists of several steps, and in each
step we check the neighbour elements of the refinement elements of the refinement stage
that corresponds to the current step number. At the beginning of each step of the refinement
cascade we get the element numbers of those elements from the local copy indcp that must
already be refined and of which the refinement stage corresponds to the current step number
of the refinement cascade. These element numbers are copied back into the indrel array.
Furthermore, we enter a false into refel, i.e. the logical array for the refinement elements,
for these elements (for refel and narpl see figure 4.3.5). In step s of the refinement cascade
we set:

refel (indcp(i), s) = false for i = elfirst, . . . , ellast (4.3.17)

with elfirst = narpl(s + 1, 1) and

ellast = narpl(s + 1, 1) + narpl(s + 1, 2) − 1.

Afterwards only those received elements still have the value true in refel of which we did
not yet enter the element number into indrel, so we append their numbers to the indrel ar-
ray after we checked if they evoke the refinement of another element. The narpl array is
adapted accordingly. Then we continue with the refinement elements of the next refinement
stage.

During the execution of the refinement cascade we may again come across refinement ele-
ments that belong to the overlap. So this procedure is repeated until there are not any new
refinement elements in the overlap any more. The counters in the first column of sndlct are
only greater than zero for the first step of the refinement cascade as we store all refinement
elements because of the error before we start the cascade. In later steps we only have re-
finement elements because of the refinement cascade.

After the last step of the refinement cascade we have stored the numbers of all elements
that have to be refined in the array indrel. The refinement can start now and during the
refinement process no new refinement elements are added. The whole preparation step of
the mesh refinement algorithm is shown in algorithm B.

RECAPITULATION: By the means of rules 3 and 4 we get a clear assignment of the
elements to the processors and we define the refinement processor for the elements. In
one step of the refinement cascade the refinement element numbers of the overlap are
compiled in the arrays sndlto and sndrto for the left and right overlap and afterwards
the columns of these arrays are sent to the corresponding processors that insert the
element information in the array refel . Then the own refinement element numbers are

4.3 Refinement cascade 85

deleted from this array and the current column of refel is transformed into an integer
array that is appended to the array indrel . Afterwards we continue with the elements
of the next refinement stage.

After the execution of the refinement cascade we check if we will exceed the limit for the
number of elements if we refine the mesh as desired. The maximum number of elements
nemax that is precsribed by the user is a local length on a distributed memory parallel
computer, so we may store nemax elements per processor. If this number is exceeded we
must stop the computation and the user must increase this value. So we must

check if nen + elnew ·
rsmax∑
rs=0

narpl(rs + 1, 2) > nemax

on each processor and if this inequality is fulfilled on one or more processors, we print out
an error message and stop the computation.

In the refinement process itself we start with the elements of refinement stage 0 and con-
tinue up to refinement stage rsmax. If we have completed the refinement of one stage we
have to update the information on the other processors where the refinement cascade has
caused the refinement of elements of the actual stage. This is because these evoking ele-
ments that will be refined in the next step have the old information about their neighbours
(that have been refined in the meantime). So the information which elements have been
created from the old ones must be exchanged. This is necessary because from the future
refinement of the elements new nodes will be created that also have to be stored in the
neighbour elements.

Therefore we have to store the refinement elements in the overlap that result from the re-
finement cascade in two integer arrays rcvl and rcvr that both have the length nel (as we
do not yet knowhow many local elements will be concerned) and the width 3. All elements
that have to be refined because of a refinement cascade on a left neighbour processor are
inserted in rcvl. In the first column we enter the local element number—which must be
transformed into the global element number for the data exchange—, in the second col-
umn the starting address of the new element numbers—this is necessary to get a relation
between the refined old element and the newly-created elements—and in the third column
the own processor of the evoking element—so that it is known where the information has
to be sent to later. The same holds for rcvr for the right neighbour processors. As we only
want to store the refinement elements that have to be refined because of the refinement cas-
cade in rcvr, we have to distinguish between the elements that have to be refined because
of the error and those that have to be refined because of the refinement cascade when we
send sndlto to the left side as described on page 81. Note that in the right overlap we have
refinement only because of the error.

86 The algorithm of the mesh refinement

If we have coupled domains with dividing lines all that we just described is the same. In
the (locally executed) refinement cascade we also have to look for the neighbour elements
on the other side of the dividing lines as explained on pages 66ff. On a distributed memory
parallel computer the length of the dloteadr array is equal to nen, that of the dlote array is
equal to ldlote where ldlote is computed like for a single processor, see (4.3.1) on page 70.

4.4 Mesh refinement on a single processor

We first consider the algorithm of the mesh refinement for a single processor in 2-D and
explain the differences in 3-D and for dividing lines and sliding dividing lines afterwards.
Nevertheless, it is always the same program, i.e. we have integrated all versions into one
program and control the program flow by global input parameters.

4.4.1 Mesh refinement in 2-D

Important notations:

bnod: integer array for external boundary nodes
indrel: integer array for refinement element numbers
infpol: double precision array for evaluated influence polynomials
ipadd: double precision array for starting addresses in infpol
lnpl: logical array for edge identification
narpl: integer array for information about storage of data in indrel
nb: integer array for neighbour element numbers
nbadd: integer array for starting addresses in nb
nek: integer array for node numbers of the elements
nekinv: integer array for elements a node belongs to
nenr: integer array for element information
nnr: integer array for node information
nnrs: integer array for corresponding local number for a global node number
rtl: integer array for refinement edge information
u: double precision array for function values

SUMMARY: We describe one refinement step, i.e. the refinement of the elements of the
lowest refinement stage, and mention the differences to the following steps (refinement
of higher refinement stages) at the end of this subsection. As the nodes that are gener-
ated in this refinement step do not only have to be inserted into the refinement elements
themselves but also into their neighbour elements, we have to determine these neigh-
bour elements first. We obtain the new nodes by halving the edges of the refinement
elements. The refinement of an element means bisection of its edges. So we insert all
necessary information about the refinement edges into an array and afterwards generate

4.4 Mesh refinement on a single processor 87

the new nodes which means node number, coordinates, consistency order and func-
tion value. We insert the new nodes in the elements they belong to and check if they
are external boundary nodes. Then we separate the old elements into four new elements.

The mesh refinement begins with the refinement of the largest elements, and we continue
with the next refinement stages up to stage rsmax. As the largest elements have refinement
stage 0 we refine the elements of refinement stage rs − 1 in step rs creating elements of
stage rs. At the beginning of each refinement step we have to create the inverted nek array
nekinv, where we store the numbers of the elements a node belongs to, as described on
page 24 because we changed the array nek in the step before. The nekinv array is needed
for the search for the neighbour elements of the refinement elements of the current refine-
ment stage.

This neighbour search is done next. Here we only search for elements of the same refine-
ment stage because we also must enter the numbers of the new nodes into the array nek
for the neighbour elements. We go through the array indrel with the refinement element
numbers and search for each edge of the stored elements for elements that contain both end
points. These elements are stored in an integer array nb (the refinement element itself is
excluded). This two-dimensional array is allocated in every refinement step rs and has the
length nere which is the number of refinement elements in the current step:

nere = narpl(rs + 1, 2). (4.4.1)

The width is equal to nedge because nedge is the number of edges of an element and an
element may have at most one neighbour element per edge in 2-D. Therefore nb has three
columns for the neighbours of the three edges. As the neighbour element information for
each edge is written one after the other into the same row, we need an additional informa-
tion array for the starting address of each edge. This is the integer array nbadd and has
the same length as nb and width equal to nedge + 1 which we initialize by 0. These two
arrays are illustrated in figure 4.4.1 for the arbitrarily chosen element 36. The first edge
always starts in entry 1, of course, the neighbour element is element 35. As the second
edge is an external boundary edge, there is not any neighbour element for this edge, and
the neighbour element for edge 3 with the number 37 is stored in entry 2 of nb. In the
last column of nbadd we store the end address of the neighbour elements of the last edge,
increased by one, so that the numbers of the neighbour elements of element el at edge k are
stored in the entries nbadd(el, k) to nbadd(el, k + 1)−1 for each edge.

In listing 9 you can see the code for the neighbour search of the elements. In contrast to the
refinement cascade we now search for elements of the same refinement stage, so the exam-
ined edge must not have a mid-point yet. Then we go through the row in the nekinv array
where we stored the element numbers the first end point of the edge belongs to. For each
element we look in the row of the nekinv array where the element numbers of the second

88 The algorithm of the mesh refinement

� � �

� �

35

36

37

1

2

3

ext. boundary

nbadd(el, k)
el k = 1 k = 2 k = 3 k = 4

36 1 2 2 3

nb(el, k)
el k = 1 k = 2 k = 3

36 35 37 0

Figure 4.4.1: Illustration of the arrays nb and nbadd for element 36 (2-D).

end point are stored for the same element number. The elements that occur in both rows
are stored in nb (again the examined element itself is excluded) and the counter nbadd is
increased by the number of found elements. In 2-D we always find at most one neighbour
element.

An example is illustrated in figure 4.4.2. We search for the neighbour element of element 95
for the edge with the end points 52 and 44 by associative comparison in a double loop. The
performance could be improved by sorting the element numbers in ascending order and
then execute a binary search. When we go through the corresponding rows in the nekinv
array we find out that elements 60 and 95 occur in both rows 44 and 52. So element 60 is
the desired neighbour element.

The refinement of an element is reduced to halving its edges followed by grouping the old
and new nodes to get the new elements. So the main task is the refinement—which means
bisection—of the edges of the refinement elements. Therefore we have to transform the
array indrel with the numbers of the refinement elements into an array where we store all
necessary edge information. This comprises the number of the new node, the numbers of
the end points of the refinement edge, the refinement element number, the position where
the new node number has to be entered in the corresponding row of the nek array (see
figure 4.4.3), i.e. the array for the node numbers in an element, the number of neighbour
elements and the neighbour element numbers. As we already mentioned, an element may
have at most one neighbour element at an edge in 2-D, so we have to store seven inte-
ger numbers per refinement edge. The one-dimensional integer array to store the data is
denoted by rtl and has got the length 7 · ne · nedge, see table 4.4.1. We enter the edge infor-
mation described in this table into the array rtl only if two conditions are fulfilled: firstly,
the edge must not have a mid-point yet because otherwise, the edge has not to be halved,
and secondly, the edge does not yet occur in the array.

Of course, new nodes are only generated on edges that are not already halved. So we insert

4.4 Mesh refinement on a single processor 89

do i = 1,narpl(rs+1,2) ! initialize address array nbadr
nbadr(i,1) = 1

end do

fst = narpl(rs+1,1) ! compute first/last ref. elem.
lst = fst+narpl(rs+1,2)-1 ! of current ref. stage

do j = 1,n_edge ! for each edge
coli = hlpnek(j,1) ! set column nrs. for current edge
colj = hlpnek(j,2)
do i = fst,lst ! for each ref. element
curr = i-fst+1 ! curr: nr. of current elem.
cnt = nbadr(curr,j) ! set current counter cnt
elnr = indrel(i) ! elnr: current ref. elem.

! check if mid-point is nonexistent
if (nek(elnr,j+elpt) == 0) then

nod_1 = nek(elnr,coli) ! set end points of current edge
nod_2 = nek(elnr,colj)
cntold = cnt ! store cnt

! for each element nod_1 belongs to
do k = 1,inne(nod_1)

! for each element nod_2 belongs to
do l = 1,inne(nod_2)
! check if element numbers are equal
if ((nekinv(nod_1,k) == nekinv(nod_2,l)).and.

& (nekinv(nod_2,k) /= elnr)) then
! insert element into nb and increase counter
nb(curr,cnt) = nekinv(nod_1,k)
cnt = cnt+1

end if
end do

end do

! compute new nnb_max
nnb_max = max0(nnb_max,cnt-cntold)

end if

! store new counter cnt in nbadr
nbadr(curr,j+1) = cnt

end do
end do

Listing 9: Code for arrays nb and nbadd.

the end points of a refinement edge into a logical array and for each investigated edge we
look in this array if the combination of end points has already been inserted. Below we

90 The algorithm of the mesh refinement

nekinv(node, k)
node k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

44 46 54 60 76 79 95
52 17 23 33 36 60 95

7

69 88 57

66

71
3713

� �52 44

36 95 54

23 46

33 76

17 60 79

Figure 4.4.2: Illustration of the search for neighbour elements of the same refinement stage.

describe in detail how this is done. If yes, the edge is skipped. For the other edges we
store in rtl the information that we specified above and that is shown in table 4.4.1 where
rcnt is the starting address of the information of edge j in refinement element el. By pos
we denote the position of the node in the refinement element, see figure 4.4.3. In 2-D each
element may have at most one neighbour element at an edge. When we give the numbers
to the new nodes later, we go through the rtl array sequentially and fill in the first entry of
each refinement edge.

�
�

�
�

�
�

��

�
�

�
�

�
�

��

� � �

� �

�

1 2

3

4

56

Figure 4.4.3: Local numbering of the nodes in an element (2-D).

As the same edge may be halved by two different refinement elements, i.e. by its two
neighbour elements in 2-D or more elements in 3-D, we must assure that the mid-point is

4.4 Mesh refinement on a single processor 91

generated only once. Therefore we have a logical array lnpl (logical neighbour point list)
with length equal to n and width equal to nonmax where nonmax is the maximum number
of neighbour nodes of a node (that we get from the nearest neighbour ring). This array is
initialized with false. We have one row for each node and the kth column is for the kth

neighbour node of the nodes. The next neighbour ring is stored in fstring, see on page 24.
So if nod1 and nod2 are the end points of the edge, we first determine which neighbour
nod2 is of nod1 and which neighbour nod1 is of nod2 in the next neighbour ring. These
numbers are denoted by nb1 and nb2. For example, in figure 4.4.4 node B is the fifth neigh-
bour of node A and node A is the second neighbour of node B, so it holds nb1 = 5 and
nb2 = 2.

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

� �

� � �

� � �

� �

NA,1 NA,6=NB,1

NA,2

NA,3
NA,4=NB,3 NB,4

NB,5

NB,6

A=NB,2 B=NA,5

Figure 4.4.4: Illustration of the neighbourhood of two nodes.

When the numbers nb1 and nb2 are known we can insert an edge into lnpl, i.e. we change
the nbth

1 entry in row nod1 and the nbth
2 entry in row nod2 to true:

lnpl(nod1, nb1) = true
lnpl(nod2, nb2) = true.

(4.4.2)

But before we insert this information into lnpl—and afterwards the refinement edge infor-
mation into rtl—we must be sure that the edge did not occur yet to avoid multiple number-
ing of the same new node, so we

check if lnpl(nod1, nb1) = true

and if yes, this means that there already occurred a refinement element that also contains
this edge and therefore the current edge is skipped. Otherwise, we insert the edge as seen
in (4.4.2) and store the information of table 4.4.1 in the array for the refinement edges, i.e.
the rtl array. As we store the same information twice in lnpl we could save storage if we
only stored the information in the row of the node with the smaller local number. But this

92 The algorithm of the mesh refinement

i rtl(i) description
...

...
...

{ preceding edge }
rcnt + 1 left free
rcnt + 2 nod1 local number of end point 1 of edge j
rcnt + 3 nod2 local number of end point 2 of edge j
rcnt + 4 el local refinement element number
rcnt + 5 pos local node number in element (see figure 4.4.3)
rcnt + 6 1 number of neighbour elements (= 1 in 2-D)
rcnt + 7 elnb local number of the neighbour element

{ following edge }
...

...
...

Table 4.4.1: Illustration of the contents of array rtl in 2-D (edge information).

meant an additional comparison of the node numbers of the end points of an edge and thus
additional time consumption. As our primary objective is performance on a distributed
memory parallel computer we give away storage for that. After the edge information is
stored, we increase rcnt by 7.

RECAPITULATION: We have stored in the array rtl all necessary information we need for
the current refinement step of the mesh refinement process. An edge is identified by its
end points as the edges have not got any numbers and therefore cannot be stored easily
in an array. We use a two-dimensional logical array where we set for one end point all
entries to true that correspond to that neighbour nodes that form a refinement edge
together with the first end point. The numbering of the edges would be another mea-
sure to improve the performance of the mesh refinement algorithm again at the price
of additional storage.

SUMMARY: In rtl , the array where we store the refinement edge information, we have
stored all element numbers where we have to insert the node numbers of the newly-
created nodes. By this information we are able to generate the new nodes which means
issuing of the new local and global node numbers, computing of the new coordinates,
the consistency order and the function values and checking of the boundary node prop-
erty. Moreover, we are able to insert the node numbers into the refinement elements
and their neighbour elements.

After we inserted the data for all edges of all refinement elements into the rtl array we have

4.4 Mesh refinement on a single processor 93

to check if we would exceed the maximum number of nodes by generating the new nodes
of the current refinement step. The user prescribes the maximum number of nodes and
elements, nmax and nemax, respectively, that determine the length of all arrays for the node
and element data. If these numbers are exceeded during the mesh refinement process we
must stop the computation and the user has to increase these values. So we

check if n +
rcnt

7
> nmax

and if yes, we print out an error message and stop the computation (note that we already
checked if we exceed the limit for the elements after the execution of the refinement cas-
cade). Otherwise, we enter the new local node numbers of the generated nodes into the first
entry of the data for each edge that has been left free before in array rtl, see table 4.4.1.
For each refinement edge in rtl a new mid-point is generated. The last old node has got the
number n, and we continue counting the rcnt/7 new nodes by the next natural numbers, so
that the new nodes get the local numbers

from nfirst = n + 1

to nlast = n + rcnt

7
.

So we have for the new nodes:

rtl (7·(i− 1) + 1) = n + i for i = 1, . . . , rcnt

7
. (4.4.3)

For the node information we introduce an array just like we did for the elements (see on
page 78, array nenr). In this integer array nnr we store the global node number in the
first column and the number of the subdomain a node belongs to in the second column. In
the third one we store the number of subdomains the node couples to, and in the fourth
column we store the number of the own processor of the nodes. The contents of array nnr
is illustrated in table 4.4.2.

local nnr(node, k)
node k = 1 k = 2 k = 3 k = 4

1 global sub- number of number of
... node domain coupling owning
n number number subdomains processor

Table 4.4.2: Illustration of the contents of array nnr.

Then we enter the corresponding global node numbers into the node information array nnr.

94 The algorithm of the mesh refinement

For a single processor we have for the refinement nodes

nnr(n + i, 1) = n + i

nnr(n + i, 2) = 1

nnr(n + i, 3) = 0

nnr(n + i, 4) = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for i = 1, . . . , rcnt

7
. (4.4.4)

For a single processor the global node number is equal to n + i for the ith node. For a
domain without dividing lines or sliding dividing lines we have to enter 1 in the second
and 0 in the third column for each new node. The owning processor is 1 for each node for
a single processor because there is only processor 1. Then we invert the first column of
nnr by the procedure HEAPSORTIX (see subsection 4.1.3), so that we have for each global
node number the corresponding local node number. This inverted (integer) array is called
nnrs.

We set
rcnt ⇐ rcnt

7
(4.4.5)

so that in the following rcnt is the number of refinement edges which is equal to the
number of new nodes, and then the new nodes get assigned their coordinates

xn+i =
xnod1,i

+xnod2,i

2

yn+i =
ynod1,i

+ynod2,i

2

⎫⎬
⎭ for i = 1, . . . , rcnt (4.4.6)

and their consistency order which is the lesser of the two orders of the end points of the
edge:

qn+i = min
(
qnod1,i

, qnod2,i

)
for i = 1, . . . , rcnt. (4.4.7)

The computation of the new function values is more difficult. Here we have to evaluate the
influence polynomials of the two end points of the edge nod1 and nod2 for the coordinates
of the new mid-point. We have two possibilities to evaluate the influence polynomials. We
can get the coefficients of the influence polynomials in the same way we got the difference
formulas (because these are the partial derivatives of the influence polynomials) and eval-
uate them for the mid-point of the edge, i.e. we recompute the influence polynomials. The
second way is to evaluate the influence polynomials as early as we generate the difference
formulas and store the evaluated influence polynomials in order to use them for the inter-
polation (these are the coefficients of an interpolation formula for the central node of the
difference star). The first method saves memory, the second one computation time. We
decided on the second method although we do not know which edges have to be refined
when we generate the difference formulas. So we have to evaluate the influence polynomi-
als (3.3.3) for the mid-point of each edge of which a node is the end point. The evaluated

4.4 Mesh refinement on a single processor 95

influence polynomials are stored in a one-dimensional double precision array denoted by
infpol. In 2-D, the length linfpol of this array is computed by the formula

linfpol = 6 ·
n∑

i=1

noni (4.4.8)

where n is the number of nodes before the mesh refinement process and noni is the num-
ber of neighbour nodes of node i. The interpolation of the solution is always done with
order q = 2 so we have 6 influence polynomials for an interpolation polynomial in 2-D.
The starting addresses of the evaluated influence polynomials of a node in infpol are stored
in a one-dimensional integer array ipadd with length equal to n. There ipadd(i) points
to the first influence polynomial of the first neighbour node of node i in infpol. After the
6 influence polynomials of the first neighbour node follow the influence polynomials of the
second node and so on, see figure 4.4.5.

If we choose the consistency orders q = 4 or q = 6 for the solution of the system of PDEs,
but for the interpolation of the function values for the new nodes we use order 2, the solu-
tion gets “dirty” by the mesh refinement. But this only holds for the initial solution of the
following Newton iteration of the next computation cycle. The solution again is computed
with consistency order q = 4 or q = 6, respectively, and the error from the mesh refinement
will vanish, i.e. the solution is “cleaned” by the Newton iteration.

i noni ipadd(i)

1 3 0
2 5 18
3 6 48
...

...
...

k 6 ipadd(k−1) + 6 · nonk−1

...
...

...
n 3 ipadd(n−1) + 6 · nonn−1

i infpol(i)
1 eval.infl.pol.
...

...
6 eval.infl.pol.
7 eval.infl.pol.
...

...
12 eval.infl.pol.
13 eval.infl.pol.
...

...
18 eval.infl.pol.
19 eval.infl.pol.
...

...
24 eval.infl.pol.
...

...

node 1
neighbour 1

node 1
neighbour 2

node 1
neighbour 3

node 2
neighbour 1

Figure 4.4.5: Illustration of the array infpol and ipadd.

96 The algorithm of the mesh refinement

To get a better performance on a vector computer we do the interpolation of the solution for
all new nodes at the same time, so all necessary data must be available then. First we copy
the two difference stars of the end points of each edge into an integer array ngrid with
length equal to 6, which is the number of nodes in a difference star of consistency order
q = 2, and width equal to 2 · rcnt. Here the data for nod1 is stored in the odd columns and
the data for nod2 is stored in the even columns in each case:

ngrid(j, 2·i−1) = ngrid2(nod1, j)

ngrid(j, 2·i) = ngrid2(nod2, j)

}
for j = 1, . . . , 6 (4.4.9)

for i = 1, . . . , rcnt. Again we need the information which neighbour nod1 is of nod2 and
the other way round in order to determine the starting address of the influence polynomials
in infpol. These starting addresses of all end points are stored in a one-dimensional integer
array ia with length equal to 2 · rcnt. Again the data for nod1 is stored in the odd rows and
that for nod2 in the even rows.

ia(2·i−1) = nb1,i

ia(2·i) = nb2,i

}
for i = 1, . . . , rcnt. (4.4.10)

Then the interpolation of the solution is done by

un+i,1 =
6∑

j=1

(
infpol(ia(2·i−1)+j) · ungrid(j,2·i−1)

)
un+i,2 =

6∑
j=1

(
infpol(ia(2·i)+j) · ungrid(j,2·i)

) (4.4.11)

for i = 1, . . . , rcnt. The new function value is the mean value of the two interpolations for
the end points of the edge:

un+i =
un+i,1 + un+i,2

2
for i = 1, . . . , rcnt. (4.4.12)

This interpolation is done for each of the l components, and the new function values are
stored in the solution array u with length equal to nmax and width equal to l.

Now the new node numbers are entered into the array for the node numbers of an element,
i.e. the nek array, for the refinement elements. In rtl, the array for the refinement edges (see
table 4.4.1), we have stored for each edge (and thus for each new node i) the number of the
element eli and the local node number posi in element eli, therefore we set

nek(eli, posi) = n + i for i = 1, . . . , rcnt, (4.4.13)

4.4 Mesh refinement on a single processor 97

! for all refinement edges
do j = 1,r_cnt

! saddr = starting addr. of curr. edge in rtl
saddr = (j-1)*nbm_6

! get new node number, element number
! and local position of node from rtl
newn = rtl(saddr+1)
el = rtl(saddr+4)
pos = rtl(saddr+5)

! insert new node number into nek
nek(el,pos) = newn

end do

Listing 10: Code for the update of the nek array for refinement elements.

see listing 10. Recall that the positions 4 to 6 in the nek array are for the mid-points of the
corresponding edges.

Then we enter the new node numbers into the nek array for the neighbour elements of the
refinement elements. Here we only stored the numbers of the neighbour elements but not
the local node number of the new nodes in these elements. So we must determine the right
position by an “if ... then ... else ... end if” construction. We go through the
refinement edges stored in rtl and compare the two end points of the current refinement
edge with the end points of the first edge of the current neighbour element. If they match,
the new node number is stored in column 4 in the row for the neighbour element in array
nek, otherwise we compare the end points with those of the second edge of the neighbour
element. If they match, the node gets position 5, otherwise position 6. We store the new
node numbers the same way as in (4.4.13), see listing 11.

If the 6th entry of an edge in rtl is zero (see table 4.4.1), i.e. there are not any neighbour el-
ements, we have to check if the new node becomes an external boundary node. In 2-D this
is very simple because the boundary edges are the only ones that have not got any neigh-
bour elements. But we have to check to which boundary the new node belongs to. A new
node is only then a boundary node if both end points of the edge are boundary nodes (on
the same boundary). So we first determine the maximum number of external boundaries
bdmax a boundary node belongs to. Then we need an integer array bdnr with length equal
to the number of boundary nodes and width equal to bdmax + 1 where we store the inte-
ger array bnod, where the numbers of the boundary nodes are stored in the first column,
sorted in ascending order (by the external procedure HEAPSORTIX, see subsection 4.1.3).
In the next columns we store the boundary numbers of the boundaries to which each node
belongs. For the number of external boundaries a node belongs to we introduce an integer

98 The algorithm of the mesh refinement

! for all refinement edges
do j = 1,r_cnt

! saddr: starting addr. of curr. edge in rtl
saddr = (j-1)*nbm_6

! get new node number, element number
! and end points of the edge from rtl
newn = rtl(saddr+1)
nod_1 = rtl(saddr+2)
nod_2 = rtl(saddr+3)
el = rtl(saddr+nbm_6)

! nodx: corner node x of cuurent element el
nod1 = nek(el,1)
nod2 = nek(el,2)
nod3 = nek(el,3)

! set logical variables for edge search
lnod11 = nod1==nod_1
lnod12 = nod1==nod_2
lnod21 = nod2==nod_1
lnod22 = nod2==nod_2
lnod31 = nod3==nod_1
lnod32 = nod3==nod_2

! if edge is not a boundary edge search for
! local position of new node in element el
if (el > 0) then

if ((lnod11.and.lnod22).or.(lnod12.and.lnod21)) then
pos = 4

else if ((lnod21.and.lnod32).or.(lnod22.and.lnod31)) then
pos = 5

else
pos = 6

end if
! insert new node into nek
nek(el,pos) = newn

end if
end do

Listing 11: Code for the update of the nek array for neighbour elements.

array bcnt with length equal to the number of external boundary nodes.

In the sorted array of the boundary nodes bdnr we can search for the two end points of an
edge much more efficiently by a binary search than in the unsorted array bnod where we
had to search linearly. If we find two end points that are boundary nodes, i.e. they both

4.4 Mesh refinement on a single processor 99

occur in the array bdnr, we check to which boundary both of them belong and store this
boundary number together with the number of the new boundary node (that is stored in the
first entry of the refinement edge in rtl, see table 4.4.1), in an integer array newbn with
length equal to rcnt and width equal to 2. The code by which we determine if the two end
points belong to the same boundary is shown in listing 12.

! increase number of boundary nodes
nblc = nblc+1
! insert new node number into newbn
newbn(nblc,1) = newn

bnri = bcnt(ibnd) ! bnri/bnrj: nr. of boundaries
bnrj = bcnt(jbnd) ! for node ibnd/jbnd
doi: do i = 1,bnri ! for each boundary (ibnd)
bi = bdnr(ibnd,1+i) ! bi: number of boundary (ibnd)
do j = 1,bnrj ! for each boundary (jbnd)

bj = bdnr(jbnd,1+j) ! bj: number of boundary (jbnd)
if (bi == bj) then ! check if bd. numbers are equal

bd = bi ! bd: boundary number for new node
exit doi ! exit if boundary is found

end if
end do

end do doi

! insert boundary number for new node into newbn
newbn(nblc,2) = bd
! only used for sliding dividing line nodes
newbn(nblc,3) = nod_1

Listing 12: Code for the determination of new external boundary nodes and sliding dividing
line nodes in 2-D.

RECAPITULATION: We finished the generation of the new nodes now. A new node is
always created in the middle of a refinement edge and it gets the lesser of the consis-
tency orders of the end points. The function value for a new node is interpolated by
the combination of the function values and the evaluated influence polynomials for the
nodes in the difference stars of the two end points of the edge. From these function val-
ues interpolated from the left and from the right end point we compute a mean value
that finally represents the new function value of the node. The evaluated influence
polynomials have been computed and stored during the generation of the difference
formulas. In 2-D a node is then and only then an external boundary node if both end
points of the edge belong to the same external boundary and if there is not a neighbour
element at this edge. The node numbers are inserted into the nek array where we store
the node numbers for each element, for the refinement element itself we have stored the

100 The algorithm of the mesh refinement

position in the rtl array, for the neighbour elements we must check this by a conditional
if-construct.

We have to insert the new external boundary nodes into the bnod array. Like for the new
nodes and elements we have to check if we exceeded the limit for the boundary nodes
nbmax that is prescribed by the user. So we

check if neb + nebnew > nbmax

where nebnew is the number of new boundary nodes in the current refinement step. If yes,
we print out an error message and stop the computation. Otherwise we append the contents
of the newbn array to the information array for the external boundary nodes, i.e. the bnod
array.

SUMMARY: At the end of a refinement step the new elements are generated. We first
issue the new local and global element numbers and afterwards separate the old ele-
ments into four elements of the higher refinement stage in 2-D. Here we choose for
each of the four new elements three nodes out of the six nodes of the refined element
that represent the corner nodes of the new triangle.

The next point is the generation of the new elements out of the refinement elements. Al-
though we generate four elements out of the old one in 2-D, there are only three new ele-
ment numbers as one element gets the old number of the refinement element. The last old
element has got the number ne and we continue counting the new elements by the follow-
ing natural numbers, so the new elements get the local (and because of a single processor
also global) element numbers

from nefirst = ne + 1

to nelast = ne + 3 · nere.

For the refinement elements the rows in the nek array, the array for the node numbers of an
element, are full, i.e. we have stored a node number in each of the six columns (three corner
nodes and three mid nodes) so that we can generate four new elements, see figure 4.4.3.
The element that contains the first local node gets the old element number of the refinement
element, but it is the last of the new elements that is generated because otherwise we would
overwrite the element information for the other elements. The selection of the nodes for
the four new elements is described in the next paragraph. First we store the information in
the element information array nenr (see on page 78) for the three elements which get new
numbers. This information is for each element:

4.4 Mesh refinement on a single processor 101

nenr(ne + i, 1) = ne + i

nenr(ne + i, 2) = 1

nenr(ne + i, 3) = 0

nenr(ne + i, 4) = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for i = 1, . . . , 3 · nere. (4.4.14)

In the second column of array nenr we store the number of the subdomain the new elements
belong to which is 1 if the domain is not divided into several subdomains by dividing lines
or sliding dividing lines and the third column we set equal to zero for all elements. This
column also is only of account for domains with dividing lines or sliding dividing lines.
We also store the number of the own processor of the new elements in the fourth column
of nenr which is 1 for a single processor.

For the element with the old element number this is done the same way. Then the nek
array is updated as shown in table 4.4.3 and figure 4.4.6. For example, the 4th new element
consists of the 4th, 5th and 6th node of the old element elold. This information is stored in
an integer array elhlp where we store in the jth row the local node numbers for the jth

new element elj . If we denote by elloc the row in the array nek that corresponds to the local
number of the new element, we set

nek(elloc, k) = nek (elold, elhlp(elj , k)) for k = 1, . . . , 3 (4.4.15)

for the three elements that get new element numbers, i.e. for j = 2, . . . , 4.

�
�

�
�

�
�

��

�
�

�
�

�
�

��

� � �

� �

�

1 2

3

4

56

1 2

3

4

Figure 4.4.6: Illustration of array elhlp.

For the example above, we yield by substituting the array elhlp

nek(elloc, 1) = nek(elold, 4),

nek(elloc, 2) = nek(elold, 5),

nek(elloc, 3) = nek(elold, 6).

(4.4.16)

102 The algorithm of the mesh refinement

new element elhlp(elj, k)
elj k = 1 k = 2 k = 3

j = 1 1 4 6
j = 2 2 5 4
j = 3 3 6 5
j = 4 4 5 6

Table 4.4.3: Update of the nek array information in 2-D for figure 4.4.6.

For the element that gets the old element number, i.e. for j = 1, we set

nek(elold, k) = nek (elold, elhlp(el1, k)) for k = 1, . . . , 3. (4.4.17)

As a newly-created element cannot have any mid-point on its edges the entries 4 to 6 are
set equal to zero:

nek(elloc, 4) = 0, nek(elold, 4) = 0,

nek(elloc, 5) = 0, nek(elold, 5) = 0,

nek(elloc, 6) = 0, nek(elold, 6) = 0.

(4.4.18)

The refinement of a triangular element in 2-D is illustrated in figure 4.4.7. In figure 4.4.7a)
you see the original refinement element, in figure 4.4.7b) we have inserted the newly-
created nodes and the edges that connect them. Finally, in figure 4.4.7c) we have separated
the four elements that are generated from the old refinement element.

The refinement stage of the four new elements is rs + 1, i.e. it is increased by one in
comparison with the refinement stage rs of the old element. We insert the new value of the
refinement stage for the old element elold and the new elements elloc into the integer array
refst of length nemax:

refst(elold) = rs + 1, refst(elloc) = rs + 1. (4.4.19)

a) b) c)

Figure 4.4.7: Illustration of the refinement of a triangle: a) original element, b) original ele-
ment with new nodes and elements, c) divide element into four new ones.

4.4 Mesh refinement on a single processor 103

At the end of each refinement step we compute the value inmax which is the maximum
number of elements a node belongs to. This is only for the preparation of the next refine-
ment step where we have to determine the inverted nek array that we need for the neighbour
element search and therefore need the value inmax to allocate the array nekinv with the cor-
rect width.

By nrs we denote the number of nodes and by ners the number of elements that are stored
on a processor before refinement step rs, i.e. it holds

n0 = n
ne0 = ne.

(4.4.20)

We increase the number of nodes nrs and the number of elements ners that existed before
the current refinement step by the number of generated new nodes rcnt and by the number
of generated new elements 3 · nere in refinement step rs:

nrs+1 = nrs + rcnt

ners+1 = ners + 3 · nere.
(4.4.21)

As we have subdivided the refinement elements of the current refinement step into smaller
elements of a higher refinement stage, these new elements have the same refinement stage
as those that have to be refined in the next refinement step. So if the refinement of an ele-
ment of the current refinement step has been caused by the refinement cascade, the newly-
created elements and the refinement element of the next refinement step that has caused the
refinement cascade have the same refinement stage and therefore we are able to generate
the mid-points of the refinement edges in the next refinement step.

There are not any differences to the first refinement step for the following refinement steps
we have to pay attention to. So we can summarize a refinement step of the mesh refinement
algorithm on a single processor by algorithm C on page 122. After the refinement of the
refinement elements of all stages the sorting of the nodes by x-coordinate takes place and
afterwards the next computing cycle can start, i.e. then the solution of the system of PDEs
is computed on the new grid.

4.4.2 Extension to 3-D

Important notations:

bnod: integer array for external boundary nodes
infpol: double precision array for evaluated influence polynomials
lbnd: logical array for computing 3-D external boundary nodes
nek: integer array for node numbers of the elements
rtl: integer array for refinement edge information

104 The algorithm of the mesh refinement

There are not many differences for the mesh refinement in 3-D on a single processor. An
element may have more than one neighbour at an edge, so that

nnbmax > 1 in 3-D

holds where nnbmax is the maximum number of neighbour elements per edge of a re-
finement element in the current refinement step. Accordingly, the maximum number of
neighbour elements per element is the product of nnbmax and the number of edges per
element, nedge = 6. So we had to allocate the array nb where we store the neighbour el-
ements for each edge of a refinement element, with length nere and width nedge · nnbmax.
Unfortunately, the value nnbmax is not known until we have inserted the neighbour element
information into the arrays nb and nbadd. So we have to choose a value greater or equal to
nnbmax for the determination of the width of nb. Another possibility was to proceed like
for the array nekinv where we first go through the elements and only determine the number
of elements per node without inserting them into nekinv. As the array nb is comparatively
small, we accept the loss of storage place to improve the performance. The condition is
fulfilled for inmax, the maximum number of elements per node, so that the width of nb is
set to nedge · inmax.

� � �

� �

�

� �

�
�

1 2

3

4

5

67 89

10

Figure 4.4.8: Local numbering of the nodes in an element (3-D).

We have to allocate the rtl array where we store the refinement edge information with length
nbm6 · ne · nedge with

nbm6 = nnbmax + 6. (4.4.22)

For this purpose we go through the refinement elements of the current refinement stage and
for each of these elements we go through all edges and enter the refinement edge informa-
tion into rtl for those edges that are not yet halved and that we did not enter into the rtl
array before. The “6” in (4.4.22) comes from the fact that we have to store (like in 2-D)
the number of the new node and of the two end points of the edge, the element number,
the local position of the new node in the element and the number of neighbour elements

4.4 Mesh refinement on a single processor 105

in the rtl array. By pos we denote the position of the node in the refinement element, see
figure 4.4.8. All the neighbour elements are inserted into the rtl array as indicated in ta-
ble 4.4.4, the number of neighbour elements is stored in entry rcnt + 6. This information
is easily obtained from the nekinv array that gives for each node the elements it belongs to.
To find the neighbour elements of an edge we proceed like described for 2-D on page 87.

i rtl(i) description
...

...
...

{ preceding edge }
rcnt + 1 left free
rcnt + 2 nod1 local number of end point 1 of edge j
rcnt + 3 nod2 local number of end point 2 of edge j
rcnt + 4 el local refinement element number
rcnt + 5 pos local node number in element (see text)
rcnt + 6 k number of neighbour elements
rcnt + 7 elnb,1 local number of neighbour element 1

...
...

...
rcnt + 6 + k elnb,k local number of neighbour element k

...
...

...
rcnt + nbm6 elnb,nnbmax local number of neighbour element nnbmax

(= 0 if k < nnbmax, k = number of neighbour elements)

{ following edge }
...

...
...

Table 4.4.4: Illustration of the contents of array rtl in 3-D (edge information).

For the new nodes we also have to compute a new z-coordinate like we compute the x- and
y-coordinate in (4.4.6):

xn+i =
xnod1,i

+xnod2,i

2

yn+i =
ynod1,i

+ynod2,i

2

zn+i =
znod1,i

+znod2,i

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ for i = 1, . . . ,

rcnt

nbm6
. (4.4.23)

Note that we have to divide rcnt by nbm6 now because in the following rcnt represents the
number of refinement edges:

rcnt ⇐ rcnt

nbm6

. (4.4.24)

106 The algorithm of the mesh refinement

This also holds for (4.4.4) and (4.4.7). For the interpolation of the function values of the
new nodes with a polynomial of order q = 2 we need m = 10 nodes and therefore we have
10 evaluated influence polynomials for each neighbour node. So the “6” in equations (4.4.9)
and (4.4.11) is replaced by “10”, therefore (4.4.9) becomes

ngrid(j, 2·i−1) = ngrid2(nod1, j)

ngrid(j, 2·i) = ngrid2(nod2, j)

}
for j = 1, . . . , 10 (4.4.25)

for i = 1, . . . , rcnt and (4.4.11) is changed into

un+i,1 =
10∑

j=1

(
infpol(ia(2·i−1)+j) · ungrid(j,2·i−1)

)
un+i,2 =

10∑
j=1

(
infpol(ia(2·i)+j) · ungrid(j,2·i)

) (4.4.26)

for i = 1, . . . , rcnt and for each of the l components. According to (4.4.8), the length of the
array infpol where we store the evaluated influence polynomials during the generation of
the difference and error formulas is

linfpol = 10 ·
n∑

i=1

noni (4.4.27)

where n here denotes the number of nodes before the mesh refinement process and noni is
the number of neighbour nodes of node i.

A point that is more difficult than in 2-D is the checking of the boundary node property. In
2-D we only have to check the edges that have not got any neighbour element, in 3-D we
must check all edges. In 3-D it is not sufficient to check if the two end points of the edge
are boundary nodes. A new node may be a boundary node although there are neighbour
elements of the refinement element on the edge concerned. As we have tetrahedrons in 3-D,
there are four nodes in each element that shares this edge, so we have two nodes that are not
end points of the edge under consideration. We have to check if each of these “free” nodes
belongs to exactly two elements that share the edge so that the concerned elements form a
kind of ring around the edge, see the description below. Then the edge is not a part of the
boundary and therefore the new node is not a boundary node, see figure 4.4.9b). For the
edge in figure 4.4.9a) we have nodes that do not occur twice in the surrounding elements
of the edge (more precisely, node 3 in element 1 and node 7 in element 4 do not occur in a
second element) and therefore the new node is a boundary node. We use a one-dimensional
logical array lbnd of length n (that is initialized with true) where we set

lbnd(nod) = ¬ lbnd(nod)

4.4 Mesh refinement on a single processor 107

for a node nod each time this node is found in an element that shares the edge, i.e. in the
refinement element and its neighbour elements. When we have treated all these elements
and there is at least one entry in lbnd with the value false the new node is a boundary
node. We explain this by table 4.4.5 where table 4.4.5a) corresponds to figure 4.4.9a) and
table 4.4.5b) corresponds to figure 4.4.9b). Both tables have a dynamic component, i.e.
after having inserted the nodes of element 1 into lbnd the array looks like it is shown in
row 1, after having inserted the nodes of element 2 lbnd looks like shown in row 2 and so
on. At the end we have in row 4 of table 4.4.5a) two entries left with the value true. They
belong to the nodes 3 and 7 which both occur only once in figure 4.4.9a), the new node
becomes a boundary node. In the last row of table 4.4.5b) all entries of lbnd have the value
false and therefore each node occurs twice in the elements that share the edge, so that the
new node is an inner node. The code for the determination of the new boundary nodes in
3-D is shown in listing 13.

a)

1

2

3

4

5

6

7

1

2

3

4

b)

1

2

3

4

5

6

7

8

1

2

3

4

5

6

� �

Figure 4.4.9: Illustration of the boundary node property (3-D): new node on refinement edge
(bold) is a) a boundary node, b) not a boundary node.

The generation of the new elements is done like in 2-D, it is even used the same code. Only
the number of new elements that is stored in elnew is seven (there result eight elements, one
gets the old number, so seven new numbers are created) instead of three in 2-D so that the
new element numbers go

from nefirst = ne + 1

to nelast = ne + 7 · nere.

The value of elnew also changes in the equations (4.4.14) and (4.4.21). The array elhlp

where we store the information which nodes of the old element form the new elements is

108 The algorithm of the mesh refinement

a)

node lbnd(k)
el. 1 2 3 4 5 6 7

1 F F T T F F F
2 F F T F T F F
3 F F T F F T F
4 F F T F F F T

b)

node lbnd(k)
el. 1 2 3 4 5 6 7 8

1 F F T T F F F F
2 F F T F T F F F
3 F F T F F T F F
4 F F T F F F T F
5 F F T F F F F T
6 F F F F F F F F

Table 4.4.5: Use of array lbnd for assignment of boundary node property (3-D): new node is
a) a boundary node, b) not a boundary node, see figure 4.4.9.

also different. This is shown in table 4.4.6, see also figure 4.4.8.

In the jth row of elhlp the local node numbers for the jth new element elj are stored. If we
denote by elloc the row in the array nek, the array where we store the node numbers for the
elements, that corresponds to the local number of the new element, we set

nek(elloc, k) = nek (elold, elhlp(elj , k)) for k = 1, . . . , 4 (4.4.28)

for the seven elements that get new numbers, i.e. for j = 2, . . . , 8. For j = 1, i.e. for the
element that gets the old element number, we have

nek(elold, k) = nek (elold, elhlp(el1, k)) for k = 1, . . . , 4. (4.4.29)

As a newly-created element cannot have any mid-point on its edges the entries 5 to 10 for

new element elhlp(elj, k)
elj k = 1 k = 2 k = 3 k = 4

j = 1 1 5 6 7
j = 2 5 2 8 9
j = 3 6 3 8 10
j = 4 7 4 10 9
j = 5 5 6 8 10
j = 6 5 6 7 10
j = 7 5 7 9 10
j = 8 5 8 9 10

Table 4.4.6: Update of the nek array information in 3-D.

4.4 Mesh refinement on a single processor 109

lbnd = .false. ! initialize lbnd

do i = 1,noel ! for each neighbour element
el = rtl(nbm_6*(j-1)+6+i) ! el: number of neighbour elem.
do k = 1,elpt ! for each corner node of el

node = nek(el,k) ! node: number of corner node
! if node is not an end point of the
! current edge negate entry in lbnd
if ((node /= nod_1).and.(node /= nod_2))

& lbnd(node) = .not.lbnd(node)
end do

end do

el = rtl(nbm_6*(j-1)+4) ! el: number of ref. element
do k = 1,elpt ! same loop as above
node = nek(el,k)
if ((node /= nod_1).and.(node /= nod_2))

& lbnd(node) = .not.lbnd(node)
end do

! check if there are true-entries in lbnd
if (any(lbnd)) then
bnri = bcnt(ibnd) ! bnri/bnrj: nr. of boundaries
bnrj = bcnt(jbnd) ! for node ibnd/jbnd
doi: do i = 1,bnri ! for each boundary (ibnd)

bi = bdnr(ibnd,1+i) ! bi: number of boundary (ibnd)
do k = 1,bnrj ! for each boundary (jbnd)

bj = bdnr(jbnd,1+k) ! bj: number of boundary (jbnd)
if (bi == bj) then ! check if bd. numbers are equal
! increase nr. of new bd. nodes and insert
! boundary node information into newbn
nblc = nblc+1
newbn(nblc,1) = newn
newbn(nblc,2) = bi
! only used for sliding dividing line nodes
newbn(nblc,3) = nod_1

end if
end do

end do doi
end if

Listing 13: Code for the determination of new external boundary nodes and sliding dividing
line nodes in 3-D.

the mid-points are set equal to zero:

nek(elloc, k) = 0
nek(elold, k) = 0

}
for k = 5, . . . , 10. (4.4.30)

110 The algorithm of the mesh refinement

The refinement of a 3-D tetrahedron is illustrated in figure 4.4.10 where you can see the
original refinement element in figure 4.4.10a). In figure 4.4.10b) we inserted the mid-points
of the old edges and connected them so that we have got the edges of the new elements.
In figure 4.4.10c) we take away the corner elements, i.e. we create the first four elements.
There is left a kernel that consists of eight triangular surfaces. This kernel is divided into
another four elements, see figure 4.4.10d).

The refinement stage of the four new elements is rs + 1, i.e. it is increased by one in com-
parison with the refinement stage rs of the old element. The current refinement stage is
inserted into array refst just like for 2-D, see (4.4.19).

a) b)

c) d)

Figure 4.4.10: Illustration of the refinement of a tetrahedron: a) original element, b) origi-
nal element with new nodes and edges, c) take away the four corner elements,
d) divide kernel into four elements.

4.4 Mesh refinement on a single processor 111

4.4.3 Mesh refinement with dividing lines in 2-D and 3-D

SUMMARY: First we explain the differences of the neighbour element search in com-
parison to problems with only one domain and afterwards we add the missing entry
in the array dlote for the twin nodes on the other side of a dividing line. To identify
refinement edges that are dividing line edges at the same time, we have to label them
by a key number. For 3-D problems we have to take care of the determination of the
new external boundary nodes.

Important notations:

dlote: integer array for twin node information of dividing line edges
dloteadr: integer array for starting addresses of dividing line elements in dlote
logarr: logical array for computation of new dividing line elements
nenr: integer array for element information
nnr: integer array for node information
rtl: integer array for refinement edge information
snod: integer array for sliding dividing line nodes
tnod: integer array for dividing line nodes

If we have dividing lines in the solution domain we also have to note some differences in
the refinement process. If the refinement element is a dividing line element and we search
for the neighbour elements of a refinement element at the beginning of a refinement step,
we also have to search for elements on the other side of the dividing line. The preparation
of this neighbour search has been described in section 4.3 where we explained how we
store the information about the twin nodes on the other side of a dividing line in the arrays
dlote and dloteadr—in dloteadr we store the starting address of the dividing line element
information in dlote and in dlote we store the information for each dividing line edge of
the dividing line elements, see figure 4.3.4. With the help of these two arrays we can now
easily search for neighbour elements on the other side of the dividing line and store the
element numbers in nb, the array for the neighbour element numbers of the edges of an
element. The width of nbadd, i.e. the array for the starting addresses of the edges in nb, is
2·nedge+1 because we do not only store the starting address of the neighbour elements on
this side of the dividing line in nb but also the starting address of the neighbour elements
on the other side of the dividing line. Again we store the end address of the last edge in the
last column.

To illustrate the shape of the two arrays nb and nbadd have a look at figure 4.4.11. Here
we only show the row that corresponds to the arbitrarily chosen element 42 forgoing the
element numbers of the neighbour elements, and as we have at most one neighbour ele-
ment in 2-D we illustrate the much more difficult 3-D situation. In nbadd we have two
entries for each edge plus one entry to mark the end of the last edge. In the first entry of an

112 The algorithm of the mesh refinement

nbadd(el, k)
el 1 2 3 4 5 6 7 8 9 10 11 12 13

42 1 5 8 11 16 20 20 25 25 28 33 38 38

el nb (el, k)

42 0 · · · 0
e11 e12 e21 e22 e31 e41 e51 e52 e61

eij : edge i, side j nedge · inmax

Figure 4.4.11: Illustration of the arrays nb and nbadd for (dividing line) element 42 (3-D).

edge we insert the column number in nb where the neighbour elements on this side (side 1)
of the dividing line start and in the second entry we insert the column number where the
neighbour elements on the other side (side 2) of the dividing line start. If an edge is not a
dividing line edge the second entry points to the same column as the first entry of the fol-
lowing edge because there are not any neighbour elements on the other side of a dividing
line, and therefore the column number must not be increased.

Let the edges 1, 2 and 5 of element 42 in figure 4.4.11 be dividing line edges. The starting
address of the neighbour elements of the first edge on this side of the dividing line is always
one, and the first element has 4 neighbour elements that share this edge. So the neighbour
elements on the other side of the dividing line begin in entry 5 of row 42 of nb. There
we have 3 neighbour elements. For edge 2 we have 3 neighbour elements on this side of
the dividing line and 5 on the other side. So the 4 neighbour elements for edge 3 start at
entry 16. The starting address of the neighbour elements on the other side of the dividing
line of the 3rd edge therefore is 20, but as edge 3 is not a dividing line edge, there is no
other side of the dividing line and the first neighbour element of the 4th edge is stored in
entry 20 of nb. After the 5 neighbour elements of edge 4 follow the 3 neighbour elements
of the 5th edge on this side and the 5 neighbour elements on the other side of the dividing
line. Finally, 5 elements share edge 6.

In dlote we store the number of coupling subdomains and the twin node numbers on the
other side of each dividing line for each dividing line edge of the dividing line elements as
explained on page 71. Furthermore, we store in dlote the number of neighbour elements
nrel on the other side of the dividing line in the entries we left free when we executed
the refinement cascade, see on page 71. The neighbour elements on the other side of
the dividing line are those elements that contain both twin nodes on the other side of the

4.4 Mesh refinement on a single processor 113

dividing line that are already stored in dlote. According to the notation there we set

dlote(addredge j + 3 · k − 2) = nrel (4.4.31)

for edge j and the kth coupling subdomain.

After the search for the neighbour elements we sort the array tnod with the dividing line
nodes by ascending node number (by the external procedure HEAPSORTIX, see subsec-
tion 4.1.3) and store the information, to which dividing lines a node belongs to, in an
integer array dl with length equal to nibn and width equal to 2 · ninb + 1 where ninb is
the number of dividing lines and nibn is the number of dividing line nodes including the
overlap. In the first column we store the number of dividing lines a node belongs to and in
the other columns we store the numbers of the dividing lines. As it is impossible that any
node belongs to all dividing lines we fill the rest of the columns where we have no entries
with zeros.

In 2-D, each element may have at most one neighbour element. For a dividing line edge,
there must be—because of matching grids—a neighbour element, and this element is al-
ways on the other side of the dividing line, and there are not any neighbour elements on this
side of the dividing line, i.e. in the subdomain the refinement element belongs to. So when
we store the information for the new nodes in the refinement edge array rtl (see table 4.4.1
for 2-D, table 4.4.4 for 3-D), we can use the last entry for a new node in rtl to store a key
number to mark dividing line nodes. This key number is −1, it means that the edge infor-
mation for a twin node is following next. The edge information for the new twin node on
the other side is stored directly behind the information for the new node on this side of the
dividing line. For this node the last entry is set to 0, see figure 4.4.12a). In 3-D, where we
also have neighbour elements on this side of the dividing line, we have to set the length of
rtl to (nnbmax + 7) · ne · nedge so that we have an additional entry for the key number −1.
Thus it holds

nbm6 = nnbmax + 7. (4.4.32)

There may be more than one twin node in 3-D and we set the last entry to −1 for each of
them except the last one where the entry is set to 0:

rtl(rcnt + 7) = − 1
in 2-D

rtl(rcnt + 14) = 0

rtl(rcnt + k · nbm6) = − 1 for k = 1, . . . , nsect − 1
in 3-D

rtl(rcnt + nsect · nbm6) = 0

(see figure 4.4.12b) for a quadruple point).

114 The algorithm of the mesh refinement

a)

· · · · · ·−1 0

7
side 1

7
side 2

b)

· · · · · ·−1 −1 −1 0

nbm6

side
nbm6

side
nbm6

side
nbm6

side1 2 3 4

Figure 4.4.12: Illustration of array rtl for a dividing line edge a) in 2-D, b) in 3-D.

When we enter the new nodes into the node information array nnr, the entries for the second
and third column are different from (4.4.4). We set

nnr(n + i, 1) = n + i

nnr(n + i, 2) = nnr(nod1, 2)

nnr(n + i, 3) = nsect,cpl

nnr(n + i, 4) = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for i = 1, . . . , rcnt

7
. (4.4.33)

where nnr(nod1, 2) is the number of the subdomain the first end point of the edge belongs
to. Both end points of an edge always belong to the same subdomain, so we could have
chosen the second end point, too. The new mid-point belongs to the same subdomain as
the two end points of an edge. nsect,cpl is the number of subdomains the node couples to.

Another critical point is the determination of the new boundary nodes in 3-D. In 2-D there
is no difference to the determination of the boundary node property in 2-D without divid-
ing lines because an external boundary node may never be a dividing line node at the same
time. When a dividing line meets an external boundary the intersection consists of only
one node in 2-D, but in 3-D the intersection of a dividing surface and an external bound-
ary consists of a bunch of edges. Like for 3-D without dividing lines we have to check if
each of the non-edge nodes of an element that shares the edge occurs twice as described on
page 106 for 3-D problems without dividing lines. For 3-D with dividing lines we have the
exception that we do not have to check this for the dividing line nodes because we know
that they must have a twin node on the other side of the dividing line.

SUMMARY: Of course, completely new is the determination of new dividing line nodes.
Each new dividing line node creates as many rows in the array tnod for the dividing line
nodes as it occurs on different dividing lines. After the node itself we must also create
the rows for all its twin nodes. Each new dividing line node is assigned a dividing line

4.4 Mesh refinement on a single processor 115

! posinod: position of node nod_1 in sorted array tnodst
posinod = BINSCH(tnodst(1,1),index(1,1),ctr,nod_1)

nrdl = dl(posinod,1) ! dl: number of DLs nod_1 belongs to
snr = tnodst(posinod,3) ! snr: subdomain nr. nod_1 belongs to
do j = 1,nrdl ! for each DL

! insert node nr., DL and subdomain number into tnod
tnod(nib_l+j,1) = pt
tnod(nib_l+j,2) = dl(posinod,1+j)
tnod(nib_l+j,3) = snr

end do
! nrdlsm: number of rows inserted into tnod so far
nrdlsm = nrdl

! initialize sect and insert new node number
sect = 0
sect(snr) = pt

Listing 14: Code for entering of the new dividing line node data into array tnod (first node).

number and a subdomain number. At the end the information to which subdomains
the coupling nodes belong is inserted in all rows of tnod we just created.

In order to determine the new dividing line nodes we go through the refinement edge array
rtl (see table 4.4.1 for 2-D, table 4.4.4 for 3-D) and first check for each refinement element
if it is a dividing line element, i.e. we check in dloteadr and dlote (see figure 4.3.4) if,
for the current element and the current edge, the number of subdomains the edge couples
to is greater than zero. As we store in dloteadr the starting addresses of the dividing line
element information in dlote, only the entries for the dividing line elements are unequal to
zero. For these elements we check if the entry for the number of subdomains for the current
edge in dlote is unequal to zero. If not, the newly-created node is not a dividing line node
because only the entries for the dividing line edges are unequal to zero. Otherwise, we have
to determine the number of dividing lines the new node belongs to, and then we insert the
new node into the information array for the dividing line nodes, i.e. the integer array tnod,
once for each dividing line. We store in the columns of tnod the number of the dividing line
node, the numbers of the dividing line and the subdomain the node belongs to, and in the
columns 4 to nsect+3 we store the numbers of the coupling nodes for the nsect subdomains,
see table in figure 4.4.13. At first, we only enter the node number, the dividing line number
and the number of the subdomain into tnod. As we did not yet generate the coupling nodes,
we cannot enter their numbers yet. In a one-dimensional auxiliary integer array sect with
length equal to nsect, i.e. the number of subdomains, we store the node number at the
position of the subdomain, e.g. if node 1 is in subdomain 2 we set sect(2) = 1. The code
for the entering of the first new dividing line node into the array tnod is shown in listing 14.

116 The algorithm of the mesh refinement

do i = 1,nr ! for each coupling subdomain
addr = glob1(cnt) ! addr: starting addr. for edge
pt = rtl(addr) ! pt: new node number
nod_1 = rtl(addr+1) ! nod_1: first end point of edge
nod_2 = rtl(addr+2) ! nod_2: second end point of edge
el = rtl(addr+3) ! el: number of ref. element
k = rtl(addr+4)-elpt ! k: pos. of new node in elem. el

! posinod: position of node nod_1 in sorted array tnodst
posinod = BINSCH(tnodst(1,1),index(1,1),ctr,nod_1)

nrdl = dl(posinod,1) ! dl: nr. of DLs nod_1 belongs to
snr = tnodst(posinod,3)! snr: subdom. nr. nod_1 belongs to
do j = 1,nrdl ! for each DL

addr = n_ibl+nrdlsm+j ! compute row in tnod
! insert node nr., DL and subdomain number into tnod
tnod(addr,1) = pt
tnod(addr,2) = dl(posinod,1+j)
tnod(addr,3) = snr

end do
! nrdlsm: number of rows inserted into tnod so far
nrdlsm = nrdlsm+nrdl

! insert node nr. into sect
sect(snr) = pt

! increase counter cnt
cnt = cnt+1

end do

! insert node numbers from sect into each new row in tnod
do i = 1,nrdlsm

do j = 1,n_sect
tnod(nib_l+i,3+j) = sect(j)

end do
end do

Listing 15: Code for entering of the new dividing line node data into tnod (twin nodes).

Afterwards we also have to insert into tnod all the twin nodes of the new node for all the
dividing lines they belong to. As the data for the twin nodes is stored directly behind that
of the new node and as we know how many twin nodes each dividing line node has got
(because the number of twin nodes is equal to the number of subdomains the node couples
to, which is stored in dlote) this can be done very easily in the same way as for the new
node itself. Now we have stored in sect in which subdomains the twin nodes occur and
we copy this array to the columns 4 to nsect + 3 into all the rows in tnod we just created,

4.4 Mesh refinement on a single processor 117

see figure 4.4.13 for a cross of eight dividing surfaces (DS) in 3-D. Seen geometrically, we
have two crossing dividing surfaces that have been transformed to eight logical dividing
surfaces when we created the new logical dividing surface nodes, see subsection 3.5.1. In
2-D it is not possible that a new dividing line node couples to more than one subdomain.
The code for the entering of the data for the twin nodes of the first dividing line node into
the array tnod is shown in listing 15.

� �

� �

DS 3

DS 4

DS 6 DS 8

DS 5

DS 1

DS 7

DS 2

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

1002

1003

1004 1001

� new dividing
line node

tnod(nibn + i, k)
i k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

sub- twin node
node DS domain 1 2 3 4

1 1001 1 4 1002 1003 1004 1001
2 1001 8 4 1002 1003 1004 1001
3 1002 3 1 1002 1003 1004 1001
4 1002 5 1 1002 1003 1004 1001
5 1003 2 2 1002 1003 1004 1001
6 1003 7 2 1002 1003 1004 1001
7 1004 4 3 1002 1003 1004 1001
8 1004 6 3 1002 1003 1004 1001

Figure 4.4.13: Illustration of tnod for new dividing line nodes, 3-D crossing of 8 dividing
surfaces (DS).

The example for the crossing of eight dividing surfaces in figure 4.4.13 should illustrate this
proceeding. The node that results from the refinement of an element gets the first number,
here 1001. The other nodes in the subdomains 1, 2 and 3 result from the “matching grids”-
condition. Each of the 4 nodes belongs to 2 dividing surfaces, so we need 2 · 4 = 8 rows

118 The algorithm of the mesh refinement

in the array tnod for the dividing surface information. Node 1001 is in subdomain 4 and
belongs to dividing surface 1 and dividing surface 8, node 1002 is in subdomain 1 and
belongs to the dividing surfaces 3 and 5, and so on. At the end, the auxiliary array sect
therefore looks like this:

sect(1) = 1002,

sect(2) = 1003,

sect(3) = 1004,

sect(4) = 1001.

(4.4.34)

This array is copied to the columns 4 to nsect + 3 of array tnod for each of the 8 rows we
just created.

SUMMARY: When we refine dividing line elements we have to check which of the new
elements of the higher refinement stage are dividing line elements. These are all ele-
ments that have got at least two dividing line nodes that belong to the same dividing
line. So we determine those edges of the refinement elements that are dividing line
edges first and then we are able to determine the new dividing line edges and therefore
the new dividing line elements. In 3-D we also must regard combinations of two old
edges to get all new dividing line edges, because not only the bisectioned parts of the
old dividing line edges may become dividing line edges but also those edges that are
the connection of two newly-created nodes, because in 3-D we have dividing surfaces
in exact terminology. If both end points of a newly-created edge belong to the same
dividing surface, the edge becomes a dividing line edge.

The generation of the new elements is done the same way as without dividing lines. In the
element information array nenr (see on page 78) we set

nenr(ne + i, 1) = ne + i

nenr(ne + i, 2) = nenr(elold, 2)

nenr(ne + i, 3) =

{
0 for non-dividing line elements
1 for dividing line elements

nenr(ne + i, 4) = 1

(4.4.35)

for i = 1, . . . , 3 ·nere. In order to be able to fill in the third column we have to check which
of the generated elements are dividing line elements, i.e. which of the generated elements
have at least one edge on a dividing line. In a preparing step we check for each edge in each
refinement element if both end points are dividing line nodes. If yes, we enter a true into
a logical array logarr with length equal to the number nere of refinement elements in the
current refinement step rs and width equal to nedge (this array has been initialized with false
before). After checking all elements we go through the element array again. This time we

4.4 Mesh refinement on a single processor 119

assign the property dividing line element to the new elements. In 2-D this is quite easy: we
check if edge k in refinement element el is a dividing line edge, i.e. we

check if logarr(el, k) = true

and if yes, the two new elements elnew,1 and elnew,2 that share this edge get the property
“dividing line element”, i.e. we set

nenr(elnew,1, 3) = 1

nenr(elnew,2, 3) = 1.
(4.4.36)

So in contrast to (4.4.14) we store in the third column of nenr the value 1 for dividing line
elements.

� � �

� �

�

1 2

3

4

56

1 2

3

4

Figure 4.4.14: Illustration of the dividing line property in 2-D, edge 1 (bold) is dividing line
edge.

In table 4.4.7 you can see which elements get the dividing line element property if a certain
edge of the old element is a dividing line edge, in figure 4.4.14 we illustrate this for edge 1,
the connection of nodes 1 and 2, of the old element having the dividing line property. We
see clearly that the new elements 1 and 2 become dividing line elements as they both get
one half of the bisectioned edge 1. From table 4.4.7 we learn that, if edge 2 was the dividing
line edge, the elements 1 and 3 became dividing line elements, and for edge 3 being the
dividing line edge, the elements 2 and 3 became dividing line elements.

DL end point new DL
edge 1 2 elements

1 1 2 1 2
2 2 3 2 3
3 1 3 1 3

Table 4.4.7: dividing line property for the new elements in 2-D.

120 The algorithm of the mesh refinement

In 3-D this algorithm is more complex because there are not only two elements that may
become dividing line elements if an edge is a dividing line edge. If an edge is a dividing
line edge this means that the newly-created mid-point of this edge is a dividing line node,
too. So if there is a second edge in the same element that is also a dividing line edge all
elements that share the edge between the two newly-created dividing line nodes on the two
edges become dividing line elements. Like in 2-D an element is a dividing line element in
3-D if at least one of its edges belongs to a dividing surface (we say “line”). This means
that there are at least two new dividing line elements if an edge is a dividing line edge, but
there may be more (this depends on the other edges), see table 4.4.8 in connection with
figure 4.4.8, whereas in 2-D we can determine the new dividing line elements without pay-
ing attention to other edges of the same refinement element. For example, if in table 4.4.8
edge 1 is a dividing line edge (first row), nodes 1 and 2 and with them the new node 5 that
is the mid-point of the edge between them (see figure 4.4.8) are dividing line nodes. This
means that elements 1 and 2 are dividing line elements because they contain the edge 1–5
and 2–5, respectively, see table 4.4.6. If the other edges of the element are not any dividing
line edges, these are all new dividing line elements. If, for example, edge 2 is also a divid-
ing line edge (second row of table 4.4.8), node 3 and—as it is the mid-point of the dividing
line edge 2–3 (see figure 4.4.8)—the new node 6 is a dividing line node and therefore the
edge between the dividing line nodes 5 and 6 is a dividing line edge. So all elements that
share this edge are dividing line elements, too. These elements have the numbers 5 and
6 (see table 4.4.6, element 1 has already become a dividing line element). Element 3 is a
dividing line element because nodes 3 and 6 are dividing line nodes and therefore the edge
between them becomes a dividing line edge. In table 4.4.8 all multiple entries are omitted.

The algorithm of the mesh refinement on a single processor for problems with dividing
lines can be seen on page 122, algorithm C.

For the mesh refinement with sliding dividing lines we do not have to worry about any-
thing special. Of course, we must determine the new sliding dividing line nodes, but this is
done almost exactly like for the external boundary nodes. We first determine the maximum
number sdmax of sliding dividing lines a sliding dividing line node belongs to and allocate
an integer array sdnr with length equal to the number of sliding dividing line nodes and
width equal to sdmax+1. We sort the integer array snod with the information of the sliding
dividing line nodes by ascending node number (by the external procedure HEAPSORTIX,
see subsection 4.1.3) and store the sorted node numbers in the first column of sdnr. Anal-
ogously to tnod for the dividing lines, we store in the columns of snod the number of the
sliding dividing line node, the numbers of the sliding dividing line and the subdomain the
node belongs to, and in the columns 4 to nsect + 3 we store the numbers of the coupling
nodes for the nsect subdomains. In the next columns of sdnr we store the sliding dividing
line numbers of the sliding dividing lines to which each node belongs. We determine the
new sliding dividing line nodes exactly like for the external boundary nodes as described

4.4 Mesh refinement on a single processor 121

DL end point 2nd DL new DL
edge 1 2 edge elements

1 1 2 – 1 2
2 3 5 6
3 4 6 7
4 3 5 8
5 4 7 8

2 1 3 – 1 3
3 4 6
4 2 5
6 4 5 6

3 1 4 – 1 4
5 2 7
6 3 6 7

4 2 3 – 2 3
5 4 8
6 4 5 8

5 2 4 – 2 4
6 3 7 8

6 3 4 – 3 4

Table 4.4.8: Illustration of the dividing line property in 3-D.

on page 97. The number of the new sliding dividing line node is stored together with the
sliding dividing line number in an integer array newsn with length equal to rcnt and width
equal to 3.

The main difference between new external boundary nodes and new sliding dividing line
nodes results from the fact that we need a fictitious opposite node for sliding dividing line
nodes so that we have to assign such a node to each new sliding dividing line node. We
could assign any node of the coupling sliding dividing line but in order to reduce the time
for the search for an appropriate fictitious opposite node in the next computation cycle
we try to assign a node with a distance as small as possible. And what could be a better
fictitious opposite node than that ones of the end points of the edge of which the investigated
new sliding dividing line node is the mid-point? We choose the first of the two end points
nod1 and store the number nod1 in the third column of the array newsn. We use the same
code for external boundary nodes and sliding dividing line nodes, the only difference is that
the line

newbn(nblc,3) = nod_1

in listing 12 and 13 is only used for sliding dividing line nodes.

122 The algorithm of the mesh refinement

After having stored the information for all new sliding dividing line nodes in newsn we
must insert the sliding dividing line node information into the snod array. For each new
sliding dividing line node we copy the new node number and the sliding dividing line num-
ber from newsn to the end of snod. The subdomain number of the new node is the same
as that of the end points of the edge. We have to determine the row in snod where the data
for the chosen end point, i.e. the first end point, of the refinement edge is stored. As the
node numbers in snod are only stored in ascending order for each sliding dividing line but
not for the whole array we execute a binary search on the concerned sliding dividing line
and copy the fictitious opposite nodes—one for each subdomain the node couples to—of
the end point, that are stored in the columns 4 to nsect + 3 in snod, into the row of the new
sliding dividing line node in snod.

nek: integer array for node numbers of the elements
nekinv: integer array for elements a node belongs to
nnr: integer array for node information
rtl: integer array for refinement edge information

C1 Create the nekinv array by inverting the element array nek.

C2 Search for the neighbour elements of the same refinement stage for each edge
of the refinement elements.

C3 Insert the necessary edge information into the rtl array.

C4 Update the nnr array with the data of the new nodes.

C5 Only for coupled domains with dividing lines: Check if the new nodes are
dividing line nodes.

C6 Assign coordinates and order to the new nodes.

C7 Interpolate the solution for the new nodes.

C8 Insert the new nodes into the refinement elements and their neighbour
elements in the nek array.

C9 Check if the new nodes are external boundary nodes.

C10 Only for coupled domains with sliding dividing lines: Check if the new
nodes are sliding dividing line nodes.

C11 Generate four elements in 2-D and eight elements in 3-D out of each old
refinement element.

C12 Prepare the next refinement step.

Algorithm C: Algorithm for one refinement step of the mesh refinement on a single processor.

4.5 Mesh refinement on a distributed memory parallel computer 123

Before we insert the new dividing line nodes into tnod and the new sliding dividing line
nodes into snod, the arrays for the dividing line node and the sliding dividing line node
information, we have to check if we exceeded the limit for the boundary nodes nbmax. We
use the same value for all three kinds of boundary nodes, so the check is he same as for the
external boundary nodes as described on page 97.

The algorithm of the mesh refinement on a single processor for problems with sliding di-
viding lines is algorithm C. This algorithm is valid for 2-D and 3-D for problems with or
without dividing lines or sliding dividing lines for the mesh refinement on a single proces-
sor.

4.5 Mesh refinement on a distributed memory parallel computer

Again we first explain the 2-D algorithm of the mesh refinement for a distributed memory
parallel computer, continue with the differences to 3-D and conclude with the peculiarities
of dividing lines and sliding dividing lines.

4.5.1 Mesh refinement in 2-D

Important notations:

bnod: integer array for external boundary nodes
iglob: integer array for starting addresses of own ref. edges in rtl
infarr: integer array for sending update information to overlap processors
lglob: logical array for own refinement edges
lnpl: logical array for edge identification
lp: integer array for numbers of edges to receive from overlap processors
nbrs: integer array for numbers of nodes, elements and boundary/DL/SDL nodes
nek: integer array for node numbers of elements
nekinv: integer array for elements a node belongs to
nenr: integer array for element information
nenrs: integer array for corresponding local number for a global element number
nnr: integer array for node information
nnrs: integer array for corresponding local number for a global node number
pcnt: integer array, counter for edges in ptl
ptl: integer array for refinement edge information (overlap edges)
rcvl: integer array for updating element information in left overlap
rcvlct: integer array for number and starting address of the elements in rcvl per proc.
rcvr: integer array for updating element information in right overlap
rcvrct: integer array for number and starting address of the elements in rcvr per proc.
refst: integer array for refinement stages of elements
rtl: integer array for refinement edge information (local edges)

124 The algorithm of the mesh refinement

The refinement process on a distributed memory parallel computer begins exactly like de-
scribed in subsection 4.4.1 for a single processor. We start with the largest elements of
stage 0 and deal with one stage after the other up to the smallest refinement elements of
stage rsmax. The refinement for one stage is called a refinement step.

Again we first invert the array for the node numbers of the elements, i.e. the nek array,
to get the inverted nek array nekinv where we store the element numbers a node belongs
to, then we search for the neighbour elements of each refinement element. Note tht both
the nek array and the nekinv array comprise the nodes and elements, respectively, that are
owned by a processor and those belonging to the left and right overlap. Afterwards we have
to set up the rtl array with the information about the new nodes that have to be generated.
Here the first difference to the single processor version comes to light.

Rule 5
An edge is always owned by that processor its leftmost node is owned by.

�1

refinement
node

D

C

B

A a

b

proc. 1 proc. 2 proc. 3 proc. 4

Figure 4.5.1: Illustration of the refinement process on np = 4 processors.

In figure 4.5.1 you see a similar situation as in section 4.3. There are edges that are not
owned by the processor that owns the refinement element in figure 4.3.6 as well as in fig-
ure 4.5.1 (see rule 5). So during the refinement cascade process the information about the

4.5 Mesh refinement on a distributed memory parallel computer 125

refinement of an element must be sent to the left, and afterwards, during the refinement
process itself, the information about an edge that has to be halved must be sent to the right
to the processor that owns the edge and therefore has to generate the new mid-point (see
rule 6). In figure 4.5.1 the triangles A, B and C are refinement elements because node 1
is a refinement node. As these triangles are owned by processor 3, the information about
the refinement must be sent from processor 4 to processor 3 (and because of the refinement
cascade processor 3 must send the information that triangle D is also a refinement element
to processor 1, but this is of no account here). When the elements are really refined by
halving the edges processor 3 that refines these elements must send the refinement edge
information (see table 4.5.1) for the edges a and b to the right to processor 4 because this
processor is the owner of the two edges, see rule 5.

Rule 6
An edge is always halved by that processor that owns the edge, i.e. this processor generates
the mid-point and the new node number.

SUMMARY: A refinement element may have edges that belong to the right overlap, i.e.
they are owned by an overlap processor and must therefore be halved by this processor.
So we have to introduce a second array besides rtl to store the data for the refinement
edges of the overlap. This array has got one column for each overlap processor on the
right side, and after having inserted all refinement edge information the data of each
column is sent to its corresponding overlap processor by the use of the communication
pattern we introduced in subsection 4.1.4, i.e. first the processors only get knowledge
of the message lengths they will receive in each communication cycle and in a second
step the real edge data is passed to the target processors.

So for the mesh refinement on distributed memory parallel computers we only store the
information of the own refinement edges in array rtl. When we create the rtl array, we must
simultaneously create a second array for the edges that belong to the right overlap because
an edge is always halved by the processor it belongs to, see rule 6. This means that the edge
information has to be sent to the corresponding overlap processor and therefore we store
the edge data in a second array. This integer array is ptl, its length is equal to nbm6 · notp
and its width is equal to the number of overlap processors on the right side npsr where
notp is the number of edges of own elements in the right overlap. This number has been
computed during the processing of the refinement cascade. Moreover, it holds

nbm6 = nnbmax + 6 = 7 in 2-D (4.5.1)

as an element may have at most one neighbour element at an edge (nnbmax = 1), so that
we have the edge information shown in table 4.4.1 for rtl and in table 4.5.1 for ptl for each

126 The algorithm of the mesh refinement

refinement edge. Note that an overlap edge can never be in the left overlap as the corre-
sponding refinement element would be owned by the same processor because of rule 4.

Now we go through the array indrel with the refinement element numbers of the current re-
finement stage and check for each edge of the current element that has not yet a mid-point
if it is owned by the processor itself, which means—because of rule 5—if at least one of its
end points is owned by the processor (see next but one paragraph). If yes, the information
about the refinement edge is inserted into rtl, the array for the local refinement edges, oth-
erwise we first determine the processor by which the edge is owned. This is, according to
rule 5, the leftmost of the processors the end points belong to. On principle, then the edge
information is inserted into ptl, the array for the overlap refinement edges, like it is shown
in table 4.5.1. In contrast to array rtl (see table 4.4.1) we have to insert the global node and
element numbers into ptl because the communication is only possible by global node and
element numbers.

i ptl(i, k) description
...

...
...

{ preceding edge }
pcnt(k) + 1 left free
pcnt(k) + 2 nod1 global number of end point 1 of edge j
pcnt(k) + 3 nod2 global number of end point 2 of edge j
pcnt(k) + 4 el global refinement element number
pcnt(k) + 5 pos local node number of new node in element (see figure 4.4.3)
pcnt(k) + 6 1 number of neighbour elements (= 1 in 2-D)
pcnt(k) + 7 elnb global number of the neighbour element

{ following edge }
...

...
...

Table 4.5.1: Illustration of the contents of column k of array ptl in 2-D, k is the column to be
sent to processor ip + k.

Each column has an own pointer to the current end of the column. These counters are
stored in a one-dimensional integer array pcnt with length equal to npsr. So after having
determined the processor ipown the edge belongs to we compute the corresponding column
colptl in ptl by simply subtracting the own processor number ip:

colptl = ipown − ip (4.5.2)

because we want to store the refinement edges owned by the direct neighbour proces-
sor ip+1 in column 1 of ptl, those owned by overlap processor ip+2 in column 2 etc. like

4.5 Mesh refinement on a distributed memory parallel computer 127

described for the array sndrto used during the refinement cascade.

If we are in a cycle where the elements have different refinement stages, the determination
if an edge is in the right overlap is quite difficult. This is because we do not change the
order of the nodes on a processor during the refinement process (we will see later that
this statement is not quite right). At the beginning we have n l own nodes on each processor
followed by the nodes of the overlap (first the left overlap, then the right one), altogether nn

nodes. In the first refinement step we generate noverl,1 new overlap nodes that are the mid-
points of the refinement edges that are owned by overlap processors on the right side and
that begin with the local number nn+1. They are followed by the nown,1 newly-created own
nodes resulting from the bisection of the own refinement edges. At the end of a refinement
step we have some overlap nodes again. After the last overlap node of refinement step 1
follow the first overlap nodes of refinement step 2 and so on. To know which nodes are own
nodes we introduce an integer array nbrs with length equal to 3 · (rsmax + 2) and width
equal to 5 where

rsmax = ncyc − 1 (4.5.3)

as already mentioned on page 74. The length comes from the fact that we need 3 entries
per refinement stage (and we have rsmax + 1 refinement stages as the largest elements have
refinement stage 0) and 3 additional entries for the old nodes and elements that were stored
before the refinement process on a processor. We need a width of 5 because we store in col-
umn 1 the numbers of nodes and we also use nbrs for the numbers of elements (column 2)
and the numbers of external, internal and sliding boundary nodes (columns 3 to 5). At
the beginning of the refinement process we insert into the first entry the number nl of own
nodes, into the second entry the number of the first node of the right overlap and into the
third entry the number of the last node of the right overlap. At the end of each refinement
step the information for the corresponding stage is inserted into nbrs. In refinement step rs
we insert in the first column of nbrs into entry 3 · rs + 1 the number of new own nodes,
into entry 3 · rs + 2 the local number of the first new overlap node on the right side and into
entry 3 · (rs + 1) the local number of the last new overlap node, see table 4.5.2. If there are
not any refinement elements in the current refinement step we copy the values of the last
refinement step into the appropriate entries in nbrs. The same we do for the numbers of
elements that are entered into column 2. For the external boundary nodes, the dividing line
nd sliding dividing line nodes it is of no importance if the overlap nodes are in the left or in
the right overlap, so we only store the number of new own nodes and the local number of
the last overlap node in the columns 3 to 5 of nbrs.

In the counter array pcnt we want to store the number of refinement edges for which we have
to send the edge information to the corresponding overlap processors on the right side. At
the moment, we have stored the number of entries in the columns of ptl, so we have to
divide all entries in pcnt by nbm6 after having created ptl and pcnt, as one edge consists of

128 The algorithm of the mesh refinement

! for each refinement stage
do l = 1,rs+1

! check if end points are in the right overlap
if ((nod_1 >= nbrs(3*l-1,1)).and.

& (nod_1 <= nbrs(3*l,1)).and.
& (nod_2 >= nbrs(3*l-1,1)).and.
& (nod_2 <= nbrs(3*l,1))) then

!*** if both points belong to overlap then the
!*** new point also belongs to overlap proc.
!*** therefore insert edge information into ptl

! p_nod_1/p_nod_2: owning proc. of nod_1/nod_2
p_nod_1 = nnr(nod_1,4)
p_nod_2 = nnr(nod_2,4)

! proc: proc. new node is generated (relative to myproc)
proc = min0(p_nod_1,p_nod_2)-myproc
! addr: starting address of edge in ptl
addr = p_cnt(proc)

! insert end points, elem.nr. and pos. in elem. into ptl
ptl(addr+2,proc) = nnr(nod_1,1)
ptl(addr+3,proc) = nnr(nod_2,1)
ptl(addr+4,proc) = nenr(indrel(j),1)
ptl(addr+5,proc) = k

! insert neighbour elements into ptl
ptlcnt = 0
do ii = nbfst,nblst-1

ptlcnt = ptlcnt+1
ptl(addr+6+ptlcnt,proc) =

& nenr(nb(curr,nbfst+ptlcnt-1),1)
end do
! insert nr. of neighbour elements into ptl
ptl(addr+6,proc) = ptlcnt
! increase counter for next edge
p_cnt(proc) = p_cnt(proc)+nbm_6

! found = true means new node is in overlap
found = .true.
! no search in next ref. stages needed anymore
exit

end if
end do

Listing 16: Code for inserting the edge information into ptl.

4.5 Mesh refinement on a distributed memory parallel computer 129

Ref. Entry Boundary nodes
step k Nodes Elements ext. int. slid.

1 number of own nodes/elements before refinement
2 local number of first

node/element of right overlap
before refinement

— — —

3 local number of last node/element of overlap before refinement
1 4 number of new own nodes/elements in ref. step 1

5 local number of first new
node/element in right overlap

in ref. step 1

— — —

6 local number of last new node/element of overlap in ref. step 1
...

...
...

rs 3rs+1 number of new own nodes/elements in ref. step rs
3rs+2 local number of first new

node/element in right overlap
in ref. step rs

— — —

3rs+3 local number of last new node/element of overlap in ref. step rs

Table 4.5.2: Illustration of the array nbrs.

nbm6 entries:

pcnt(ip) ⇐ pcnt(ip)

nbm6
for ip = 1, . . . , npsr. (4.5.4)

This division is the analogue to (4.4.5) in 2-D or, more general, (4.4.24) in 3-D, respec-
tively, for rcnt, the counter for the array rtl.

On a distributed memory parallel computer we also have to check if we exceeded the limit
for the nodes by the generation of the new nodes. As we have remarked for the maximum
number of elements in section 4.3 similarly, the maximum number of nodes nmax is a local
length on a distributed memory parallel computer. So we have to

check if nn +

npsr∑
ip=1

pcnt(ip) +
rcnt

nbm6

> nmax

and if yes, we print out an error message and stop the computation.

As the last nodes stored on a processor before the refinement process are overlap nodes,
we want to create the new overlap nodes first in order to have all overlap nodes one after
the other. So each processor starts with the generation of the new nodes that are created

130 The algorithm of the mesh refinement

by halving those edges that are in the overlap of a processor. Here it is of no account if an
edge must also be halved because an element on the processor that owns this edge has to
be refined. We use the communication pattern we described in subsection 4.1.4 on page 55
and first only send the number of edges to the right so that it is known on each processor
how much information it will receive and from which processors it will receive the data.
Again, we omit sending messages with length equal to zero. At the beginning we copy the
array pcnt to a buffer sndbuf which is sent around in np− 1 cycles. In each communication
cycle i the processors

from ip = i

to ip = np − 1

send their current buffer sndbuf to their right neighbour processor. The processors

from ip = i + 1

to ip = np

receive the message in a buffer rcvbuf and store the relevant information in a one-dimensional
integer array lp with length equal to npmax:

lp(i) = rcvbuf(i).

Afterwards we set
sndbuf = rcvbuf

because we want to send the pcnt array we just received from processor ip − 1 in rcvbuf to
processor ip + 1 in the following communication cycle with which we continue immedi-
ately. In table 4.5.3 the relation between pcnt and lp is shown clearly for np = 8 processors.
In the rows we have the processor numbers and in each column of pcnt you can see the
number of edges to send to the ith overlap processor, i.e. i = 1 is the direct neighbour
processor on the right side, i = 2 is the second overlap processor and so on. Here i also
indicates the number of the communication cycle in which the data will be sent. For lp
the ith column represents the ith overlap processor on the left side from which a processor
will receive data. For example, processor 1 will send the information for 10 edges to its
second neighbour processor on the right side (see left table, row 1, column 2)—which is
processor 3—in the second cycle, so it holds lp(2) = 10 on this processor (see right table,
row 3, column 2). On processor 3 it is known that it will receive 10 edges from processor 1
because the 10 is stored in the second entry of lp. In general, it holds

lpip+i(i) = pcnt,ip(i) (4.5.5)

where ip is the number of the sending and ip+ i the number of the receiving processor, and
i is the number of the communication cycle.

4.5 Mesh refinement on a distributed memory parallel computer 131

pcnt(i)
proc. i = 1 i = 2 i = 3

1 20 10 2
2 18 12 0
3 19 0 0
...

...
...

...
7 17 0 0
8 0 0 0

lp(i)
proc. i = 1 i = 2 i = 3

1 0 0 0
2 20 0 0
3 18 10 0
4 19 12 2
...

...
...

...
8 17 0 0

Table 4.5.3: Illustration of the arrays pcnt and lp for np = 8 processors.

By the array lp the number of edges for which processor ip will receive data is known on
this processor and by multiplying this length with mem int, the number of bytes for an inte-
ger variable, we easily get the message lengths. If lp(i) = 0 holds for an overlap processor
there is no message to receive from this processor and we therefore continue with the com-
munication to the next overlap processor.

Now we can send the real edge information that is stored in the array ptl because on each
processor the lengths of the messages to receive are known. This second part of the com-
munication consists of npmax,r cycles. In each communication cycle i processor ip sends
the data in the column of ptl for processor ip + i to this processor if

ip ≤ np − i ∧ pcnt,ip(i) > 0 (4.5.6)

holds, i.e. all processors from processor 1 to that processor that sends to the last proces-
sor np pass their data to processor ip + i if there is any data to send at all. The message has
a length of nbm6 · pcnt,ip(i) · memint bytes. All processors with

ip > i ∧ lpip(i) > 0 (4.5.7)

are ready to receive a message from processor ip − i. The message is received in the ptl
array of the receiving processor ip + i, the starting address is nbm6 · pcnt,ip+i(i) + 1, i.e.
the received data is stored directly behind its own edge information in column i that the
processor just sent to processor ip + i. In figure 4.5.2 we illustrate the array ptl on proces-
sor ip after it sent and received the refinement edge information in array ptl.

SUMMARY: The refinement edge information of those edges that belong to the overlap
of the processors that own the corresponding refinement elements has been passed to
that processors that are authorized to create the mid-points of these edges. For the
present we only issue the global node numbers of the new nodes. As it must be known
how many nodes the other processors have to create in order to be able to compute the

132 The algorithm of the mesh refinement

i pcnt(i)

1 7
2 5
3 3

i lp(i)

1 5
2 3
3 2

ptl(i, k)
i k = 1 k = 2 k = 3

1 ref. edges
... ref. edges sent to

3 · nbm6 ref. edges sent to ip + 3
... sent to ip + 2 ref. edges

5 · nbm6 ip + 1 rec. from
ip − 3

... ref. edges 0
7 · nbm6 rec. from

... ref. edges ip − 2
8 · nbm6 rec. from

... ip − 1 0
...

12 · nbm6

12 · nbm6 + 1 0
...

...
...

notp · nbm6 0 0 0

Figure 4.5.2: Illustration of array ptl on processor ip after sending to the right for npsr = 3.

own new global node numbers this needs communication again. After having finished
this part the edge data we just completed by the new global node numbers is sent back
to the source processors so that there the new node numbers are also known.

We go through the edge information arrays a processor received and first issue new local
node numbers from 1 to ncnt as we do not yet know the global numbers the new nodes will
get at this time. Afterwards the receiving processors must issue the new global node num-
bers for the new nodes, i.e. the new global node numbers are determined by the processor
that owns the refinement edge. The problem is that we only know the number of new nodes
to be generated on each processor, but the new nodes are still numbered from 1 to ncnt. If
we want to give the new global node numbers, we must know the starting address of the
global numbers of the new nodes on each processor first, i.e. it must be known on each
processor how many new nodes the processors on the left side will generate. This needs
communication again because each processor must send its local ncnt to the right. Again,
this is done by the communication pattern described on page 55 but this time it is only a
scalar that is sent around in np − 1 cycles. In each cycle the receiving processor ip adds
the received value to an integer nppip that has been initialized by 0. At the end nppip is the
number of nodes that is generated by the processors on the left side of a processor ip. In

4.5 Mesh refinement on a distributed memory parallel computer 133

figure 4.5.3 the numbering of the new nodes is illustrated.

proc. proc. proc. proc.1 2 3 4

old nodes

created nodes

new nodes
npp3
npp4n

Figure 4.5.3: Illustration for global numbering of the new nodes originating from the ptl array
for np = 4 processors.

Then the new global node numbers are issued. The new nodes on processor ip get the
global numbers

from n + nppip + 1

to n + nppip + ncnt.

As the new nodes already have got numbers from 1 to ncnt we can very easily compute the
new global node numbers by adding n + nppip. The total number of new nodes is nptl and
is computed on the last processor np by

nptl = nppnp + ncnt,np. (4.5.8)

Afterwards this number is scattered onto the other processors.

Now the completed ptl array with the overlap refinement edge information and the new
node numbers is sent back to the processors it originally came from. This is done in npmax,r

cycles where processor ip sends column i of ptl (from starting address nbm6 ·pcnt,ip(i)+1)
back to processor ip − i in each cycle i if

ip > i ∧ lpip(i) > 0 (4.5.9)

holds. All processors with

ip ≤ np − i ∧ pcnt,ip(i) > 0 (4.5.10)

get ready to receive the message from processor ip + i. Here we know the message length
on the receiving processors as they have sent the messages with the same length to the right

134 The algorithm of the mesh refinement

before. The received message is directly written over the old ptl array.

SUMMARY: After the processors received “their” ptl array from the overlap processors
they append the edge information of the ptl array to their local rtl array and issue the
local node numbers for the new nodes.

Although the nodes in the ptl array are overlap nodes, we must also assign coordinates, con-
sistency order and function values to them and they must be inserted into the refinement
elements and their neighbour elements. We want to have only one array for all edges with
this characteristic and we choose for reasons of simplicity the array for the local refinement
edges, i.e. the rtl array, so the edge information of all columns of the ptl array must be
appended to the rtl array, i.e. after the local edge information follows the information for
the edges of the first right neighbour processor, then the information for the edges of the
second right neighbour processor and so on. As we have local node and element numbers
in rtl we have to transform the global node and element numbers in ptl into local ones si-
multaneously.

We also insert the new global node number of a node and the processor that owns the node
into the node information array nnr, see table 4.4.2. Therefore we must also issue new
local node numbers and connect them with the global ones. As the last old node has got the
number nn and we continue counting the new local nodes by the following natural numbers
as usual, the new local node numbers go

from nn + 1

to nn +

npmax,r∑
i=1

pcnt(i).

Then we are able to store the node numbers in the nnr array:

nnr

(
nn +

j−1∑
k=1

pcnt(k) + i, 1

)
= ptl (nbm6 · (i − 1) + 1, j)

nnr

(
nn +

j−1∑
i=1

pcnt(k) + i, 4

)
= ip + j

(4.5.11)

for i = 1, . . . , pcnt(j) and j = 1, . . . , npmax,r. So we first insert the new nodes generated
by the first overlap processor on the right side into nnr, followed by the new nodes of the
second overlap processor and so on. In ptl we have stored the global node numbers of the
new nodes that have been sent back from processor ip+j. These global numbers are stored
in the first column of nnr. In the fourth column we store the number of the processor that
owns the new node. Columns 2 and 3 of nnr are left free as the nodes are overlap nodes
that will be deleted at the end of the refinement process and therefore the information is

4.5 Mesh refinement on a distributed memory parallel computer 135

only stored on the processor that owns the node.

We set

saddr2 =

npmax,r∑
i=1

pcnt(i) (4.5.12)

in order to have the starting address for the local numbers of the next nodes. When we
append the data of a refinement edge to the rtl array we have to increase the integer counter
rcnt by nbm6 so that

rcnt ⇐ rcnt + nbm6 ·
npmax,r∑

i=1

pcnt(i) (4.5.13)

holds after having appended the edge information of each edge in each column of array ptl.
The code for this process is shown in listing 17 on page 136, the algorithm for the issuing
of the new node numbers for the mid-points of the edges in the ptl array is algorithm D.

ptl: integer array for edges to be refined by overlap processors

D1 Pass number of edges in each column of ptl to the right.

D2 Pass the columns of ptl to the corresponding processors.

D3 Receiving processors:

a) Go through all received edge arrays.

b) Issue a new local node number to the mid-point of each edge.

c) Pass the number of new nodes to the right.

d) Issue the global numbers to the new nodes.

e) Pass the received and completed edge arrays back to the original processors.

Algorithm D: Algorithm for the issuing of new node numbers to the mid-points of the edges
in the ptl array (2-D).

SUMMARY: After having inserted the edge information of the edges in the right overlap
into rtl we do the same for the edge information the processors just received from the
left in the ptl array. As it is possible that there occur the same edges in the received
ptl array and the local rtl array we must take care to append only new edges to rtl .
Afterwards the processors issue the new local node numbers for the mid-points of the
appended edges. Then we assign local and global node numbers to all new nodes that
did not get one yet. These are the mid-points of those edges that have to be halved
only by their owning processor.

136 The algorithm of the mesh refinement

! saddr2: local nr. of new nodes already generated
saddr2 = 0

! for each right overlap processor
do i = 1,np_maxr

! for each new node of the current overlap proc.
do j = 1,p_cnt(i)
! saddr1: starting address of edge in ptl
saddr1 = nbm_6*(j-1)

! nod_1/nod_2: local numbers of end points of the edge
nod_1 = BINSCH(nnrs(1,1),nnrs(1,2),nnold,ptl(saddr1+2,i))
nod_2 = BINSCH(nnrs(1,1),nnrs(1,2),nnold,ptl(saddr1+3,i))

! nb_1: neighbour number of nod_2 for nod_1
nb_1 = NBSRCH(iinfo,nod_1,nod_2,ilev,idstar)
! nb_2: neighbour number of nod_1 for nod_2
nb_2 = NBSRCH(iinfo,nod_2,nod_1,ilev,idstar)

! set lnpl = true for this pair of end points
lnpl(nod_1,nb_1) = .true.
lnpl(nod_2,nb_2) = .true.

! insert new local node info into nnr
nnr(n_n+saddr2+j,1) = ptl(saddr1+1,i)
nnr(n_n+saddr2+j,4) = myproc+i

! insert ref. edge info into rtl
rtl(r_cnt+1) = n_n+saddr2+j
rtl(r_cnt+2) = nod_1
rtl(r_cnt+3) = nod_2
rtl(r_cnt+4) =

& BINSCH(nenrs(1,1),nenrs(1,2),ne_nn,ptl(saddr1+4,i))
rtl(r_cnt+5) = ptl(saddr1+5,i)
noel = ptl(saddr1+6,i)
rtl(r_cnt+6) = noel
do ii = 1,noel

rtl(r_cnt+6+ii) = BINSCH(nenrs(1,1),nenrs(1,2),
& ne_nn,ptl(saddr1+6+ii,i))

end do
! increase r_cnt for next edge
r_cnt = r_cnt+nbm_6

end do
! increase saddr2 for next overlap processor
saddr2 = saddr2+p_cnt(i)

end do

Listing 17: Code for the processing of the ptl array that has been sent to the right and received
back with the global node numbers of the mid-points.

4.5 Mesh refinement on a distributed memory parallel computer 137

The next thing to do is to look if there are edges in the ptl array, the array for the overlap
refinement edge information, a processor received from the left that this processor that is
the owner of these edges wants to halve itself, too. This is illustrated in figure 4.5.4 where
element A on processor 1 and element B on processor 2 both are refinement elements.

A

B

proc. 1 proc. 2

�ref. node

Figure 4.5.4: Illustration of a situation where the same refinement edge occurs in the received
ptl array (received from processor 1) and the (local) rtl array of processor 2.

Then the information for these edges has already been inserted into the receiving proces-
sor’s own rtl array for the local refinement edge information. So we go through all columns
of the received ptl array and look if the value for the combination of end points of the cur-
rent edge has already been set to true in the array lnpl (see on page 91), the array where we
mark the end points of the edges we already regarded, i.e. if the second end point nod2 is
the nbth

1 neighbour node of the first end point nod1 we

check if lnpl(nod1, nb1) = true.

Of course, if the same edge occurs several times in different columns of ptl, only the first
occurence is examined. If the edge has not to be halved because of the necessary refinement
of an own element, i.e. it holds

lnpl(nod1, nb1) = false,

we have to insert the edge data into rtl and therefore the processor appends the edge data
to its own rtl array. We also have to increase the counter rcnt that indicates the current end
of the rtl array by nbm6, the number of entries per edge. If the edge has also to be refined
by its own processor, i.e. if

lnpl(nod1, nb1) = true,

we search in rtl for this edge that represents the same physical edge and insert the new local
node number nodl of the mid-point:

rtl(nbm6 · (lfound − 1) + 1) = nodl (4.5.14)

138 The algorithm of the mesh refinement

where lfound is the number of the matching edge in rtl. We introduce a one-dimensional
logical array lglob with length equal to rcnt/nbm6 (here rcnt still is the original value)
which is the original number of edges in rtl. This array is initialized by true and must
be set to false for all edges that already have got a mid-point because they are refinement
edges on a left neighbour processor so that they do not get another mid-point by their own
processor. So if lfound is the number of the edge in rtl that corresponds to the current edge
in ptl we have to set

lglob(lfound) = false. (4.5.15)

In both cases we insert the necessary information for the nodes into all four columns of the
node information array nnr. With saddr2 from (4.5.12) the first new local node gets the
number

nn + saddr2 + 1

and for each new local node we increase this number by one. At the end saddr2 is set to
the last local node number on the processor. You can see the code for the inserting of the
data in listing 18.

As each processor has inserted all necessary edge information into its local refinement edge
array rtl we are able to issue the new global node numbers of those nodes we did not yet
give a new number. These are the new mid-points of the edges that are not refinement
edges on any left neighbour processor. We first transform the logical lglob array, where all
the edges that still have to get a new global number for the mid-point have the value true,
into a one-dimensional integer array iglob with length equal to rcnt where we insert the
starting addresses of the edges in rtl. The number of nodes to which we still must give a
new global node number is denoted by mcnt. In order to know the global number of the
first new node we have to know how many nodes will be generated by the processors on the
left side. So each processor sends its local mcnt to the right in np−1 cycles exactly like we
have done this before for the overlap nodes, see on page 132. In each cycle the processors
add the received number to a counter nppip that indicates the number of nodes that will be
generated on the left side at the end. This counter has been initialized by 0 at the beginning.

First we issue the new local node numbers and insert them into the first place of each edge
in rtl. The new numbers go

from nn + saddr2 + 1

to nn + saddr2 + mcnt.

As we have stored the starting addresses of the remaining refinement edges in iglob and in
the first place of the edge information we have the local node number of the new mid-point,
we set

rtl (iglob(i)) = nn + saddr2 + i for i = 1, . . . , mcnt. (4.5.16)

4.5 Mesh refinement on a distributed memory parallel computer 139

Then we can issue the new global node numbers. The new nodes get the numbers

from n + nptl + nppip + 1

to n + nptl + nppip + mcnt.

In figure 4.5.5 the global numbering of the new nodes is illustrated.

Again, the total number of new nodes nrs,new is computed on the last processor np by

nrs,new = nptl + nppnp + mcnt,np (4.5.17)

! initialize lglob
lglob = .true.

! for each right overlap processor
do i = 1,np_maxr
! initialize counter cnt
cnt = 0
! for each new node generated by current overlap proc.
do j = p_cnt(i)+1,p_cnt(i)+lp(i)

! check if first occurrence of the current node
if (lpt(j-p_cnt(i),i)) then

! saddr1: starting address of current edge
saddr1 = nbm_6*(j-1)
! increase counter cnt
cnt = cnt+1

! nod_1/nod_2: local node nrs. of end pts. of the edge
nod_1 = BINSCH(nnrs(1,1),nnrs(1,2),nnold,

& ptl(saddr1+2,i))
nod_2 = BINSCH(nnrs(1,1),nnrs(1,2),nnold,

& ptl(saddr1+3,i))

! nb_1: neighbour number of nod_2 for nod_1
nb_1 = NBSRCH(iinfo,nod_1,nod_2,ilev,idstar)
! nb_2: neighbour number of nod_1 for nod_2
nb_2 = NBSRCH(iinfo,nod_2,nod_1,ilev,idstar)

! check if pair of end pts. is not yet ins. into lnpl
if (.not.lnpl(nod_1,nb_1)) then
! insert node information into lnpl,
! nnr and rtl similar to listing 15

Listing 18: Code for the processing of the ptl array received from the left.

140 The algorithm of the mesh refinement

else ! pair is already inserted
! for each edge in rtl
do l = 1,r_cnt

! saddr3: starting address of current edge in rtl
saddr3 = nbm_6*(l-1)
! check if end points are indentical
if (((rtl(saddr3+2) == nod_1).and.

& (rtl(saddr3+3) == nod_2)).or.
& ((rtl(saddr3+2) == nod_2).and.
& (rtl(saddr3+3) == nod_1))) then

! append new node to nnr array
addr = n_n+saddr2+cnt
nnr(addr,1) = ptl(saddr1+1,i)
nnr(addr,2) = nnr(nod_1,2)
nnr(addr,3) = 1
nnr(addr,4) = myproc
! insert local node number into rtl
rtl(saddr3+1) = n_n+saddr2+cnt
! lglob = false means node must not get
! new node number any more
lglob(l) = .false.
! corresp. edge found: no further search needed
exit

end if
end do

end if

end if
end do
! increase counter for local nodes
saddr2 = saddr2+cnt

end do

Listing 18: Code for the processing of the ptl array received from the left (continued).

and is scattered onto the other processors. At the end we connect the local node numbers
with the global ones by inserting the data into the node information array nnr:

nnr(nn + saddr2 + i, 1) = n + nptl + nppip + i

nnr(nn + saddr2 + i, 2) = 1

nnr(nn + saddr2 + i, 3) = 0

nnr(nn + saddr2 + i, 4) = ip

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for i = 1, . . . , mcnt.

(4.5.18)

4.5 Mesh refinement on a distributed memory parallel computer 141

1 1 12 2 2 2

proc. proc. proc. proc.1 2 3 4
old

nodes

created
nodes

new
nodes

n
a3

a4
nptl

b2
b3

b41: ref. edges from ptl
2: ref. edges from rtl

ai = nppi,ptl

bi = nppi,rtl

Figure 4.5.5: Illustration for global numbering of the new nodes originating from the ptl and
the rtl array for np = 4 processors.

For the meaning of the columns see on page 94. We set

rcnt ⇐ rcnt

nbm6
(4.5.19)

at the end, this value represents all edges that have been halved on this processor and there-
fore all new nodes that have been generated and got new local and global node numbers. In
figure 4.5.6 we illustrate the local numbering of the new nodes on processor ip. The new
overlap nodes result from the local ptlip array for the overlap refinement edge information,
whereas the new own nodes result from the refinement edge information in rtl. ptlov is that
part of ptl that has been received from the left overlap, therefore the new nodes resulting
from this array are own nodes, too.

SUMMARY: We have generated all new nodes of the current refinement step but the
nodes only consist of their numbers so far. We have to assign coordinates, consistency
order and function values to them, and we have to insert the node numbers into the
elements in which they occur.

Now the new nodes get their coordinates and order exactly as shown in (4.4.6) and (4.4.7).
For the interpolation of the solution we have the problem that the difference stars for the
overlap nodes are not at our disposal. So if one of the end points of a refinement edge
is an overlap node, we just take the value that we interpolated by the evaluated influence
polynomials of the other end point (that is owned by the processor) as function value for
the new node. This does no harm as the function values are only starting values for the

142 The algorithm of the mesh refinement

old
nodes

ptlip ptlov

rtl

created
nodes

}

new
nodes︸ ︷︷ ︸

overlap
nodes

︸ ︷︷ ︸
own
nodesptlip : ref. edges sent to right overlap

ptlov : ref. edges rec. from left overlap
rtl : own ref. edges

Figure 4.5.6: Illustration for local numbering of the new nodes originating from the ptl and the
rtl array on processor ip.

Newton iteration in the following computation cycle.

There is no difference to the single processor run for the update of the element information
in the nek array, i.e. the array where we store the local node numbers of the local elements.
We described this update on page 96: we set the entry for the current element eli and the
current edge that has the local position posi in the element to the local node number that
corresponds with them (see listing 10):

nek(eli, posi) = rtl (nbm6 · (i − 1) + 1) for i = 1, . . . , rcnt. (4.5.20)

Then we update the information of the neighbour elements of the refinement elements in
the nek array as described on page 96. As already mentioned there we do not know the lo-
cal edge number in the neighbour elements where we have to insert the new node numbers.
Of course, the algorithm shown in listing 11 is not very efficient but somewhere we have to
spend the time to identify the correct edge number anyway.

There is not any difference to the single processor run in the check if a new node is a
boundary node so that the procedure on page 97 is also valid here. Only for the checking
of the boundary node limit we have to take into account that nbmax is a local value on a
distributed memory parallel computer and therefore

check if nebn + nbnew > nbmax

where nebnew is the number of new external boundary nodes on a processor.

SUMMARY: The neighbour elements of an own refinement element of a processor may
be owned by an overlap processor. So they belong to the overlap of the processor that
owns the refinement element, and if we insert the new nodes into these overlap elements

4.5 Mesh refinement on a distributed memory parallel computer 143

we must ensure that they are also inserted into the elements on their own processors.
So the node and element information must be passed to the overlap processors where
the new node is inserted into the neighbour element and—if necessary—appended to
the node list.

As seen in listing 11 on page 98 we updated the nek array for the neighbour elements of all
refinement edges on the processor that owns and therefore refines the element by inserting
the numbers of the new nodes into the rows in the nek array that correspond to the neigh-
bour element numbers. But if the neighbour elements are not owned by the same processor,
we did only update the information for overlap elements with that. We did not update the
nek array on the processors that own the neighbour elements! So we go through the array
for the local refinement edges, i.e. the rtl array, and look for each edge for neighbour el-
ements that share this edge and that are owned by a different processor. First we look for
elements in the left overlap, in a second step for elements in the right overlap. We explain
the procedure for the elements in the left overlap, for the elements in the right overlap it
works analogously. If we find an element as described above, we put all necessary infor-
mation, which is global element number, local position of the mid-point in the element and
the information that is stored in the node information array nnr for the new mid-point of
the edge, into the corresponding column of a buffer sndbuf .

We have to determine the length of this buffer first. So we count the elements that have
to be sent to each left overlap processor. This number is denoted by nesnd,ip. We compute
the maximum nesnd,max,ip of nesnd,ip over the overlap processors and then we compute the
global maximum nesnd,max,g of this maximum over the processors:

nesnd,max,ip =
npmax,l

max
ip=1

nesnd,ip,

nesnd,max,g =
np

max
ip=1

nesnd,max,ip

(4.5.21)

Therefore the buffer length is equal to 7 · nesnd,max,g and the width is equal to npmax,l, see
table 4.5.4. The local position in the element is known because we already inserted the
node in the neighbour element on the sending processor, so we do not need to search for
this position on the target processor again. The corresponding column colrel in the send
buffer sndbuf is

colrel = iprel + 1 + npsl (4.5.22)

with
iprel = ipown − ip (4.5.23)

where ipown is the processor where the data has to be sent to and npsl is the last processor
on the left side to send data to. We already explained on page 79 in subsection 4.3.2 that
we use this storage scheme to save memory.

144 The algorithm of the mesh refinement

k sndbuf(sndcnt(colrel) + k, colrel)

1 global element number
2 local position of new mid-point in the element
3 global node number of new mid-point of the current edge
4 number of subdomain new mid-point belongs to
5 number of coupling subdomains of new mid-point
6 owning processor of new mid-point
7 lrnew (see text)

Table 4.5.4: Storage scheme of array sndbuf for inserting data of an element of processor ipown

in column colrel.

As the new mid-point we want to insert into the nek array on the receiving processor has
just been generated by the sending processor, anything is known about this node on the
receiving processor. So we also have to insert the necessary information into the node
information array nnr, see table 4.4.2. In order to avoid multiple inserting of the same node
(because of several neighbour elements that are owned by the same processor) we reserve
the last entry of an edge for a value lrnew that indicates if the node should be inserted into
the nnr array. We set

lrnew = 1
lrnew = 0

}
if the node should

{
be

not be

}
inserted. (4.5.24)

To determine the value of lrnew we have a logical array logsnd with rcnt rows and npmax

columns that is initialized by true. We go through the refinement edges in rtl and insert
the neighbour elements of the current edge into sndbuf in the column colrel. If a neighbour
element is the first one for processor ipown, lrnew is set to 1 and the array entry corre-
sponding to the new node is set to false for this processor. For the following neighbour
elements owned by the same processor the entry in the logical array is already false, so we
set lrnew = 0.

A counter array sndcnt with length equal to npmax gives us the number of elements for
which we have to send data to the neighbour processors. After inserting the information
for all elements into the array sndbuf we send the counter array sndcnt to the left in np− 1
communication cycles. Again, we make use of the communication pattern presented in
subsection 4.1.4. Afterwards each processor is ready to receive the message(s) with the
element data. Here we only send data to neighbour processors where it is necessary as
usual. We need npmax,l communication cycles for the data exchange and in each cycle i the
processors pass a message of length

	 = 7 · sndcnt(coltarget) · memint (4.5.25)

4.5 Mesh refinement on a distributed memory parallel computer 145

to processor iptarget = ip − i if

sndcnt(coltarget) > 0 (4.5.26)

where
coltarget = 1 + npsl − i (4.5.27)

is the column in sndbuf where the data for processor iptarget is stored.

The target processor receives the message in the receive buffer rcvbuf which is a one-
dimensional array of length 7 · nesnd,max,g as we always process the received data of the
current communication cycle before the next cycle begins where the data in rcvbuf is over-
written. We go through the received data of the elements and first transform the global
element number elglobal into the corresponding local one (ellocal) by the means of array
nenrs, see on page 82. Then we insert the new nodes in the nek array, the array for the node
numbers of the local elements:

elglobal { = rcvbuf(1) } nenrs
=⇒ ellocal,

nek(ellocal, pos) = nodlocal (4.5.28)

where nodlocal is set to the last local number we generated on a processor so far at the
beginning and increase this value by one each time we have to insert a new node. This is
necessary if lrnew = 1 holds, i.e. then we increase the number of local nodes by one and
copy the node information from the receive buffer to the node information array nnr, see
listing 19:

nnr(nl,new, k) = rcvbuf(addr + 2 + k) for k = 1, . . . , 4. (4.5.29)

When we have finished the communication to the left, we do the same for those neighbour
elements that are owned by processors in the right overlap. The target processor in commu-
nication cycle i is iptarget = ip + i and the corresponding column coltarget in sndbuf now
is

coltarget = iptarget − ip = i (4.5.30)

because the processors where we do never send data to are on the right side and so we
simply can reduce the width of the array sndbuf .

RECAPITULATION: By this step we have updated the element information of those
elements that are not refinement elements themselves but they are only neighbour ele-
ments of a refinement element (thus get additional mid-point(s)) and furthermore are
owned by a different processor than the refinement element. Then the processor that
owns the refinement element must send the information that a new mid-point must be
inserted into the neighbour element to the owning processor of this element and the

146 The algorithm of the mesh refinement

! for all received elements
do i = 1,rcvcnt

! addr: starting address of current element
addr = 7*(i-1)
! el: local number of current element
el = BINSCH(nenrs(1,1),nenrs(1,2),ne_n,rcvbuf(addr+1))
! pos: local position of mid-point in current element
pos = rcvbuf(addr+2)

! check if node must be inserted into nnr
if (rcvbuf(7*i) == 1) then
! increase node counter and insert node info into nnr
n_lnew = n_lnew+1
nnr(n_lnew,1) = rcvbuf(addr+3)
nnr(n_lnew,2) = rcvbuf(addr+4)
nnr(n_lnew,3) = rcvbuf(addr+5)
nnr(n_lnew,4) = rcvbuf(addr+6)

end if

! insert node into nek array
nek(el,pos) = n_lnew

end do

Listing 19: Code for the processing of the received data for neighbour elements of refinement
elements owned by an overlap processor.

owning processor of the neighbour element must insert the node information into its
nnr array and insert the node number into its nek array.

SUMMARY: We divide the refinement elements of refinement stage rs into four elements
of refinement stage rs + 1. Therefore we have to issue the new element numbers for
three of them, one gets the old element number. Furthermore, we have to determine the
owning processor of the newly-created elements according to rule 4. If a new element
is not owned by the processor by which it has been created the information about this
element must be sent to the owning processor.

The next thing in this refinement step to do is the generation of the new elements. As all
necessary information is available on the processors this can be done purely local without
communication. However, we must determine the number of elements that the processors
on the left side generate in order to issue the new global element numbers becuse they are
appended to the previous element numbers. This is done like described for the numbering
of new nodes by mcnt on page 138, in fact we send both numbers at the same time to the
right to save communication time. In each cycle the received value is added to an integer
neppip that has been initialized by 0. Then the global element numbers are issued. The new

4.5 Mesh refinement on a distributed memory parallel computer 147

elements on processor ip get the global numbers

from ne + neppip + 1

to ne + neppip + 3 · nere

where nere = narpl(rs + 1, 2) is the number of refinement elements in the current re-
finement step. At the end we connect the local element numbers with the global ones by
inserting the data into the element information array nenr (see on page 78):

nenr(nen + i, 1) = ne + neppip + i

nenr(nen + i, 2) = 1

nenr(nen + i, 3) = 0

nenr(nen + i, 4) = ipown,i

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for i = 1, . . . , 3 · nere. (4.5.31)

According to rule 4 the new elements belong to the processor that owns the leftmost node.
So we have to determine this processor ipown for each of the four new elements. This also
holds for the element that gets the old element number, i.e. the elements with the old num-
bers may change the processor during a refinement step! But this is only possible under
certain circumstances. Let us look at the example illustrated in figure 4.5.7: There are two
old elements that both must be refined. The upper triangle is owned by processor ip as
node 1 is owned by processor ip, so both edge 1 and 3 are owned by processor ip, and
therefore the new nodes 4 and 6 are also owned by processor ip by our rules. As there are
not any new elements neither node 4 nor node 6 belong to, each of the new elements has
a node owned by processor ip, and therefore each new element is owned by processor ip.
The difference between the lower and the upper element is that edge 1 in the lower triangle
has already a mid-point when we refine the triangle. After the refinement the new node 6
is owned by processor ip, but the nodes 4 and 5 are owned by processor ip + 1. So all
nodes contained in triangle 6 are owned by processor ip + 1, and therefore the triangle is
also owned by this processor. We learn that there are two possibilities how a new element
may change the owning processor, and the difference between the two possibilities is the
number of corner nodes of the old element that are owned by processor ip. If only one
of the corner nodes of the old element is owned by processor ip, there must already exist
at least one of the mid-points of the two edges that share this node before the refinement
process (for illustration see figure 4.5.7). If two corner nodes are owned by processor ip,
both of the mid-points of the two edges that share the third node on processor ip + 1 or
ip + 2 must already exist before the refinement process.

The element number of the ith old element elold,i is stored in the integer array indrel for the
local refinement elements:

elold,i = indrel (narpl(rs + 1, 1) + i − 1) for i = 1, . . . , nere. (4.5.32)

148 The algorithm of the mesh refinement

�

�

�

�

�1 2

3

1

2

3

4

1

2

1

3 2

3

1

2

proc.
ip

proc.
ip + 1

proc.
ip + 2

�

�

�

�

�

�

�

�

�1 2

3

1

2

3

4

4

56

5

6

1

2

3

4

5

7

6

8

proc.
ip

proc.
ip + 1

proc.
ip + 2

ref.

Element is owned by processor ip

Element is owned by processor ip + 1

Figure 4.5.7: Illustration of the owning of the new elements in 2-D.

The element information of this old element elold,i is already stored in nenr so that we only
have to update the number of the owning processor:

nenr(elold,i, 4) = ipown,i for i = 1, . . . , nere. (4.5.33)

If one of the four newly-created elements is not owned by the processor that generates this
element we must send this information to the owning processor ipown. This is because at
the end of the refinement process, we throw away all overlap information and make a com-
pletely new sorting of the grid onto the processors again. So the processor that generates
the element will delete its information as the element is in the overlap, and on the processor
that owns the element anything would be known about its existence at all. Therefore the
element information would get lost.

As we learned at the end of subsection 4.3.2 on page 85 we have got two integer arrays
rcvl and rcvr for the storage of the numbers of refinement elements that have to be refined
because of the refinement cascade. These arrays have to be sent back to the processors that
own the evoking elements because we need the information about the refined elements for
the refinement of the evoking elements (see below). So we check for each new element
that belongs to the overlap if it already occurs in the array rcvl (if ipown < ip) or in rcvr (if
ipown > ip) where ipown is the owning processor of the element. If not, we just append it
to the corresponding array.

4.5 Mesh refinement on a distributed memory parallel computer 149

SUMMARY: We generated all elements of the current refinement step and must now
send the information about what happened to an old element to those overlap processors
that own refinement elements of the next refinement stage that are neighbour elements
of the old element because for their refinement we need the element information of the
refined elements. We store all necessary information in a buffer that is passed to the
overlap processor where the contents of the element information arrays is updated.

So the first refinement step is nearing completion now. If there are not any refinement ele-
ments of a higher refinement stage we have finished and can continue with the new sorting
of the grid onto the processors. Otherwise, we have to update the element information for
those elements on the neighbour processors that had to be refined because of the refinement
cascade. This has already been explained at the end of subsection 4.3.2. The reason is that
we need the element information of the refined elements on a processor in order to be able
to execute the refinement of the evoking elements of the refinement cascade on the neigh-
bour processor. If a refinement element elip of stage rs on processor ip has been refined
because of the refinement cascade that has been caused by refinement element elip−1 of
stage rs + 1 on processor ip − 1 the information about the four new elements that have
been developed from element elip must be sent to processor ip − 1 so that this processor
is also able to update its nek array with the node numbers of the local elements. Then the
refinement of element elip−1 can be carried out in the next refinement step.

a)

�
A

proc. ip−1 proc. ip b)

�B

proc. ip−1 proc. ip

� refinement node

Figure 4.5.8: Illustration of the known information at the end of a refinement step a) on refine-
ment processor ip, b) on overlap processor ip − 1.

An example will illustrate the necessity of this update step between two refinement steps. In
figure 4.5.8 the situation at the end of a refinement step is shown for two neighbour proces-
sors ip (figure 4.5.8a)) and ip− 1 (figure 4.5.8b)). Note that you can see the same situation
both in figure 4.5.8a) and b), the difference is the known information on the respective
processor. As there is a refinement node (node A) in the right element on processor ip the
right element has been refined in the current refinement step and the new elements have
been generated on the right side (dashed lines). If we tried to refine the left upper element

150 The algorithm of the mesh refinement

of processor ip − 1 in the next refinement step (because of the refinement node B), we
would generate an additional node on the left vertical edge of the right element as the in-
formation of the refinement of this element is missing on processor ip − 1. Note that the
right element has not only to be refined because of the refinement node A in the current
refinement step but also because of the refinement cascade evoked by refinement node B.

But the first thing to do is to check if there are any refinement elements at the processor
borders that have to be refined because of the refinement cascade at all. So we introduce
two counters lecnt and recnt for elements of which we have to send the updated nek array
to the left or right, respectively. If both counters are equal to zero on all processors there is
nothing to update and we only have to add the data for the current refinement stage to the
nbrs array, the array where we store the numbers of own and overlap nodes and elements,
and continue with the elements of the next refinement stage.

If there is any element information that has to be passed to a neighbour processor we have
to do the following. We explain the processing for the communication to the left side, the
communictation to the right side works analogously. First of all we sort the elements in rcvl
(see on page 85), i.e. the array where we stored the numbers of the elements of which we
have to send the information to the left, by the processor number (in ascending order) they
must be sent to. Therefore we need an integer array rcvlct of length np and width 2. Here
we store the number of elements per processor in the first column and the starting address
of the elements for a processor in rcvl in the second column. We determine the leftmost
processor to send data to which is

ipleft = rcvl(1, 3). (4.5.34)

So the number of cycles within the communication is

ipmax,l = max
ip=1,...,np

(ip − ipleft,ip) . (4.5.35)

As usual, only those processors send data that really must send data to the current target
processor. So we first have to pass the number of elements, for which we have to send the
information to the overlap processors and by which those overlap processors can compute
the message lengths they will receive, to the left. Therefore we allocate a send buffer sndbuf
with length equal to ipmax,l where we set

sndbuf(i) = rcvlct(ip − ipleft + 1 − i, 1) for i = 1, . . . , ip − ipleft. (4.5.36)

By this storage we have the number of elements for the direct left neighbour processor
stored in the first entry of sndbuf , followed by the second left neighbour processor etc.
just like we did for the array sndlto that we used during the refinement cascade, see on
page 79. This buffer is sent to the left in np − 1 cycles by the means of the well-known

4.5 Mesh refinement on a distributed memory parallel computer 151

communication pattern presented in subsection 4.1.4. Afterwards we send the messages
with the real data to the target processors in ipmax,l cycles. Within a communication cycle i
the number of elements nes that must be sent to processor ip − i is

nes = rcvlct(ip, 1). (4.5.37)

nes determines the length linfarr of the message that is sent to the neighbour processor
which is computed by

linfarr = 2 · nedge · nes + 4 · (elnew + 1) · nes + nolnod · (elnew + 1) · nes + 1

= (2 · nedge + (4 + nolnod) · (elnew + 1)) · nes + 1 (4.5.38)

= 46 · nes + 1

with
nedge = 3, elnew = 3, nolnod = 6 in 2-D.

So the information we have to send to the left consists of 46 integer numbers for each ele-
ment in 2-D! This comes from the fact that we have to send the information of the element
information array nenr (= 4·(elnew+1)) and of the nek array (= nolnod·(elnew+1)). Addi-
tionally, we have to send the information of newly-created nodes in the element that are not
owned by the receiving processor because these nodes are not yet known on this processor.
Here we only need to send the global node number and the processor that owns the node
(= 2 · nedge at most) because these nodes are only overlap nodes that must be inserted into
the nek list on the neighbour processor. The processor number is needed to determine the
owning processor of the newly-created elements. In the first entry of the one-dimensional
integer array infarr with length equal to linfarr that we use for the storage of the data we
store the value ns which is the number of nodes we have to send to processor ip − i. One
could suppose that we could have sent this number together with the number of elements
nes in the preparatory step to the left but in contrast to nes the value for ns is not known at
the beginning. So it is less expensive to increase the message length by one integer value
than to go through the elements twice, first checking how many nodes have to be sent to
the left before really inserting them the second time. The storage scheme of array infarr is
shown in figure 4.5.9.

As we have stored in rcvl the numbers of all elements in the left overlap that have to be
refined because of the refinement cascade without paying attention to their refinement stage,
and we only want to send the data for the refinement elements of the current refinement
step we must exclude all elements that are of a higher refinement stage (there are not any
elements of a lower refinement stage as we will see in the next paragraph). So we have to
check if for the refinement stage rsel of an element el holds

rsel = rs − 1 (4.5.39)

152 The algorithm of the mesh refinement

· · · · · · · · ·
2·ns 4·(elnew + 1)·nes

ns

nolnod·(elnew + 1)·nes

global nr.
and owning

proc. of︷ ︸︸ ︷
node

1
node
ns ︷ ︸︸ ︷ ︷ ︸︸ ︷

information of array
nenr for new elements

resulting from︷ ︸︸ ︷
elem.

1
elem.
nes ︷ ︸︸ ︷ ︷ ︸︸ ︷

information of array
nek for new elements

resulting from︷ ︸︸ ︷
elem.

1
elem.
nes

Figure 4.5.9: Storage scheme of array infarr.

where rs is the number of the current refinement step. If (4.5.39) holds, the element infor-
mation is inserted into the array infarr, and if the node numbers of the new mid-points of
this element are not yet stored in infarr, we make up leeway now.

After a processor sent the information of the refined elements of which the refinement
results from the refinement cascade to those processors that own the evoking elements, we
do not need the information that the information of this element must be sent to the overlap
processor anymore because this element will not be refined once more during the same
refinement cycle. So we set

rcvl(el, 1) = 0 (4.5.40)

after having inserted all data for element el into infarr. When each receiving processor
updated its nek and its nenr array for the elements and its nnr array for the nodes, we delete
all entries from rcvl with a zero in the first column. This means that the elements of the
refinement stage we just refined are deleted, so that we only have got elements of a higher
refinement stage in the rcvl array. This is done to save time in the following refinement step
when we again have to check the refinement stage of the elements by (4.5.39) in the update
step. Otherwise we would check in each update step all elements that have already been
updated in the preceding refinement steps and therefore do not have to be updated again,
which makes no sense and therefore wastes time.

When we have stored the data of all elements in infarr in communication cycle i this array
is passed to processor ip − i where the message is received in a buffer infbuf that has also
the length linfarr (note that this value can be computed on the target processor because the
number of elements for which the target processor will receive data is already known).

The receiving processors set

nr,ip−i = infbuf(1) = ns,ip and

ner,ip−i = nes,ip

4.5 Mesh refinement on a distributed memory parallel computer 153

where ns,ip is the number of nodes and nes is the number of elements for which we have
stored the information in infarr or infbuf , respectively. We first check if the maximum num-
ber of nodes nmax or elements nemax would be exceeded by the new nodes and elements. If
yes, we print out an error message and stop the communication. Otherwise, we first append
the new nodes to the node information array nnr. As the data exchange is only possible
by global node and element numbers, we have to transform the (global) node numbers of
the received elements into local node numbers. The processor just received new nodes that
occur in the received elements, so we have to invert the first column of the nnr array with
the global node numbers in order to get the updated nnrs array with the local node number
for each global node that belongs to the processor. The next thing to do is the update of the
old element, i.e. we overwrite the information for the old element stored in the array nek
by the information the processor received from its neighbour processor. To get knowledge
of the local number of this element on the receiving processor we have to transform the
received global element number into the corresponding local one by a binary search in the
nenrs array:

infbuf (2·nr+4·(i−1)·(elnew+1)+2) = elglobal
nenrs
=⇒ ellocal

for i = 1, . . . , nes. Then we overwrite the row for this element in the array for the node
numbers of each local element, i.e. the nek array, by the new node numbers for this element.
Here we simultaneously transform the received global into local node numbers by a binary
search in the updated nnrs array:

infbuf (2· nr+4·ner ·(elnew+1)+

nolnod·(k − 1)·(elnew+1)+2) = nodglobal
nnrs
=⇒ nodlocal,

nek(ellocal, k) = nodlocal (4.5.41)

for k = 1, . . . , nolnod. The refinement stage of the updated old element is increased by
one. The information of the three newly-created elements (by the subdivision) is appended
to the array nek and the element information array nenr, respectively, i.e. we transform
the global node numbers of the three received new elements into local numbers and insert
them at the end of the nek array, furthermore we insert the global element number, domain
number, dividing line property and own processor at the end of nenr. The refinement stage
of the new elements is set to the same value as that one of the updated old element. At
the end, we invert the nenr array to get the new nenrs array, i.e. the array for the local
element number of each global element that belongs to the processor, and afterwards the
communication with the next processor will start.

After having finished the ipmax,l cycles for the communication to the left, the same takes
place for the communicaton to the right. The number of communication cycles is

ipmax,r = max
ip=1,...,np

(ipright − ip) (4.5.42)

154 The algorithm of the mesh refinement

with
ipright = rcvr(recnt, 3). (4.5.43)

For the communication to the right we allocate an integer array rcvrct where we store the
number of elements per processor and the starting addresses of the elements for a processor
in the sorted array rcvr. For the execution of the preparatory step of the data exchange we
must update the send buffer sndbuf by setting

sndbuf(i) = rcvrct(ip − ipleft + i) for i = 1, . . . , ipright − ip (4.5.44)

and send this buffer to the right in np − 1 cycles. During the following ipmax,r cycles the
element data is sent to processor ip + i in cycle i where the message itself is arranged the
same way as for the communication to the left and there is no difference in the work of the
target processors.

RECAPITULATION: If we refine elements in a refinement step that have neighbour ele-
ments on an overlap processor which must be refined in the next refinement step, we first
must send the information what happened to the larger elements in the current refine-
ment step to this overlap processor. Otherwise, we would create an additional (fourth)
node on an edge of the (then unchanged) larger element on the overlap processor by
the refinement of the smaller element in the following refinement step. The concerned
larger elements are exactly those that have to be refined because of the refinement
cascade. So the information about the generated new elements and the mid-points that
have been created on the edges of these elements must be sent to those neighbour
processors that must refine the neighbour elements, that evoked the refinement, in the
following refinement step. On the target processors the information is appended to the
node and element lists.

Before the refinement process we had stored the old own elements from the original mesh
at the beginning of the element arrays nek and nenr, followed by the old overlap elements.
With the refinement of the largest elements we have generated new own elements that have
been appended to the element arrays, and by the update step we received new overlap el-
ements from the neighbour processors that we also appended to the element arrays. We
want to group all own and all overlap elements that have been added during the current
refinement step to the element arrays, because this grouping makes it easier to differentiate
between these two types of elements, becuse then we only need two rows per refinement
stage/step in the nbrs array for the numbers of own and overlap nodes and elements.

First the elements that have been newly-created by a processor in the current refinement
step and that have been stored in the element arrays nek and nenr on a processor before
the beginning of the update step are sorted by processor number where we start with the
processors 1 to ip − 1 (overlap elements), continue with the processors ip + 1 to np (over-
lap elements) and finish with the elements owned by processor ip (own elements). The

4.5 Mesh refinement on a distributed memory parallel computer 155

elements in the overlap result from the fact that the newly-created elements have not to be
owned by the same processor as the old refinement element, see on page 148. So the last
old elements that have already been stored on processor ip before the refinement process
are overlap elements as mentioned above, and by the re-sorting the first new elements are
overlap elements again. The number of new overlap elements of this sorting is denoted by
neoverl,1, the number of new own elements by neown,1. Then we sort the elements that have
been added during the update step by processor number. These elements are identified by
their starting address which is the local number of the last element stored before the update
step started, increased by one. This time we start with the elements owned by processor ip
(own elements), continue with the processors 1 to ip−1 (overlap elements) and finish with
the processors ip + 1 to np (overlap elements). This is because then the new own elements
are all stored one after the other in the element arrays as the first sorting of the elements
ends with own elements of the processor and at the beginning of the second sorting of
the elements we have stored own elements, too. The number of new own elements in the
update step is denoted by neown,2, the number of new overlap elements in the update step
by neoverl,2. Figure 4.5.10a) illustrates the storage scheme of the elements on a processor
at the end of a refinement step. Again, from the first column of the element information
array nenr the inverse nenrs is computed where we store the local element number for each
global element that belongs to the processor.

a)

nen,new

⎧⎨
⎩

nen number of elements before current refinement step
neoverl,1 number of new overlap elements by ref. of own elements
neown,1 number of new own elements by ref. of own elements

neupd

{
neown,2 number of new own elements by update step
neoverl,2 number of new overlap elements by update step

b)

nn,new

⎧⎨
⎩

nn number of nodes before current refinement step
noverl,1 number of new overlap nodes by ref. of edges in ptl
nown number of new own nodes by ref. of edges in rtl

noverl,l

{
noverl,2,l number of new left overlap nodes (page 143ff.)
noverl,3,l number of new left overlap nodes by update step

noverl,r

{
noverl,2,r number of new right overlap nodess (page 143ff.)
noverl,3,r number of new right overlap nodes by update step

Figure 4.5.10: Illustration of a) the numbers of elements stored in the element arrays nek and
nenr, b) the numbers of nodes stored in the node arrays nnr, x, y, u and q at the
end of a refinement step.

The re-sorting of the nodes is necessary for the same reason as the re-sorting of the ele-

156 The algorithm of the mesh refinement

ments. Before the refinement process we had stored the old nodes from the original mesh
at the beginning of the node arrays nnr, x, y, u and q (for general information, coordinates,
solution and order of the nodes), followed by the old overlap nodes. With the refinement
of the largest elements we have generated noverl,1 new overlap nodes from the ptl array and
nown,1 new own nodes from the rtl array that have been appended to the node arrays. From
the updating of the nek array for neighbour elements of refinement elements that are owned
by overlap processors as described on page 143ff., we have got noverl,2,l overlap nodes in
the left overlap and noverl,2,r overlap nodes in the right overlap. In the update step a proces-
sor receives noverl,3,l overlap nodes from the left and noverl,3,r overlap nodes from the right.
The reason for the differentiation between overlap nodes received from the left and from
the right is the following: When we introduced the nbrs array on page 127 we separated the
overlap nodes into the nodes belonging to the left overlap and those nodes belonging to the
right overlap because otherwise we could not find out which edges are in the right overlap
which is necessary for the generation of the new mid-points of the refinement edges. So we
re-sort the overlap nodes, i.e. we change the order of the noverl,2,r right overlap nodes from
the process described on page 143ff. and the noverl,3,l left overlap nodes from the update
step, see figure 4.5.10b).

The last necessity in the update step is the updating of the nbrs array for the node and
element data, i.e. the array where we store the number of own and overlap nodes and
elements that we introduced on page 127. For the elements we group the old overlap
elements and the neoverl,1 elements resulting from the refinement of the own elements.
They form the new “old” overlap. The new own elements resulting from the refinement
of the own refinement elements and from the update step comprise the new own elements
of the current refinement step. After them, the new overlap elements follow. We insert the
data for the elements into the nbrs array, cf. table 4.5.2 and corresponding text on page 127:

nbrs(3 · rs, 2) = nen + neoverl,1

nbrs(3 · rs + 1, 2) = neown,1 + neown,2

nbrs(3 · rs + 3, 2) = nen,new + neupd

(4.5.45)

with the notations from figure 4.5.10a). The updating of the nbrs array for the nodes is quite
difficult. Like for the elements we group the old overlap nodes and the noverl,1 new overlap
nodes resulting from the refinement of the edges in the own array for the overlap refinement
edge information, i.e. the own ptl array. The left overlap of the current refinement step
is formed by the noverl,l = noverl,2,l + noverl,3,l left overlap nodes, the right overlap by
the noverl,l = noverl,2,r + noverl,3,r right overlap nodes that result from the updating of
the nek array for neighbour elements of refinement elements that are owned by overlap
processors as described on page 143 and from the data exchange during the update step,

4.5 Mesh refinement on a distributed memory parallel computer 157

see figure 4.5.10b). So we insert the node data into the nbrs array as following:

nbrs(3 · rs, 1) = nn + noverl,1

nbrs(3 · rs + 1, 1) = nown

nbrs(3 · rs + 2, 1) = nnew + noverl,l + 1

nbrs(3 · rs + 3, 1) = nnew + noverl,l + noverl,r

(4.5.46)

with the notations from figure 4.5.10b). The algorithm for the update step is shown in al-
gorithm E.

infarr: integer array for sending update information
nbrs: integer array for numbers of nodes and elements during ref. step
nnr: integer array for node information
rcvlct: integer array for number and starting address of the elements in rcvl per processor

E1 Check if update is necessary at all. If not, continue with step E6

E2 Compute array rcvlct (see page 150).

E3 For each left overlap processor:

a) Compute message length linfarr for messages to send to the left.

b) Insert node and element information into infarr array.

c) Pass message to the current overlap processor.

d) Receiving processors:

1. Check if maximum numbers of nodes or elements would be exceeded by
inserting the new nodes and elements. If yes, exit and stop.

2. Insert node information into nnr array.

3. Update element information for old elements in element arrays.

4. Append element information for new elements to element arrays.

E4 Repeat steps E3a) to d) for right overlap processors.

E5 Re-sort elements.

E6 Update nbrs array.

Algorithm E: Algorithm for updating the element information of elements to be refined be-
cause of the refinement cascade on overlap processors.

As the nodes that a processor receives during the update step are only overlap nodes, the
columns in nbrs for the three kinds of boundary nodes—external boundary nodes, dividing

158 The algorithm of the mesh refinement

line and sliding dividing line nodes—can be updated as soon as we check the boundary node
property. We do not store any new boundary nodes of the overlap on a procesor during the
mesh refinement process. We need the boundary nodes of the overlap only once during a
refinement step, namely when we determine the new boundary nodes at a processor border
if one of the two end points of an edge is in the overlap. But as all refinement elements
and thus all refinement edges are fixed before the refinement process is started, the newly-
created boundary nodes in the overlap cannot be an end point of a refinement edge and
therefore we do not have to store them. So we set

nbrs(3 · rs + 1, j) = nbown

nbrs(3 · rs + 3, j) = nbrs(3 · rs, j)
}

for j = 3, . . . , 5 (4.5.47)

where nbown is the number of new own boundary nodes in the current refinement step.

At the beginning of each refinement step we invert the array with the node numbers for each
local element, i.e. the nek array, in order to get the nekinv array with the element numbers
each local node belongs to. This array nekinv that we need for the neighbour element search
is allocated with width equal to the maximum number of elements inmax a node belongs
to. By the refinement of the elements of one stage the number of elements a node belongs
to may change and therefore the maximum number of elements inmax any node belongs to
must be recomputed at the end of a refinement step. Here ends the discussion of the first
refinement step.

For the following refinement steps we have to pay attention to some differences to the first
refinement step. We will specify these differences in the following: We increase the total
number of nodes nrs and the total number of elements ners that existed before the current
refinement step by the number of generated new nodes nrs,new (4.5.17) and by the number
of generated elements in refinement step rs in order to be able to issue the global node and
element numbers in the following refinement step:

nrs+1 = nrs + nrs,new

ners+1 = ners + 3 · nere

(4.5.48)

because for each refined element three additional elements are created. We also need to
update the values for the number of local nodes nn and elements nen including the overlap
to issue the local node and element numbers in the following refinement step:

nn,rs+1 = nnew,2 + nupd

nen,rs+1 = nen,new + neupd,
(4.5.49)

see equations (4.5.45) and (4.5.46) as well as figure 4.5.10. The algorithm for one refine-
ment step of the mesh refinement on a distributed memory parallel computer is presented

4.5 Mesh refinement on a distributed memory parallel computer 159

in algorithm H on page 174 that also contains the peculiarities that occur in 3-D and for
dividing lines and sliding dividing lines we describe in the following subsections.

After the refinement of the refinement elements of all refinement stages has taken place,
i.e. after all refinement steps, we have to change the numbers of the external boundary
nodes from local numbering to global numbering because now we have to sort the grid by
x-coordinate again as described on page 45. Furthermore, we have to delete the overlap
data for the nodes, elements and external boundary nodes. For the nodes we must do this
for the node information array nnr, the coordinates, the consistency order and the solution
array. For the elements we must eliminate the overlap data from the element information
array nenr, the nek array with the node numbers of the elements and the array refst for the
refinement stages of the elements. We illustrate this elimination for the nnr array in list-
ing 20, for the elements we have to take the numbers stored in the second column of nbrs.

! initialize node counter
p = 0
! for each refinement stage
do k = 1,rs_max+1
! increase p by nr. of new nodes in last ref. stage
p = p+nbrs(3*k-2,1)
! q: starting addr. of new nodes in curr. ref. stage
q = nbrs(3*k,1)
! r: nr. of new nodes in current ref. stage
r = nbrs(3*k+1,1)
! for each column of nnr
do j = 1,nnrdim

! for each new node
do i = 1,r

! copy nnr info
nnr(p+i,j) = nnr(q+i,j)

end do
end do

end do

Listing 20: Code for the elimination of the overlap data for the nnr array.

In the array bnod with the information for the external boundary nodes we additionally
have to set

bnod(i, 1) = nnr(bnod(i, 1), 1) for each node i. (4.5.50)

which is shown in listing 21. This is because after the nodes have been re-sorted on the
processors, we must also re-sort the external boundary nodes, and we can only do this ef-
ficiently by sending the array bnod in a ring shift to the processors in np communication
cycles, and in each cycle the processors take out the boundary nodes they own. Therefore

160 The algorithm of the mesh refinement

the boundary nodes must be numbered by their global numbers.

! p: nr. of ext. bd. nodes before refinement
p = nbrs(1,3)
! for each old node
do i = 1,p

! transform local bd. node numbers into global ones
bnod(i,1) = nnr(bnod(i,1),1)

end do

! initialize boundary node counter
p = 0
! for each refinement stage
do k = 1,rs_max+1

! increase p by nr. of new bd. nodes in last ref. stage
p = p+nbrs(3*k-2,3)
! q: starting addr. of new bd. nodes in curr. ref. stage
q = nbrs(3*k,3)
! r: nr. of new bd. nodes in current ref. stage
r = nbrs(3*k+1,3)
! for each new bd. node
do i = 1,r
! transform local bd. node numbers into global ones
bnod(p+i,1) = nnr(bnod(q+i,1),1)
! copy boundary info
bnod(p+i,2) = bnod(q+i,2)

end do
end do

Listing 21: Code for the elimination of the overlap data for the bnod array.

4.5.2 Extension to 3-D

Important notations:

ecnt: integer array, counter for edges in etl
etl: integer array for refinement edge information to be sent to owning processors of

neighbour elements of the ref. element
lnpl/
lnpl2: logical array for edge identification
lprocs: logical array for processors etl must be sent to
nenr: integer array for element information
nnr: integer array for node information
ptl: integer array for refinement edge information (overlap edges)
rtl: integer array for refinement edge information (local edges)

4.5 Mesh refinement on a distributed memory parallel computer 161

There is quite a number of differences between 2-D and 3-D on a distributed memory
parallel computer. We put up the two arrays for the refinement edge information—rtl for
the own refinement edges and ptl for the refinement edges in the right overlap—as described
for 2-D and shown in table 4.4.4 for rtl. As in 3-D more than two elements may share an
edge, it holds

nbm6 = nnbmax + 6 > 7 (4.5.51)

where nnbmax is the maximum number of neighbour elements per edge of a refinement
element in the current refinement step. After putting up the two arrays we pass the ptl array
to the right as in 2-D and the right overlap processors receive the edges they own and issue
the new global node numbers for the new nodes. But there occurs another problem in 3-D,
see figure 4.5.11: If two different processors ip1 and ip2 own elements that share the same
edge that belongs to a right overlap processor ip3, both processors send their information
about this edge to processor ip3 requesting to generate a mid-point on this edge, but there
the information is received in different communication cycles and it is stored in different
columns of the ptl array. As the same edge is concerned the mid-point must not get two
different node numbers. Therefore we must detect identical refinement edges and forbid
that the same physical node gets two different node numbers.

proc. ip1 proc. ip2 proc. ip3

�
ref.

node

Figure 4.5.11: Illustration of a refinement edge (bold) of which the refinement is caused by
two different overlap processors.

So we go through that part of the columns of the refinement edge information array ptl the
processor received and first transform the global numbers of the end points of an edge into
local ones by a binary search in the nnrs array, the array with the local node number for
each global node that belongs to the processor. We need a logical array lnpl2 that serves
the same purpose as the array lnpl we used to create the ptl and rtl array, see on page 91.

162 The algorithm of the mesh refinement

This array is initialized by false. Again, we have to determine in which neighbour relation
the two end points of an edge are and insert the value true into lnpl2 if we did not find this
edge before. Then the new mid-point must (later) really get a new local node number. If the
entry in lnpl2 already has the value true for this edge we must find out which of the edges
we already regarded is the same one. There we search linearly in the columns 1 to i− 1 (if
the edge occurs in the ith column of ptl) and compare the node numbers of the end points
of the edges with those of the current edge. When we find the matching edge we store the
node number that we issued for the mid-point of this edge also for that one of the current
edge. As we do not know at this time the global numbers the new nodes will get, we give
them local numbers. Therefore we have a node counter ncnt that is initialized by zero and
increased by one every time we find a new refinement edge.

The global numbers for the new nodes are issued as described on page 132 for 2-D and
then each column of the ptl array is sent back to its original processor. The 3-D algorithm
for the issuing of the new global node numbers for the mid-points of the edges in the ptl
array is algorithm F.

Each processor appends the edge information of the ptl array at its own rtl array and issues
the new local node numbers just like in 2-D. Then we check if there are any edges in the
ptl arrays received from the left that also occur in the own rtl array and handle them as
described for 2-D on page 137f.

ptl: integer array for edges to be refined by overlap processors

F1 Pass number of edges in each column of ptl to the right.

F2 Pass the columns of ptl to the corresponding processors.

F3 Receiving processors:

a) Go through all received edge arrays.

b) Issue a new local node number to the mid-point of each edge not yet considered.

c) For an already considered edge search for the matching first occurrence and
issue the same number to the mid-point of the current edge.

d) Pass the number of new nodes to the right.

e) Issue the global numbers to the new nodes.

f) Pass the received and completed edge arrays back to the original processors.

Algorithm F: Algorithm for the issuing of new node numbers to the mid-points of the edges in
the ptl array (3-D).

4.5 Mesh refinement on a distributed memory parallel computer 163

SUMMARY: If a refinement element has got several neighbour elements that share one of
its edges and these neighbour elements are owned by different (overlap) processors and
are not refinement elements themselves their owning processors do not get knowledge
of the newly-created mid-points of the edge. Therefore we must send the refinement
edge information to all processors that own neighbour elements that share an edge of
the refinement element after the new node number has been issued.

In 3-D there may be, in contrast to 2-D, more than two elements that share an edge, see
figure 4.5.12. So let us look at the following situation: Let there be a processor that wants
to refine an element with an edge that is owned by a right neighbour processor. So it puts
the edge information into the corresponding column of the array for the overlap refinement
edge information, i.e. the ptl array, passes this column to the right neighbour processor
and gets back the new global node number of the mid-point of the edge which is entered
into the nek array for the refinement element. But what about the other elements that share
this edge? If they are owned by the same processor there is no problem, as the new node
number is available and can be entered into the nek array for this neighbour element. If
they are owned by a different processor and are also refinement elements there is also no
problem because then this processor has done the same as the other processor and therefore
all necessary information is available. But if an element is not a refinement element and it
is not owned by a processor that also owns at least one refinement element that shares the
edge, the edge information is missing and we have to make it available.

proc. ip1 ip2 ip3 ip4

�

�

A

B
1

2

3 4

5

6

Figure 4.5.12: Illustration of a refinement edge (bold) where the neighbour elements are owned
by different overlap processors.

164 The algorithm of the mesh refinement

In figure 4.5.12 we depict an exemplary situation. On processor ip2 the refinement node A
is located in the elements 2 and 3. Element 2 is owned by processor ip1, element 3 by
processor ip2. As the right edge of these elements that is drawn bold in figure 4.5.12 is
owned by processor ip4 both processors must send the refinement edge information to this
processor, and afterwards they receive the new global number of the mid-point of the edge.
By this, the processors ip1, ip2 and ip4 get knowledge of the new node number and may
insert the new node into the elements 1, 2, 3 and 5, but processor ip3 has not been involved
and therefore has no information about the new node. So processor ip2 has to send the
refinement edge information to processor ip3 after it has received the number of the mid-
point from processor ip4. Then processors ip3 is capable of inserting the new node into the
elements 4 and 6.
If not only node A was a refinement node, but also node B, element 6 on processor ip3

became a refinement element. Therefore it also has to send the edge information of the
bold edge to processor ip4 and gets back the global node number of the mid-point that can
be inserted into the elements 4 and 6. In this example, processor ip1, ip2 and ip3 own re-
finement elements that share the bold edge, and therefore each of the three processors has
got the number of the mid-point that must be inserted into the nek array for the elements
that contain the refinement edge. Nevertheless, as the processors have not any knowledge
of the fact that the other two processors already got the new node number, each of the three
processors passes the edge information to the other two processors.

As we have just seen, it is always the processor that owns the refinement element that
passes the edge information to the processors that own the neighbour elements that share
the refinement edge, not the processor that owns the refinement edge and therefore issues
the new node number of the mid-point of the edge. The reason is that these neighbour
elements are overlap elements of the processor that owns the refinement element (this is
the processor where we have searched and found the neighbour elements, so they must be
stored on this processor), but they have not to be in the overlap of the processor that owns
the refinement edge so that these elements are completely unknown on this processor and
the edge information cannot be passed to the owning processor of the concerned neighbour
elements.

To realize this task we go through the columns of the ptl array and first determine for all
neighbour elements of a refinement element the processor that owns this element. The
owning processor ipown of an element is stored in nenr(el, 4) (see on page 78) and as
usual, we want to have a processor number relative to ip that gives us the number of the
communication cycle in which we have to send the data to processor ipown. So we compute

ipown = nenr(el, 4) (4.5.52)

and
iprel = ipown − ip. (4.5.53)

4.5 Mesh refinement on a distributed memory parallel computer 165

Although in practical problems it is a rare event, it may happen that some neighbour ele-
ments are owned by processors in the left overlap. For example, in figure 4.5.12 proces-
sor ip2 must pass the information for the bold edge to processor ip3 but also to processor ip1

although it was not necessary here. Note that the edge information is passed to each proces-
sor that owns at least one neighbour element that shares the edge except the processor that
issued the new node number of the mid-point as this processor must already have the in-
formation. We must proceed like this because the processors work independently and the
refinement elements are only stored locally on a processor so that it is not known on a
processor if a neighbour element that shares an edge is a refinement element if it is owned
by an overlap processor.

If the neighbour element is in the left overlap the result of equation (4.5.53) may become
negative. In this case we take the absolute value of iprel but make clear that the information
must be sent to the left. This is done by an integer variable rl. We set

rl = 1
rl = 2

}
if the neighbour
element is in the

{
right
left

}
overlap. (4.5.54)

In order to know to which overlap processors we must send any edge information at all,
we introduce a logical array lprocs with length equal to np and width equal to 2 which is
initialized by false. At the end of this preparatory step we set

lprocs(iprel, rl) = true, (4.5.55)

see listing 22.

After having inserted a true into lprocs for the owning processors of all neighbour ele-
ments that share the current refinement edge, all processors where we have to send the
edge information are known. For these processors we copy the edge information into the
corresponding column of another integer array etl which is a three-dimensional array with
the dimensions nbm6 ·notp (maximum of the total edge information), npmax (max. proces-
sor) and 2 (send to the right/left). We also introduce an integer counter array ecnt with
length equal to npmax and width equal to 2 where we store the number of edges for each
processor and each direction (right/left). So, if the current neighbour element is owned by
processor ipown, the data of the current edge k in column ipov of ptl is copied into the etl
array (see listing 23):

etl(nbm6 · ecnt(iprel, rl) + i, iprel, rl) =

ptl(nbm6 · (k − 1) + i, ipov) for i = 1, . . . , nbm6.
(4.5.56)

Then we continue with the next edge.

166 The algorithm of the mesh refinement

! saddr1: starting address of current edge in ptl
saddr1 = nbm_6*(k-1)
! noel: number of neighbour elements
noel = ptl(saddr1+6,i)
! initialize lprocs array
lprocs = .false.

! for each neighbour element
do j = 1,noel

! nbel: global number of current neighbour element
nbel = ptl(saddr1+6+j,i)
! nbel: local number of current neighbour element
nbel = BINSCH(nenrs(1,1),nenrs(1,2),ne_nn,nbel)
! ip_rel: relative processor number of owning proc.
ip_rel = nenr(nbel,4)-myproc
! rl = 1/2: proc. in right/left overlap
rl = 1
! check if proc. in left overlap
if (ip_rel < 0) then
rl = 2
ip_rel = -ip_rel

end if
! insert true for proc. into lprocs
lprocs(ip_rel,rl) = .true.

end do

Listing 22: Code for the computation of the array lprocs.

After the end of this process we have to pass the number of edges for which we want to
send the edge data to the right in np − 1 cycles, and this time we also have to do the same
for the edge data that has to be sent to the left. We make use of the communication pattern
described in subsection 4.1.4 again. After it is known on each processor which length the
messages have that it will receive from the left and right, the edge data is exchanged. On
processor ip the received messages are stored in etl directly behind the data processor ip it-
self sent in the same cycle, i.e. if it sent the edge data to the second right overlap processor,
it will receive the data exactly in the column for the second right overlap processor.

Then we go through the edge data we received from the left and from the right and check
with the help of the lnpl array, the array where we mark the end points of the edges we
already regarded, if the processor itself also wants to halve the edge. There are two possi-
bilities for the given situation on the receiving processor:

1. The edge is in the right overlap and processor ip itself owns a refinement element that
contains the edge, i.e. the bisection of the edge is also caused by processor ip. Then
the processor has already received the new global node number for the mid-point of

4.5 Mesh refinement on a distributed memory parallel computer 167

! for each direction (right/left)
do rl = 1,2
! for each overlap processor
do ip_rel = 1,np_maxr

! check if edge must be sent to current overlap proc.
if (lprocs(ip_rel,rl)) then

! saddr2: starting address of edge in etl
saddr2 = nbm_6*e_cnt(ip_rel,rl)
! copy edge information from ptl to etl
do i = 1,nbm_6
etl(saddr2+i,ip_rel,rl) = ptl(saddr1+i,ip_ov)

end do
! increase edge counter for current overlap proc.
e_cnt(ip_rel,rl) = e_cnt(ip_rel,rl)+1

end if
end do

end do

Listing 23: Code for the inserting of the data into etl.

the edge from the overlap processor that owns and therefore halved the edge, and has
inserted all information into the corresponding arrays.

2. The edge is in the overlap but none of the elements that share this edge on proces-
sor ip has to be refined. Then the information about the mid-point is not yet known
on processor ip and it has to append the edge information to its rtl array for the local
refinement edge information. Again, the first new local node gets the number

nodlocal = nn + saddr2 + 1 (4.5.57)

and for each new local node we increase this number by one. The node information
of the new mid-point has to be inserted into the node information array nnr (see on
page 93):

nnr(nodlocal, 1) = etl (nbm6 · (i − 1) + 1, iprel, rl)

nnr(nodlocal, 2) = nnr(nod1, 2)

nnr(nodlocal, 3) = 1

nnr(nodlocal, 4) = min(ipnod1 , ipnod2)

(4.5.58)

where nod1 and nod2 are the local numbers of the end points of the edge and ipnod1

and ipnod2 are the corresponding numbers of the owning processors. The owning
processor of the new mid-point must be computed by its definition, i.e. if the two
end points of the edge are owned by the same processor, this processor will also
own the mid-point, and if the end points are owned by different processors the left

168 The algorithm of the mesh refinement

processor will own the new mid-point. This is necessary because we do not get the
edge information from the owning processor itself but from the processor that owns
the refinement element that caused the generation of the mid-point. Additionally,
we have to copy the edge information from the etl array, the array for the refinement
edge information of edges of own neighbour elements of overlap refinement elements
that has been received from the corresponding overlap processor, to the array for the
local refinement edge information array rtl. As the data exchange is only possible
by global node and element numbers, we have to transform these global numbers the
processor received into local ones. As we have stored rcnt array elements in rtl so
far, we set

rtl (rcnt + k) = etl (nbm6 · (i − 1) + k, iprel, rl) (4.5.59)

for k = 1, . . . , nbm6 if the ith edge in column iprel of etl has to be appended to rtl.
At the end the counter saddr2 we introduced in (4.5.12) is set to the last local node
number on the processor.

The algorithm for passing the edge information to the overlap processors that own the
neighbour elements is shown in algorithm G.

RECAPITULATION: As we sort the nodes by x-coordinate it may happen—if we use
a huge amount of processors and if the grid has got comparatively few nodes in x-
direction—the neighbour elements of a refinement element that share the same edge
may be owned by different processors in 3-D. If the edge is owned by the same processor
as the refinement element the neighbour processors get knowledge of the new node by
the process described on page 143ff. If the edge is owned by a different processor, i.e.
if the edge is owned by a right overlap processor, the completed edge information must
be sent to all those processors that own neighbour elements except the processor that
owns the edge.

Then the global node numbers are issued to those of the new nodes that did not already get
one yet. This is done exactly like in 2-D again.

For one refinement step we first want to generate a number of overlap nodes on processor ip
and afterwards a number of own nodes, then follow the overlap nodes generated in the next
refinement step and so on. We want to have the overlap nodes in front because before the
refinement process the last nodes stored on processor ip are overlap nodes, and we want
to combine the old and the new overlap nodes of the first refinement step because then we
can easier identify own and overlap nodes by the means of array nbrs. In 3-D we have
the situation that we generated some overlap nodes followed by some own nodes. So far,
so good. But when we generated local nodes that only result from a refinement element
on an overlap processor as described on page 163ff. these are overlap nodes again, and
they are the last ones we generate! As both kinds of overlap nodes—those resulting from

4.5 Mesh refinement on a distributed memory parallel computer 169

etl: integer array for refinement edge information for overlap processors that own neighbour
elements of the local refinement elements

G1 Determine own processors of all neighbour elements of an edge.

G2 Insert edge information in the corresponding columns of the etl array.

G3 Pass number of edges in each column of etl to the right.

G4 Pass the columns of etl to the corresponding processors on the right side.

G5 Pass number of edges in each column of etl to the left.

G6 Pass the columns of etl to the corresponding processors on the left side.

G7 Receiving processors:

a) Go through all edge arrays received from the left.

b) Check if edge already occurs in own rtl array.

c) For an occurring edge search for the occurrence and insert local node
number into rtl array.

d) For a new edge insert node information into nnr array.

e) For a new edge append edge information at rtl array.

f) Repeat a) to e) for edge arrays received from the right.

Algorithm G: Algorithm for passing the edge information to overlap processors that own
neighbour elements of refinement elements on the sending processor.

refinement edges in the overlap that belong to own refinement elements, and those resulting
from the refinement of an element on an overlap processor where processor ip owns neigh-
bour elements that share an edge of the refinemenent element owned by a third (overlap)
processor—in a refinement step belong to the right overlap, we rearrange the local nodes in
that way that all overlap nodes are in front, followed by the own nodes. Mind you, only the
new nodes of the current refinement step are concerned! So we copy the noverl,2 overlap
nodes from the end of the node information array nnr into an auxiliary integer array nnr-
cop, shift the first overlap nodes and the own nodes to the end of nnr and insert the overlap
nodes from nnrcop at the beginning of the new nodes at position nn + 1, see figure 4.5.13.
By this re-sorting of the nodes we change the local node numbering, so we also have to
change the local node numbers in the local refinement edge information array rtl.

After the new nodes have got their coordinates and order as shown in (4.4.23) and (4.4.7)
we interpolate the solution with consistency order q = 2 with the help of the m = 10
evaluated influence polynomials of the end points. If only one of the end points is owned

170 The algorithm of the mesh refinement

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷nn noverl,1 nown noverl,2

old

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷nn noverl,2 noverl,1 nown

new

Figure 4.5.13: Illustration of the re-sorting of the new nodes during a refinement step in 3-D.

by the processor this end point solely determines the solution of the new node.

The updating of the nek array for the node numbers of the local elements is the same as
in 2-D that has been shown in listing 10 for the refinement elements and in listing 11 for
the neighbour elements of a refinement element. As an element has got six edges in 3-D,
we have to distinguish between six possibilities here, but in principle it is the same as in
listing 11. Next we update the nek array for those neighbour elements that are owned by an
overlap processor as described for 2-D on page 143ff.

proc.
ip

proc.
ip + 1

proc.
ip + 2

�

�

�

�

�

�

1

2

3

4

4

7

proc.
ip

proc.
ip + 1

proc.
ip + 2

�

�

�

�
�

�
�

�
�

�

�

�
�

�1

2

3

4

7

9

10

4

Element is owned by processor ip

Element is owned by processor ip + 1

Figure 4.5.14: Illustration of the owning of the new elements in 3-D.

The only difference to 2-D for the generation of the new elements is that we generate eight
elements from one old refinement element in 3-D. This has been described for the single

4.5 Mesh refinement on a distributed memory parallel computer 171

processor run in subsection 4.4.2 on page 107. Like in 2-D, the new elements do not have
to be owned by the processor that owns the old refinement element. We illustrate this in
figure 4.5.14 where we only show the new elements that “change” the owning processor
for reasons of clearness. Again, we consider two elements, the upper element has already a
mid-point on edge 7 between node 1 and node 4, the lower element has not any mid-point
yet. The mid-points on edge 5 (1–2), edge 6 (1–3) and edge 7 (1–4) of the lower element are
generated and owned by processor ip as node 1 is owned by processor ip. As there are not
any new elements that have not any of these four nodes (see table 4.4.6), all new elements
are owned by processor ip. When we refine the upper element, the nodes 4, 7 and the new
mid-points 9 on edge 5 (2–4) and 10 on edge 6 (3–4) are owned by processor ip + 1, and
therefore the new element 4 that consists of these four nodes (see table 4.4.6) is also owned
by processor ip + 1.

Generally one can say how many mid-points must already exist and be owned by proces-
sor ip + 1 before the refinement process to have at least one new element that is owned by
processor ip+1 subject to the number of corner nodes of the old element owned by proces-
sor ip. If there is—like in the example above—only one corner node on processor ip, two
of the three mid-points that will be generated and owned by ip + 1 and a corner node on
ip + 1 will form a new element if one additional mid-point exists. If another corner node
is owned by processor ip, we need a second mid-point on processor ip + 1 existing before
the refinement process, too. A general rule that is also valid in 2-D is that the number of
mid-points that must exist and be owned by processor ip + 1 before the refinement is equal
to the number of corner nodes owned by processor ip to have at least one new element that
is owned by processor ip + 1.

The determination of the new external boundary nodes is executed purely local, so that the
procedure on page 106 is valid here, too.

At the end of a refinement step we have to execute the update step where processor ip has
to pass the information what happened to the refinement elements that have been refined
because of the refinement cascade to the overlap processors that own the evoking elements.
The procedure is exactly the same as in 2-D, but as we have different values for nedge, elnew

and nolnod the length linfarr of the message that has to be sent to the neighbour processor
is computed by

linfarr = 124 · nes + 1, (4.5.60)

which we get from (4.5.38) with the 3-D values

nedge = 6, elnew = 7, nolnod = 10 in 3-D.

This means that we have to send 124 integer numbers for each concerned element to the
overlap processor. Furthermore, the number noverl,2 (see figure 4.5.10) does not only con-
sist of the nodes resulting from the updating of the nek array for neighbour elements of

172 The algorithm of the mesh refinement

refinement elements owned by the overlap processors, but also of the nodes resulting from
algorithm G, i.e. from the refinement of elements on overlap processors where processor ip
owns neighbour elements that share an edge of the refinemenent elements owned by a third
(overlap) processor. The whole algorithm for one refinement step is shown in algorithm H.

After having refined the refinement elements of all stages, we have to eliminate the overlap
data for the nodes, elements and external boundary nodes as described for 2-D before we
re-sort the grid onto the np processors.

4.5.3 Mesh refinement with dividing lines in 2-D and 3-D

Important notations:

dlote: integer array for twin node information of dividing line edges
dloteadr: integer array for starting addresses of dividing line elements in dlote
iglob: integer array for starting addresses of own ref. edges in rtl
lp: integer array for numbers of edges to receive from overlap processors
ptl: integer array for refinement edge information (overlap edges)
rtl: integer array for refinement edge information (local edges)
snod: integer array for sliding dividing line nodes
tnod: integer array for dividing line nodes

There is hardly anything left to explain for the mesh refinement for a domain with several
subdomains coupled by dividing lines. Most of the differences come from the refinement
cascade but in the refinement process itself there are only few differences to the mesh re-
finement on a single processor. So we mentioned all but one points in subsection 4.4.3. The
current subsection holds both for 2-D and 3-D unless otherwise noted.

On page 138 we mentioned the integer array iglob where we store the starting addresses
of the edges in the local refinement edge array rtl of which the mid-points still have to
get a new node number. The edges in the array rtl have to be examined if they are divid-
ing line edges and thus if the mid-points become dividing line nodes. On a processor we
therefore go through the iglob array and determine for the edges of which we stored the
starting addresses there if the new mid-points become dividing line nodes as described for
a single processor in subsection 4.4.3. But we must also examine the edges and mid-points
the processor received from the left side in the array for the overlap refinement edges, i.e.
the ptl array, as these nodes are also owned by the processor.

For this purpose we introduce another one-dimensional integer array iglob2. As the max-
imum number of different edges for which a processor ip received the refinement edge
information from the left is the sum of all received numbers of edges over all overlap

4.5 Mesh refinement on a distributed memory parallel computer 173

processors on the left side which we denote by lpsum, this is the length of the array iglob2:

lpsum =

npmax,l∑
ip=1

lp(ip). (4.5.61)

When we go through the columns of the ptl array and insert the received edge information
into the rtl array, we simultaneously insert the information into iglob2 which nodes have to
be examined if they are dividing line nodes. This is done without taking into account if an
edge already occurs in rtl or not which does not mean that the starting address of each edge
is inserted into iglob2 as we do not want any multiple examination of nodes that have been
sent from different processors but nevertheless represent the same physical node in 3-D.
The new global node numbers generated on the refinement edges stored in ptl are issued
by the processor that owns the refinement edge. As several processors may request a new
node number for the same edge in 3-D, this processor must avoid multiple numbering of
the same node as we explained on page 161f. Therefore we use another logical array lpt
of length notp and width npmax that is initialized by true. As notp is the number of overlap
refinement edges on a processor, there is one entry for each edge in lpt. When the issuing
processor comes upon a refinement edge that already occurred, the entry for this edge in
lpt is set to false. We insert the starting address of an edge only then into iglob2 if the entry
in lpt is still equal to true.

In iglob2 we store, analogously to array iglob, for each node the starting address of the
received edge in rtl. We want to determine the new dividing line nodes like we did it
for the own nodes but we have not got the information if an element is a dividing line
element and which edges of the elements are dividing line edges, as this information is
only stored for the own dividing line elements but not for dividing line elements in the
overlap. This information must be additionally stored in the dlote array, i.e. the array
we store the information for each dividing line edge of the dividing line elements. So we
have to insert the starting address of the information for the refinement element into the
corresponding row of the dloteadr array, i.e. the array for the starting addresses of the
dividing line element information in dlote. For each received edge k that is a dividing line
edge, i.e. for the edge holds

rtl (iglob2(k) + nbm6 − 1) = −1, (4.5.62)

with nbm6 from (4.5.1) for 2-D and (4.5.51) for 3-D, respectively, we insert the number of
subdomains and the respective twin nodes into the dlote array. This is done very similar
to the insertion of the edge data during the refinement cascade described on page 72 and
shown in listing 7.

174 The algorithm of the mesh refinement

nek: integer array for node numbers of the elements
nekinv: integer array for elements a node belongs to
ptl: integer array for edges to be refined by overlap processors
rtl: integer array for refinement edge information

H1 Create the nekinv array by inverting the element array nek.

H2 Search for the neighbour elements of the same refinement stage for each edge
of the refinement elements.

H3 Insert the necessary edge information into the rtl array for the own and into
the ptl array for the overlap edges.

H4 Issue new node numbers for mid-points of the edges in the ptl array (Algorithm D
in 2-D, Algorithm F in 3-D).

H5 Append data from own ptl array at own rtl array.

H6 Append data from received ptl arrays at the own rtl array.

H7 Only for 3-D: Pass edge information to overlap processors that own neighbour
elements of refinement elements on the sending processor (Algorithm G).

H8 Issue new node numbers for mid-points of the edges in the own rtl array.

H9 Only for coupled domains with dividing lines: Check if the new nodes are
dividing line nodes.

H10 Assign coordinates and order to the new nodes.

H11 Interpolate the solution for the new nodes.

H12 Insert the new nodes into the refinement elements and their neighbour
elements in the nek array.

H13 Check if the new nodes are external boundary nodes.

H14 Only for coupled domains with sliding dividing lines: Check if the new
nodes are sliding dividing line nodes.

H15 Update nek array for neighbour elements owned by overlap processors.

H16 Generate four elements in 2-D and eight elements in 3-D out of each old
refinement element.

H17 Update element information of elements that have to be refined because of
the refinement cascade on overlap processors (Algorithm E).

H18 Prepare the next refinement step.

Algorithm H: Algorithm for one refinement step of the mesh refinement on a distributed mem-
ory parallel computer.

4.6 Mesh coarsening 175

After we determined the new dividing line nodes that result from the refinement of the own
refinement elements like described on page 115 and shown in listings 14 and 15, we de-
termine the new dividing line nodes that result from the refinement of elements in the left
overlap. This is done exactly the same way, we only have to take the edges of which we
have stored the starting addresses in iglob2 instead of the data in iglob.

For the determination of the new sliding dividing line nodes there is no difference to the
single processor run as we do not have the peculiarity that the refinement continues on the
other side of the dividing line and we therefore do not have to insert the newly-created
nodes into the elements on the other side of the sliding dividing line. Of course, the deter-
mination of the new sliding dividing line nodes is always done by the processor that owns
the respective new node and not by the one that causes the refinement of the element.

Before we insert the new dividing line nodes into the information array for the dividing line
nodes, i.e. the tnod array, and the new sliding dividing line nodes into the information array
for the sliding dividing line nodes, i.e. the snod array, we have to check if we exceeded the
limit for the boundary nodes nbmax. nbmax is a local value and we use the same value for all
three kinds of boundary nodes, so the check is the same as for the external boundary nodes
we described on page 142: The number of local dividing line nodes including the overlap
is nibn and the number of sliding dividing line nodes is denoted by nsbn. For dividing line
nodes we therefore have to

check if nibn + nibnew > nbmax

and for sliding dividing line nodes

check if nsbn + nsbnew > nbmax

where nibnew is the number of new dividing line nodes and nsbnew is the number of new
sliding dividing line nodes.

The algorithm for the mesh refinement with dividing lines or sliding dividing lines is also
included in algorithm H.

4.6 Mesh coarsening

For the solution of parabolic partial differential equations we have a selfcontrolled time
grid. Each fully implicit time step is an elliptic problem for that we can refine the mesh.
On principle, we may also execute a mesh coarsening.

For some problems in physics or engineering it occurs that the region of the domain where
we need finer grid changes in course of time. If we consider a flame that moves through a

176 The algorithm of the mesh refinement

pipe we always need a fine grid in the proximity of the flame. But if the flame moves on,
we still have the fine grid where the flame is not any more and where we therefore do not
need this fine grid any more. So it would be useful if we could undo the mesh refinement
and restore the original coarser grid. This process is called mesh coarsening.

We did not (yet) implement mesh coarsening in the FDEM program package but all prereq-
uisites are established by the choice of our data structures. The refinement stage is known
for each element and with this information and with the help of the nearest neighbour ring
of a node, we are able to reconstruct a coarser grid.

a) b) c)
�

�
�

�

�

�

1 2

Figure 4.6.1: Illustration of the change of node positions by re-refinement of the mesh:
a) original mesh, b) refined mesh with coarsened elements, c) re-refinement of
mesh, if the refinement history has not been stored.

If we really wanted to restore the original grid we had to store the grid history, i.e. we had
to store the parent element for each new element that we generate by the mesh refinement.
Otherwise, the coarsened grid will probably be not identical with the original grid, espe-
cially we will not have a triangular grid in 2-D or a tetrahedral grid in 3-D any more, as
we probably will combine edges that do not have the same direction, see edges 1 and 2 in
figure 4.6.1b). But as we need the elements only for the structure of the space, this is not
a serious problem. It is not even a problem to refine these elements again. However, there
we eventually change the position of nodes by halving the edges again, see figure 4.6.1.
Therefore we consider as useful only a coarsening that reconstructs the parent elements.

4.7 What we have learned from the mesh refinement algorithm

There are two main principles that are so important that we want to mention them once
more at the end of this chapter. They are not only valid for the mesh refinement algorithm
of the Finite Difference Element Method but can be applied to all kinds of algorithms im-
plemented on distributed memory parallel computers.

4.7 What we have learned from the mesh refinement algorithm 177

The first point concerns the method by which we control the communication so that the
processors are in a position to set their sends and receives in a way that we, on the one
hand, avoid unnecessary communication and, on the other hand, manage with shorter mes-
sage lengths and therefore save communication time.

SUMMARY: We want to compare a method to pass the messages to the overlap proces-
sors that is easy to implement to our method that is more difficult to implement but
very efficient in return. Instead of allocating the send and receive buffers with the
same length on each processor that also determines the message length like for the easy
method, for our method the buffers and messages have exactly the required length. We
do not send a message to each overlap processor (easy method) but only to the proces-
sors for which we have data to send to. Therefore we save transfer and also startup
time. The preparation of the data transfer is approximately equally expensive for both
methods.

When using the message passing model we have some alternatives to parallelize a given
code. We want to compare an easy way to control the communication with the way we
choose to parallelize the FDEM program package. We explain the differences between the
“easy” method and our method examplarily for the passing of the ptl array, i.e. the array
for the overlap refinement edges (see on page 125), to the right. An easy way to solve this
task with the message passing model is to allocate a send buffer by the maximum number
of array elements that occurs on the processors, i.e. if we want to pass the ptl array to the
right, we had to allocate the ptl array with length equal to notpmax · nbm6 where

notpmax =
np

max
ip=1

notpip (4.7.1)

holds and notpip denotes the number of edges that belong to the right overlap. nbm6 (see
(4.5.1)) is the number of entries per refinement edge. With memint denoting the memory
requirement for an integer variable in bytes we had to send a message of length

	1 = notpmax · nbm6 · memint (bytes) (4.7.2)

to the right overlap processor ip + i in communication cycle i and we have npmax,r com-
munication cycles altogether as npmax,r is the number of right overlap processors, see sub-
section 4.1.4. The sum of all message lengths therefore is

	total,1 =

npmax,r∑
i=1

	1 (bytes)

=

npmax,r∑
i=1

notpmax · nbm6 · memint (bytes)

= npmax,r · notpmax · nbm6 · memint (bytes) (4.7.3)

178 The algorithm of the mesh refinement

(as each message has the length 	1, the index i does not occur in the sum), and as we have
to send npmax,r messages, we need npmax,r times the startup time. The preparation of the
data exchange consists of the computation of the global maximum of the notpip values,
notpmax, over the processors. This global integer maximum is computed by subroutine
LL4INM we described in subsection 4.1.3 and needs log2 np reduction steps, i.e. this is the
number of communication cycles to determine the maximum that is known on all proces-
sors at the end.

On the other hand, with our way of exchanging the data, the array ptl is allocated with
the length notpip · nbm6 on processor ip and each message we pass to the right overlap
processor ip + i has got the length

	2 = pcnt,ip(i) · nbm6 · memint (bytes) (4.7.4)

where
npsr∑
i=1

pcnt,ip(i) = notpip (4.7.5)

holds. This means that the sum of all message lengths on processor ip is

	total,2 =

npsr∑
i=1

pcnt,ip(i) · nbm6 · memint (bytes)

= notpip · nbm6 · memint (bytes). (4.7.6)

As we only send exactly that number of refinement edges to a right overlap processor that
is owned by this processor, whereas for the easy method we always send the complete col-
umn to each right overlap processor, the value 	total,2 is smaller than 	total,1.

The number of communication cycles npreal,r is the last cycle for which we have to send
any data to the right overlap at all, so

npreal,r =
npmax,r

max
i=1

(
i with

np
max
ip=1

pcnt,ip(i) > 0

)
(4.7.7)

holds on processor ip. That means that we search for the relative number i of the rightmost
overlap processor ip + i for that the number of refinement edges to send to is still greater
than zero on any of the np processors. Therefore we have to add to the time for the pure
data exchange npreal,r times the startup time. Here the preparation of the data exchange is
the passing of the array pcnt to the right which consists of npmax,r communication cycles.

Let us compare the cost for the preparation of the data exchange first. In table 4.7.1 you
can see for a given number of processors np the number of reduction steps for the easy

4.7 What we have learned from the mesh refinement algorithm 179

method of data exchange in the second column. In the third column the maximum number
of processors is given of which we may store the nodes and elements on a processor in
order to have the same number of messages to be sent to the right during the preparatory
step. Therefore it must hold

npmax,r = log2 np, (4.7.8)

and as we assume that the number of overlap processors on the left side is the same as
the number of overlap processors on the right side (npmax,l = npmax,r) for a uniform grid,
we can store the nodes and elements of npst = 2 · np + 1 processors on each processor.
In the fourth column we set this number of processors in relation to the total number of
processors np to get the percentage of the grid we may store on a processor. The formula
for this percentage p is

p =
npst

np
· 100. (4.7.9)

If we want to have the same number of messages that have to be sent during the preparatory
step for both methods, the number of overlap processors npmax,r must be equal to the num-
ber of reduction steps. For np = 2 processors we cannot have more than one right overlap
processor, so there the number of messages is equal. As the number of processors increases
it becomes more and more difficult to fulfil the criterion of equal number of messages but
for 128 processors we may have 7 right overlap processors, i.e. it holds npmax,r = 7, which
means, as the left overlap usually is as wide as the right one, that we have stored the nodes
and elements of npst = 2 · 7 + 1 = 15 processors on a processor which is about 12% of the
whole grid. From the fourth column of table 4.7.1 we can clearly see that we must store a
lesser and lesser part of the grid on a processor the higher we choose the number of proces-
sors np we compute on. Only for grids with a very small number of nodes in x-direction in
relation to the number of processors the number of overlap processors will not be sufficient
to determine the difference stars for each node of the processor but usually, we only choose
a higher number of processors for finer grids where we really need them. So we can con-
clude that the preparatory step for the data exchange is usually equally expensive for both
methods.

If we want to compare the cost for the real data exchange we have to make some assump-
tions before as we must have a relationship between notpip and notpmax. We want to regard
two different cases. First we want to have a mesh refinement where the whole grid must be
refined uniformly, i.e. we have the same number of overlap edges notpip at each processor
border. Then it holds

notpmax = notpip. (4.7.10)

We denote by γ the ratio of the sum 	total,2 of the message lengths that processor ip must
send to its right overlap processors for our own method to the sum 	total,1 of the message
lengths for the easy method. So the smaller the ratio γ the more time for the communication

180 The algorithm of the mesh refinement

number of easy method own method
processors nr. of red. steps nodes/elements max. stored on a proc.

np log2 np nr. of proc. npst percentage p of grid

2 1 2 100.00
4 2 4 100.00
8 3 7 87.50

16 4 9 56.25
32 5 11 34.38
64 6 13 20.31

128 7 15 11.72
256 8 17 6.64
512 9 19 3.71

1024 10 21 2.05

Table 4.7.1: Comparison of the cost of the preparatory step for the data exchange for the easy
and our own method.

we save. It holds for the ratio γ for the considered first case

γ =
	total,2

	total,1

=
notpmax · nbm6 · memint

npmax,r · notpmax · nbm6 · memint

=
1

npmax,r

. (4.7.11)

P1 P2 P3 P4 P5 P6 P7 P8

Figure 4.7.1: Illustration of the processor borders and the processor widths for a circular do-
main for np = 8 processors.

For two processors we have γ = 1 as it holds npmax,r = 1, and the ratio becomes smaller
and smaller when we increase the number of processors np as with the number of proces-

4.7 What we have learned from the mesh refinement algorithm 181

sors the number of overlap processors on the right side npmax,r increases, too. It holds

lim
np→∞

γ = 0. (4.7.12)

And this was even the better one of the two cases we want to regard. If the solution domain
is a circle, the number of nodes and therefore the number of edges at a processor border
will decrease from the middle of the domain to the left and right side, see figure 4.7.1.
Remember that the domain is always separated into slices with the same number of nodes
for reasons of load-balancing, and the nodes are always sorted by x-coordinate.

0

notpmax

	 symm.
axis

1 · · · np/2 · · · np−1

proc.
border

proc. border i is proc. border between proc. i and proc. i + 1

	l 	r

Figure 4.7.2: Comparison of the cost of the preparatory step for the data exchange for the easy
and our own method.

If we suppose a solution that looks like a sugar-loaf, see figure 5.3.2, and an even number
of processors np, we have the maximum notpmax of refinement edges in the overlap in the
middle of the grid, between processor np/2− 1 and processor np/2 + 1 where the solution
has its maximum. At the leftmost and rightmost processor border between processor 1
and 2 and between processor np−1 and np, respectively, we want to have no refinement at
all because there the run of the solution is very even, i.e. it holds notp = 0. At the processor
borders lying in-between we want to have notp to decrease linearly, see figure 4.7.2. The
left function 	l is computed by

	l(pb) =
notpmax
np
2
− 1

· (pb − 1) (4.7.13)

where pb is the number of the processor border. In order to get the average number notpavg

of refinement edges in the overlap at a processor border, we sum up the just described values
of all processor borders and divide the sum by the number of processor borders, which is
np − 1. As the function 	r is axially symmetric to 	l with regard to the symmetrical axis
at np/2, we can take twice the function values of 	l (processor borders 1 to np/2 − 1) and

182 The algorithm of the mesh refinement

leave away the right function 	r. So the average number of edges in the right overlap on a
processor, notpavg , is computed by

notpavg =

notpmax + 2 ·
np/2−1∑

i=1

(
notpmax
np
2
− 1

· (i − 1)

)
1 + 2 · (np

2
− 1
)

=

notpmax ·
⎛
⎝1 +

2
np
2
− 1

·
np/2−2∑

i=0

i

⎞
⎠

np − 1

=

notpmax ·
(

1 +
2

np
2
− 1

·
(

np
2
− 2
) · (np

2
− 1
)

2

)
np − 1

= notpmax ·
np
2
− 1

np − 1
(4.7.14)

np→∞−→ notpmax

2

and therefore the average sum of message lengths on a processor to pass to the right is

	total,3 = notpavg · nbm6 · memint (bytes). (4.7.15)

So the ratio γ of the sum 	total,3 of the message lengths of our own method to the sum 	total,1

of the message lengths of the easy method for the considered second case is

γ =
	total,3

	total,1
=

notpavg · nbm6 · memint

npmax,r · notpmax · nbm6 · memint
=

1

2 · npmax,r
. (4.7.16)

So we see that the ratio γ for the second case is half the ratio of the first case, and therefore
our own method is even better.

Furthermore, we have to add for the easy method of data exchange npmax,r times the startup
time as we have to pass a message to each of the npmax,r overlap processors on the right
side. For the method we implemented we only have to pass a message to at most npreal,r

processors in the right overlap but for practical problems and if we have a grid where the
minimum and the maximum of the space step size do not differ much, we have npreal,r = 1
so that we only have to send a message to the direct right neighbour processor. So the
ratio β of the startup times of the easy method to our own method is

β =
npreal,r

npmax,r

=
1

npmax,r

. (4.7.17)

4.7 What we have learned from the mesh refinement algorithm 183

The transfer rate of the interconnection network is not of importance here as it is the same
for both data exchange methods. We also do not take into account that the message that is
sent to an overlap processor consists of 	 + 	0 bytes if 	 is the length of the message we
want to send as there will be added a header of 	0 bytes to the message but if we did, the
ratio would become even worse. If we assume that the other factors that determine the time
needed for the data transfer from one node to another (remote) node—a time to switch a
line to a remote node over intermediate hops and a blocking time if the message must wait
because one of the intermediate paths is blocked by another transfer—can be neglected,
the gain of performance we yield by our method of data exchange in comparison with the
simple method is a factor of npmax,r!

The second important principle is that we do not start the communication between two
processors until we have collected in a buffer all data that has to be sent to the target
processor. Therefore we must think about the length (and width) of this send buffer at the
beginning to be able to allocate it with the right dimension(s) so that we can exchange
all necessary data. An alternative was to send in the naive way each single information
individually to the target processor as soon as it is known but then the efficiency of the
algorithm would suffer from this very much because for each time we start the commu-
nication between two processors the startup time must be added to the time the real data
transfer takes. And if we only send very short messages the startup time will be greater
than the time needed for the data transfer:

tstartup ≥ tsend. (4.7.18)

For the computers measured in [8] the equality in (4.7.18) was achieved for a message
length of at least 256 bytes, on some of the computers for 32 kbytes. So it is clear that the
communication time increases excessively if we send many very short messages instead of
few long messages where the ratio of startup time to transfer time is rather small.

RECAPITULATION: We learned that it is quite easy to implement a data transfer method
for the mesh refinement algorithm but that this method is not efficient at all. We always
allocate the communication buffers with the maximum length that is required on any
processor, and the message lengths are also the same for the communication between
any of the processors. This means that there is also a data transfer with the same
message length between two processors although there may be no data to transfer at all
only because the target processor is in the overlap of the sending processor. The data
transfer is made much more efficient by splitting up the communication into two parts.
In the first part we only send numbers of nodes, elements, edges etc. to the overlap
processors so that on each processor the send and receive commands can be set in such
way that it is known on each processor from which processor it will receive a message
and that we may also compute the corresponding message length. We are also able to
allocate the length of the receive buffer by the required length so that we save storage

184 The algorithm of the mesh refinement

on top. The greater the difference between the longest and the shortest message is,
the worse the relation betwwen the data transfer times of the easy method and our
own method gets. This is because for the easy method we always send a message with
the length that corresponds to the longest message whereas for our method we always
send a message that has exactly the required length. As we collect all send data in the
send buffers before the communication starts and do not send each piece of information
individually to the target processor, the consumed startup time is drastically reduced.

Numerical examples 185

5 Numerical examples

In this chapter we want to give some examples for the mesh refinement. Here we first intro-
duce the test PDE for which we know the exact solution of the system of partial differential
equations. Then we explain how we test the Jacobian matrices that we need for the compu-
tation of the large sparse matrix of the linear system of equations and for the computation
of the error estimate. These matrices are, especially for nonlinear systems of partial differ-
ential equations, very fault-prone, so that their check is indispensable and must be executed
after having implemented a new system of PDEs. Afterwards we introduce the system of
PDEs and the test functions we use for the 2-D examples and give an example for the mesh
refinement on a circular domain. The performance of the mesh refinement is illustrated
next on different rectangular grids with different numbers of processors before we go to the
examples for domains with dividing lines and sliding dividing lines, respectively. Finally,
we give an example for a 3-D refinement process on a cubical domain.

5.1 The test PDE

For the test of our program, i.e. both the test of the FDEM solver and the test of the partial
differential equations and boundary conditions that have been programmed by the user, we
use a partial differential equation of which we know the exact solution. This PDE should
have the same properties as the original problem

Pu ≡ P (x, y, u, ux, uy, uxx, uyy, uxy) = 0 (5.1.1)

in 2-D, at least as far as possible. So we prescribe the test solution ū(x, y) and generate
from (5.1.1) a problem that has this solution ū. This problem is the test PDE

Pu − P ū = 0. (5.1.2)

P ū is our problem with the known function ū(x, y) instead of the unknown function u.
Then P ū is a given function of x and y which is in (5.1.2) an absolute term that contains
no variables. For illustration we take the Poisson equation

Pu ≡ uxx + uyy = 0 (5.1.3)

and prescribe as test solution a polynomial of order 4:

ū(x, y) =
(
x2 + y2

)2
. (5.1.4)

Then the derivatives of this polynomial are

ūx = 4x3 + 4xy2,

ūxx = 12x2 + 4y2, (5.1.5)

ūy = 4x2y + 4y3,

ūyy = 4x2 + 12y2. (5.1.6)

186 Numerical examples

From (5.1.5), (5.1.6) we get

P ū = ūxx + ūyy = 12x2 + 4y2 + 4x2 + 12y2

= 16x2 + 16y2 (5.1.7)

and therefore our test PDE becomes

Pu − P ū ≡ uxx + uyy −
(
16x2 + 16y2

)
= 0. (5.1.8)

Trivially, if you put for u the function ū (5.1.4) the PDE is satisfied. We see that P ū is
a pure forcing term that does not have any influence on the part with the variables. Quite
naturally we must proceed analogously with the boundary conditions (and the coupling
conditions). Let us assume that we have Dirichlet boundary conditions

u − f(x, y) = 0 (5.1.9)

on the boundary, then the test boundary conditions are

u − f(x, y)︸ ︷︷ ︸
BC(u)

− (ū(x, y) − f(x, y))︸ ︷︷ ︸
BC(ū)

= 0, (5.1.10)

which formally gives
u − ū = 0 (5.1.11)

with ū from (5.1.4).

The test problem (5.1.8), (5.1.11) has the desired solution ū (5.1.4). As the test solution is
a polynomial of order 4 we must get the exact solution ū and an error estimate in the range
of the rounding error if we use a solution method of consistency order q = 4. If we use a
solution method of consistency order q = 2 we get an error that should be well estimated.
As the error is estimated by a polynomial of order 4, we should theoretically get an exact
error estimate, but the polynomial of order 4 (which would be ū) cannot be reproduced
exactly by the solution method of order q = 2.

If we want to check if we have programmed our system of partial differential equations
correctly, we must program P ū totally independent of Pu. We start the solution process,
i.e. the Newton iteration, for the test problem (5.1.2) with the initial solution u = ū. The
first thing to pay attention to is the norm of the right hand side of the linear system of
equations (3.1.11). Of course, this norm depends on the partial differential equations but
also on the norm of the test solution ū. If the norm of the test solution is 109 you cannot
expect a norm of the defect in the range of 10−12. So it is quite important that the norm of
the test solution is between 1 and 10 in the solution domain. Then the norm of the starting
defect (Pu)d of the Newton iteration is usually in the range of 10−11. The relative norm of

5.2 The test of the Jacobian matrices 187

the corrections ∆uPu should be in the same range. There will be only one Newton step and
afterwards we have got the discretized solution ud. Then we compare the estimated relative
error ‖∆ud‖rel (3.1.14) to the exact error

‖ū − ud‖
‖ud‖ . (5.1.12)

Usually, we choose as test solution ū a polynomial of order 2, 4, 6 and solve with con-
sistency order q = 2, 4, 6. Then the relative error ‖∆ud‖rel and the exact error (5.1.12)
are usually in the range of the rounding error. To check the error estimate we select a test
polynomial of order 4, 6, 8 and solve with consistency order q = 2, 4, 6. Then the exact and
estimated error should be nearly equal—if the mesh is fine enough.

Another important question is if the Newton-Raphson method converges. Newton’s method
converges quadratically if we are close enough to the solution. If not, anything may hap-
pen. For this reason we introduced the damped Newton method with a relaxation factor
that controls if the Newton defect (Pu)d decreases in the Newton step, see on page 17.
According to our experience, the test PDE gives a good impression how the corresponding
physical problem will behave. Therefore we start for the test of the Newton convergence
by a disturbed initial solution. We solve the test PDE (5.1.2) with the starting solution
1.01 · ū (1 % disturbance) or with 1.1 · ū (10 % disturbance) and observe the convergence
behaviour. If we cannot solve our PDE for the test solution, we also will not find a solution
of the original physical problem.

5.2 The test of the Jacobian matrices

If we solve the test problem with the initial solution u = ū and the starting defect is in
the range of the rounding error but nevertheless, the Newton iteration does not converge,
it is quite probable that there is an error in the Jacobian matrices. So we have developed
a “Jacobi tester” as the programming of the Jacobian matrices is a dangerous source of
errors, especially if we have nonlinear partial differential equations. The Jacobian matrices
are used in the generation of the Newton correction ∆uPu as shown in figure 3.1.1 for
∂Pu/∂ux (3.1.6). They also enter into the computation of the error as can be seen in
(3.1.10). In order to test a Jacobian matrix, here for example ∂Pu/∂ux, we compute a
difference quotient

∆Pu

∆ux

=
P (. . . , ux + ε, . . .) − Pu

ε
(5.2.1)

where a typical value for ε is 10−4. Afterwards we check if

1 − toljac ≤ ∆Pu

∆ux

/
∂Pu

∂ux

≤ 1 + toljac (5.2.2)

188 Numerical examples

with a prescribed tolerance toljac where ∂Pu/∂ux is computed in the corresponding sub-
routine. For nonlinear problems we have to choose a greater value for toljac than for linear
problems because the Jacobian matrices are not constant necessarily but may depend on
the derivatives of the solution or on the solution itself. So we choose

toljac = 0.01 for linear problems and

toljac = 0.02 for nonlinear problems.
(5.2.3)

If (5.2.2) does not hold we additionally check if∣∣∣∣∆Pu

∆ux

− ∂Pu

∂ux

∣∣∣∣ ≤ 10−9 (5.2.4)

holds because if both values are in the range of the rounding error the quotient in (5.2.2)
may be out of the interval [1− toljac, 1 + toljac]. If neither (5.2.2) nor (5.2.4) hold, there is
an error in the Jacobian matrix and we print out the node. If at least one of the two values
to compare is equal to zero we just check if the other one is greater than 10−4. If yes, the
Jacobian matrix is false. For a system of m partial differential equations we test the m×m
Jacobian matrices in the same way by components. The term P ū in the test PDE (5.1.2)
does not change the Jacobian matrices because it is an explicit function of x and y (and z
in 3-D).

5.3 System of PDEs for the 2-D test examples

For all the following 2-D examples we use a model of the nonlinear Navier-Stokes equa-
tions in velocity-vorticity form for the unknown functions u, v and ω with the forcing
functions fi and Reynolds number Re = 100:

uxx + uyy + ωy − f1 = 0

vxx + vyy − ωx − f2 = 0 (5.3.1)

uωx + vωy + (ωxx + ωyy)/Re − f3 = 0

under the boundary conditions

u − g1 = 0

v − g2 = 0 (5.3.2)

ω + uy − vx − g3 = 0

with forcing functions gi. For the diverse problems that we will introduce in the following
sections we use different test functions, and we determine the forcing functions fi and gi in
such a way that the exact solution ū, v̄ and ω̄ is equivalent to the respective test function.
This procedure corresponds to the generation of the term P ū in (5.1.2). In detail, the test
functions are

5.3 System of PDEs for the 2-D test examples 189

• a polynomial of order q = 6

ū(x, y) = x6 + y6 = v̄(x, y) = ω̄(x, y), (5.3.3)

see figure 5.3.1.

0

0.25

0.5

0.75

1

f

-1

-0.5

0

0.5

1
x

-1 -0.5 0 0.5 1y

Figure 5.3.1: Polynomial f = x6 + y6 on unit circle.

• a sugar-loaf-type function

ū(x, y) = e−32(x2+y2) = v̄(x, y) = ω̄(x, y). (5.3.4)

This sugar-loaf has a maximum function value ū = 1 in the center of the unit circle
and rapid decay to the boundaries and is shown in figure 5.3.2.

• a sugar-loaf-type function

ū(x, y) = e−8(x2+y2) = v̄(x, y) = ω̄(x, y). (5.3.5)

This sugar-loaf is similar to the one mentioned before, but it is falling down slower
towards the boundary of the domain.

• a constant function (polynomial of order 0)

ū(x, y) = 2 = v̄(x, y) = ω̄(x, y). (5.3.6)

Thus, we can determine the exact (global relative) error (5.1.12). The computer is an
IBM SP WinterHawk-II with 375 MHz Power3-2 processors with a peak performance of
1500 MFLOPS. The given CPU time is that for the master processor 1. The number of
processors we compute on depends on the respective example and is given there.

190 Numerical examples

0

0.25

0.5

0.75

1 f

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1

y

Figure 5.3.2: Sugar-loaf function f = e−32(x2+y2) on unit circle.

5.4 Approximating a polynomial by pure mesh refinement

We solve (5.3.1) and (5.3.2) on the unit circle with 751 nodes and 1,410 elements, the grid
is generated by the commercial mesh generator I-DEAS. We prescribe a (global relative)
tolerance tol = 10−2, i.e. 1 % in the check (3.4.1) and use pure mesh refinement with fixed
consistency order q = 2 where ∆q = 4 (i.e. we search for nodes up to order 6 for the gen-
eration of the difference and error formulas) and εpivot = 10−1 (see on page 27) holds. As
initial solution we choose the exact solution of the problem which is the test solution. We
could choose any arbitrary solution but the computation needed more Newton steps then
but the result would be the same. We use a polynomial of order 6 (5.3.3) as test function to
show that not only the estimated error decreases with finer grid but also the exact error so
that we see that the solution really gets better. By solving the basic problem without mesh
refinement we have got an estimated error of the component ω of 0.866, so the chosen toler-
ance tol corresponds to 1.15 � of the error of the basic solution. We solve the problem on
np = 8 processors and use our CG solver PRES20 with full LU preconditioning as linear
solver. The bandwidth is optimized in each Newton step by the fast single pass bandwidth
optimizer introduced in [12]. We need 6 cycles to reach the prescribed tolerance, the results
are presented in table 5.4.1.

The maxima of the exact and estimated errors come from the third component ω in all
6 cycles. In cycle 1 we start with the 751 nodes and 1,410 elements of the original grid.
By the condition (3.4.15) we get 696 refinement nodes (as there is no refinement cascade

5.4 Approximating a polynomial by pure mesh refinement 191
C

yc
le

nu
m

be
r

of
nu

m
be

r
of

nu
m

be
r

of
nu

m
be

r
of

gl
ob

al
re

la
tiv

e
er

ro
r

tim
e

fo
r

nu
m

be
r

no
de

s
el

em
en

ts
re

f.
no

de
s

re
f.

el
em

.
co

m
p.

es
tim

at
ed

ex
ac

t
cy

cl
e

[s
ec

]

1
75

1
1,

41
0

69
6

1,
36

3
u

0.
61

6
·1

0−
1

0.
58

4
·1

0−
1

3.
43

v
0.

71
5
·1

0−
1

0.
64

9
·1

0−
1

ω
0.

86
6

0.
73

8

2
2,

85
3

5,
49

9
2,

27
8

4,
82

7
u

0.
38

9
·1

0−
1

0.
15

8
·1

0−
1

13
.7

7
v

0.
44

6
·1

0−
1

0.
16

6
·1

0−
1

ω
0.

66
6

0.
32

4

3
10

,2
90

19
,9

80
5,

26
9

12
,7

70
u

0.
81

4
·1

0−
2

0.
35

9
·1

0−
2

87
.2

2
v

0.
73

3
·1

0−
2

0.
41

4
·1

0−
2

ω
0.

23
6

0.
80

8
·1

0−
1

4
30

,1
90

58
,2

90
1,

45
1

4,
87

3
u

0.
15

1
·1

0−
2

0.
80

6
·1

0−
3

28
7.

85
v

0.
15

5
·1

0−
2

0.
79

2
·1

0−
3

ω
0.

15
2

0.
24

2
·1

0−
1

5
38

,4
55

72
,9

09
1,

39
6

5,
31

5
u

0.
20

9
·1

0−
3

0.
19

9
·1

0−
3

41
8.

35
v

0.
36

6
·1

0−
3

0.
22

6
·1

0−
3

ω
0.

37
8
·1

0−
1

0.
85

4
·1

0−
2

6
47

,9
00

88
,8

54
—

—
u

0.
11

5
·1

0−
3

0.
14

4
·1

0−
3

57
4.

55
v

0.
25

7
·1

0−
3

0.
23

3
·1

0−
3

ω
0.

92
5
·1

0−
2

0.
64

2
·1

0−
2

T
ab

le
5.

4.
1:

R
es

ul
ts

fo
r

pu
re

m
es

h
re

fin
em

en
to

n
un

it
ci

rc
le

w
ith

or
de

r
q

=
2.

192 Numerical examples

in the first cycle yet). Then between cycle 1 and cycle 2 the triangles that contain the 696
refinement nodes are refined by which there result totally 2,853 nodes and 5,499 elements
that we then redistribute on the 8 processors according to the x-coordinate with the overlap
as described in section 3.6. In the cycles 2 and 3 the number of refinement nodes increases,
here we have refinement nodes not only because of condition (3.4.15) but also because of
the refinement cascade. At the same time the exact and the estimated error decrease. In
the cycles 4 and 5 the number of refinement nodes falls off to about 1,451 or 1,396, respec-
tively, and the exact and estimated error continue decreasing. Here we only refine elements
of the two highest refinement stages, i.e. the “old” elements of the first two or three stages,
respectively, are not changed any more, only in those regions where we do not yet meet the
prescribed tolerance we must refine the mesh. This leads for cycle 6 to 47,900 nodes and
88,854 elements. Then there are not found any refinement nodes any more as the estimated
relative errors are below the requested tolerance tol.

In figure 5.4.1 we show solution component ω on the unit circle for the first cycle (fig-
ure 5.4.1a)) and for the last cycle (figure 5.4.1b)). In the first cycle we see that the solution
is not symmetrical as expected (by the unsymmetry of the grid) which explains the high
level of the exact and estimated error. In the sixth cycle we can see that the solution has got
the expected appearance and therefore the errors are small and the prescribed tolerance is
met.

a) b)

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 5.4.1: Solution of component ω in the a) first and b) sixth computation cycle.

The average edge length of the original grid is

havg,1 = 0.717 · 10−1,

5.4 Approximating a polynomial by pure mesh refinement 193

in the last cycle we have an average edge length of

havg,6 = 0.733 · 10−2

which is about 10% of the original edge length so that we can expect in the last cycle an er-
ror of about 1% of the error of the basic solution because the error should go down quadrat-
ically with the space step size. As the errors for ω are 0.866 for cycle 1 and 0.925 · 10−2

for cycle 6, we see that the error really fulfills this guess. The CPU time for a cycle clearly
increases with the increasing number of nodes and elements. The total time for the 6 cycles
is 1,385.35 seconds.

In figures 5.4.2a) to f) on pages 194 and 195 we see the 6 grids on the left side and the visu-
alization of the estimated relative error for component ω on the right side. In figure 5.4.2f),
the grid that finally meets the requested tolerance, you can still see the coarsest grid of
cycle 1 around the origin. The central region of the grid does not change any more between
the third and the sixth cycle as the prescribed tolerance is met. This comes from the fact
that the function values of the test function do not change very much in this region. The
maxima of the estimated errors are at the boundary of the domain in each cycle, but with
decreasing level.

Cycle number 1 2 3 4 5 6

Grid sorting1 0.04 0.10 0.25 0.59 0.77 0.85
Point collection1 0.12 0.18 0.59 2.69 3.79 5.42
Formula generation1 0.03 0.10 0.41 1.39 1.74 2.07
Newton iteration1 2.87 12.97 85.49 282.56 411.27 565.85

number of Newton steps 2 2 2 1 1 1
LINSOL1 2.85 12.90 85.29 282.24 410.85 565.29
Bandwidth optimizer1 0.14 0.82 6.11 18.50 28.76 42.00
Bandwidth 222 508 1,301 3,088 4,072 5,048
Factorization1 2.45 11.30 73.02 235.54 340.46 465.60

Newton iteration without LINSOL1 0.02 0.07 0.20 0.32 0.42 0.56
Mesh refinement1 0.20 0.35 0.39 0.40 0.46 —

FDEM without LINSOL1 0.58 0.87 1.93 5.61 7.50 9.26

1 CPU time in seconds

Table 5.4.2: Time analysis for pure mesh refinement with order q = 2 (part one).

When we have a look at the CPU times needed by the single parts of FDEM in the 6 cycles
shown in table 5.4.2 we see—if we divide the CPU time by the number of nodes in the
cycle, see table 5.4.3—that the increase in time does not come from the FDEM parts such

194 Numerical examples

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 a)

x
y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 b)

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.56
0.48
0.40
0.32
0.24
0.16
0.08

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 c)

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.14
0.12
0.10
0.08
0.06
0.04
0.02

Figure 5.4.2: Resulting grids and estimated errors computed on these grids from pure mesh
refinement: a) original grid, b) grid in cycle 2, c) grid in cycle 3.

5.4 Approximating a polynomial by pure mesh refinement 195

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 d)

x

y
-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.04
0.03
0.02
0.01

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 e)

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.005
0.004
0.003
0.002
0.001

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1 f)

x

y

-1 -0.5 0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.005
0.004
0.003
0.002
0.001

Figure 5.4.2: (Continued) Resulting grids and estimated errors computed on these grids from
pure mesh refinement: d) grid in cycle 4, e) grid in cycle 5, f) grid in cycle 6.

196 Numerical examples

as grid sorting, point collection, generation of the difference and error formulas and mesh
refinement, but from the linear solver LINSOL that solves the large sparse linear system
of equations during each Newton step. This comes from the fact that the bandwidth of the
matrix Qd increases from one cycle to the other, and therefore the time for the factorization
increases much more than we expected from the number of unknowns.

Cycle number 1 2 3 4 5 6

Grid sorting1 5.3E-5 3.5E-5 2.4E-5 2.0E-5 2.0E-5 1.8E-5
Point collection1 1.6E-4 6.3E-5 5.7E-5 8.9E-5 9.9E-5 1.1E-4
Formula generation1 4.0E-5 3.5E-5 4.0E-5 4.6E-5 4.5E-5 4.3E-5
Newton iteration1 3.8E-3 4.5E-3 8.3E-3 9.4E-3 1.1E-2 1.2E-2

LINSOL1 3.8E-3 4.5E-3 8.3E-3 9.3E-3 1.1E-2 1.2E-2
Newton it. without LINSOL1 2.7E-5 2.5E-5 1.9E-5 1.1E-5 1.1E-5 1.2E-5
Mesh refinement1 2.7E-4 1.2E-4 3.8E-5 1.3E-5 1.2E-5 —

FDEM without LINSOL1 7.7E-4 3.0E-4 1.9E-4 1.9E-4 2.0E-4 1.9E-4
1 CPU time in seconds divided by number of nodes

Table 5.4.3: Time analysis for pure mesh refinement with order q = 2 (part two).

5.5 Experiments with rectangular grids

We first compare a complete FDEM computation with all substages on several rectangular
grids where we want to have the same number of nodes per processor for each computation.
Then we examine the mesh refinement itself for different grids.

5.5.1 Investigating all steps of FDEM

In order to see the influence of the grid we make a series computation with 7 different grids
for the solution of (5.3.1) and (5.3.2) for the test function (5.3.4) (sugar loaf with top in the
middle of the domain) on a 4 × 1 domain with the grid type of figure 5.5.1. The character-
istics of the 7 grids are shown in table 5.5.1.

The number of grid points is approximately doubled from one grid to the other which is not
possible to do exactly as we had to multiply the number of points in x- and y-direction by√

2, but these numbers are doubled in every second grid. This also results in the doubled
number of the elements and unknowns. After the first cycle we refine the mesh completely,
i.e. we set the tolerance tol = 0 so that all elements become refinement elements. Again,
we compute on the IBM SP WinterHawk-II as above, but now we also double the number

5.5 Experiments with rectangular grids 197

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Figure 5.5.1: Type of grid for 4 × 1 domain.

of processors when we double the number of nodes. Thus, the number of nodes, elements
and unknowns per processor is the same for each computation. We use difference formulas
of consistency order q = 2. This time, we use for the computations the BiCGStab2 method
as iterative solver, a smoothed biconjugate gradient method, see [13]. We are only inter-
ested in the exact and estimated relative errors and in the CPU time (of processor 1).

From table 5.5.2 we can see that the relative exact error of the second cycle goes down
to 25% of the relative exact error of the first cycle for each of the seven grids. As each

Grid Cycle Number of Number of Number of No. of
number number Dimension nodes elements unknowns proc.

1 1 128 × 32 4,096 7,874 12,288 1
2 255 × 63 16,065 31,496 48,195

2 1 181 × 45 8,145 15,840 24,435 2
2 361 × 89 32,129 63,360 96,387

3 1 256 × 64 16,384 32,130 49,152 4
2 511 × 127 64,897 128,520 194,691

4 1 362 × 90 32,580 64,258 97,740 8
2 723 × 179 129,417 257,032 388,251

5 1 512 × 128 65,536 129,794 196,608 16
2 1,023 × 255 260,865 519,176 782,595

6 1 724 × 181 131,044 260,280 393,132 32
2 1,447 × 361 523,367 1,041,120 1,567,101

7 1 1,024 × 256 262,144 521,730 786,432 64
2 2,047 × 511 1,046,017 2,086,920 3,138,051

Table 5.5.1: Characteristics of the 7 grids for the complete computation. After cycle 1 all
elements are refined.

198 Numerical examples

edge of the grid is halved during the mesh refinement process this is what we expected for
consistency order q = 2. Furthermore, the errors get halved for two subsequent grids, both
for the first and for the second cycle, as the number of nodes is increased by a factor

√
2,

i.e. the space step size is reduced by a factor
√

2. The comparison of the estimated and
the exact error shows that the error estimation gets better for finer grid. Both the exact and
the estimated error go down from one grid to the other (finer) grid. In the second cycle the
refined grid i is almost the same grid as the original grid i + 2, and we see that the relative
errors are very similar. Usually in investigations of discretization methods the exact and the
computed solution are compared, i.e. the quality of the computed solution. However, here
we compare the exact and the estimated error, i.e. the quality of the error estimate. This is
a quality control one level higher as usual and it gives you the indispensable information
if you can “trust” your solution. And this is for a “black-box” where neither the PDEs nor
BCs nor the domain that the user puts in are known to the designer of the program. This
is in complete contrast to commercial codes that are always specialized to a certain type of
problem.

Grid Cycle global relative error CPU CPU ref.
number number comp. estimated exact [sec] [sec]

1 1 u 0.792 · 10−2 0.648 · 10−2 6.23 0.36
v 0.794 · 10−2 0.810 · 10−2

ω 0.786 · 10−2 0.136 · 10−1

2 u 0.195 · 10−2 0.136 · 10−2 54.87
v 0.202 · 10−2 0.204 · 10−2

ω 0.200 · 10−2 0.254 · 10−2

2 1 u 0.391 · 10−2 0.289 · 10−2 8.36 0.36
v 0.400 · 10−2 0.406 · 10−2

ω 0.397 · 10−2 0.556 · 10−2

2 u 0.974 · 10−3 0.644 · 10−3 72.99
v 0.100 · 10−2 0.101 · 10−2

ω 0.995 · 10−3 0.117 · 10−2

3 1 u 0.192 · 10−2 0.132 · 10−2 13.02 0.36
v 0.198 · 10−2 0.200 · 10−2

ω 0.197 · 10−2 0.245 · 10−2

2 u 0.481 · 10−3 0.305 · 10−3 107.00
v 0.494 · 10−3 0.499 · 10−3

ω 0.491 · 10−3 0.505 · 10−3

Continued on next page

5.5 Experiments with rectangular grids 199

Grid Cycle global relative error CPU CPU ref.
number number comp. estimated exact [sec] [sec]

4 1 u 0.962 · 10−3 0.632 · 10−3 16.16 0.40
v 0.988 · 10−3 0.999 · 10−3

ω 0.983 · 10−3 0.115 · 10−2

2 u 0.240 · 10−3 0.150 · 10−3 140.52
v 0.247 · 10−3 0.250 · 10−3

ω 0.246 · 10−3 0.265 · 10−3

5 1 u 0.476 · 10−3 0.300 · 10−3 33.03 0.39
v 0.490 · 10−3 0.494 · 10−3

ω 0.487 · 10−3 0.504 · 10−3

2 u 0.119 · 10−3 0.725 · 10−4 196.63
v 0.122 · 10−3 0.124 · 10−3

ω 0.122 · 10−3 0.128 · 10−3

6 1 u 0.222 · 10−3 0.146 · 10−3 40.32 0.40
v 0.246 · 10−3 0.247 · 10−3

ω 0.252 · 10−3 0.258 · 10−3

2 u 0.540 · 10−4 0.362 · 10−4 332.61
v 0.617 · 10−4 0.616 · 10−4

ω 0.631 · 10−4 0.634 · 10−4

7 1 u 0.119 · 10−3 0.721 · 10−4 56.38 0.43
v 0.122 · 10−3 0.123 · 10−3

ω 0.121 · 10−3 0.127 · 10−3

2 u 0.259 · 10−4 0.182 · 10−4 518.91
v 0.309 · 10−4 0.308 · 10−4

ω 0.318 · 10−4 0.310 · 10−4

Table 5.5.2: Results for seven different grids with sugar-loaf forcing function. CPU ref. is the
CPU time for the refinement only.

As the number of processors is quadruplicated the time for the computation of the solution
and of the error of cycle 1 of grid i + 2 should be about one quarter of the time for cycle 2
of grid i (same number of unknowns). The more processors we have the worse the ratio
gets, this comes from the additional communication overhead we get if we compute the
same problem on more and more processors. If we compare the CPU times for the second
and the first cycle for the same grid, we get a time ratio between 8.2 and 9.2 instead of
the expected ratio of 4. From table 5.5.3 we learn that this overhead comes from two
parts of FDEM: the point collection and the Newton iteration. The reason for the time

200 Numerical examples
G

rid
num

ber
1

2
3

4

C
ycle

num
ber

1
2

1
2

1
2

1
2

G
rid

sorting
1

0.00
0.00

0.23
0.94

0.33
1.36

0.46
2.14

Pointcollection
1

1.98
27.72

1.73
22.00

2.08
25.25

2.27
27.17

Form
ula

generation
1

0.71
2.76

0.71
2.80

0.78
2.91

0.76
2.76

N
ew

ton
iteration

1
2.97

24.21
5.17

47.10
9.27

77.24
12.08

107.98
L

IN
SO

L
1

2.27
20.26

4.52
43.45

8.55
73.55

11.36
104.24

N
ew

ton
it.w

ithoutL
IN

SO
L

1
0.70

3.95
0.65

3.65
0.72

3.69
0.72

3.74
M

esh
refinem

ent 1
0.36

—
0.36

—
0.36

—
0.40

—
R

efinem
entcascade

1
0.09

—
0.08

—
0.09

—
0.09

—
R

efinem
entof

elem
ents

1
0.27

—
0.28

—
0.27

—
0.31

—

FD
E

M
w

ithoutL
IN

SO
L

1
3.96

34.61
3.84

29.54
4.47

33.45
4.80

36.28

G
rid

num
ber

5
6

7

C
ycle

num
ber

1
2

1
2

1
2

G
rid

sorting
1

0.89
3.58

1.60
6.32

3.58
14.05

Pointcollection
1

2.70
30.73

3.34
35.42

4.23
42.50

Form
ula

generation
1

0.75
2.80

0.77
2.81

0.77
2.86

N
ew

ton
iteration

1
28.04

158.82
33.88

286.95
46.99

458.63
L

IN
SO

L
1

27.23
154.85

32.95
282.78

45.97
453.81

N
ew

ton
it.w

ithoutL
IN

SO
L

1
0.81

3.97
0.93

4.17
1.02

4.82
M

esh
refinem

ent 1
0.39

—
0.40

—
0.43

—
R

efinem
entcascade

1
0.08

—
0.10

—
0.09

—
R

efinem
entof

elem
ents

1
0.31

—
0.30

—
0.34

—

FD
E

M
w

ithoutL
IN

SO
L

1
5.80

41.78
7.37

49.83
10.41

65.10
1

C
PU

tim
e

in
seconds

T
able

5.5.3:
T

im
e

analysis
for

pure
m

esh
refinem

entw
ith

order
q

=
2.

5.5 Experiments with rectangular grids 201

increase is that the data comes from the cache in the first cycle and from the memory in
the second cycle as the L2-cache has a capacity of 8 MB. For the point collection this data
is the logical array we use for the determination of the next neighbour ring and for the
Newton iteration it is mainly the array(s) for the large sparse matrix Qd. Furthermore,
the condition of the matrix will become worse if the number of unknowns increases, so
that the CG method needs more matrix vector multiplications (MVMs). The generation of
the difference and error formulas and the mesh refinement scale very well as the time is
more or less constant for the seven computations. The time for the mesh refinement is only
about 6% of the time for the first cycle on a single processor, and decreases to 0.8% for the
computation on 64 processors. When we re-sort the nodes onto the processors, only up to
np/2 processors are active in parallel. Furthermore, the elements are sent around in a ring
shift. The more processors we use, the more communication tacts we need. This explains
why the time for the grid sorting approximately doubles from one grid to the other. For
grid 5 we have a time ratio of 6.0 between the two cycles which comes from the fact that
the time for the Newton iteration is mainly determined by the number of MVMs, and the
number of MVMs usually increases with the number of unknowns, but for grid 5 we have
got a considerably smaller number of MVMs, i.e. it falls out of line. We have chosen the
CG method BiCGStab2 without LU preconditioning because we will get much fill-in by the
preconditioning involving storage problems. On the other hand, the CG method will fail if
we strongly increase the number of unknowns. For grid 4 we made the same computation
that we made with the BiCGStab2 method with LU preconditioning on np = 8 processors.
The CPU time for this computation is 1,616 seconds in comparison with 157 seconds for
the computation with BiCGStab2 without preconditioning.

5.5.2 Scaling of the mesh refinement only

As the CPU time for the mesh refinement is quite small for the examples in the last sub-
section, we now want to show how the CPU time behaves for grids with more nodes and
elements. As the memory of one node of the IBM SP is only 2 GB, we cannot execute the
complete computation. On the other hand we need the influence polynomials for each node
to be able to interpolate the solution of the new nodes. So we execute the point collection
and the generation of the difference and error formulas, omit the Newton iteration and jump
directly to the mesh refinement. Afterwards we stop the computation.

Again, we make a series computation with 7 different grids on a 4×1 domain with the grid
type of figure 5.5.1. The characteristics of the 7 grids are shown in table 5.5.4. We approxi-
mately double the number of grid points from one grid to the other which is not possible to
do exactly for the same reason as above. To be able to compare the measured CPU times,
we refine the mesh completely, i.e. we set the tolerance tol = 0 so that all elements become
refinement elements. Again, we compute on the IBM SP WinterHawk-II as above and we
also double the number of processors when we double the number of nodes so that the

202 Numerical examples

Original grid Refined grid
Grid Number of Number of Number of Number of No. of
nr. Dimension nodes elements nodes elements proc.

1 724 × 181 131,044 260,280 522,367 1,041,120 1

2 1,024 × 256 262,144 521,730 1,046,017 2,086,920 2

3 1,448 × 362 524,176 1,044,734 2,093,085 4,178,936 4

4 2,048 × 512 1,048,576 2,092,034 4,189,185 8,368,136 8

5 2,896 × 724 2,096,704 4,186,170 8,379,577 16,744,680 16

6 4,096 × 1,024 4,194,304 8,378,370 16,766,977 33,513,480 32

7 5,792 × 1,448 8,386,816 16,759,154 33,532,785 67,036,616 64

Table 5.5.4: Characteristics of the 7 grids for the mesh refinement.

number of nodes, elements and unknowns on a processor is the same for each computation.
We use difference formulas of consistency order q = 2. We are only interested in the CPU
time (of processor 1) for the mesh refinement which is shown in table 5.5.5.

CPU time1 for
Grid determ. of mesh

number ref. elem. refinement

1 1.10 6.18

2 1.07 6.16

3 1.08 6.14

4 1.14 6.56

5 1.10 6.53

6 1.16 6.75

7 1.20 6.77
1 in seconds

Table 5.5.5: CPU time for the mesh refinement for the seven grids.

One can see in this table that the CPU time for the determination of the refinement elements
is between 1.07 and 1.20 seconds for each computation so that we can say that this part of
the mesh refinement algorithm is scaling very well, but this is no wonder as there is not any
communication in the first refinement cycle. All elements have the same refinement stage
so that there the difference of the refinement stages of two neighbour elements is at most 1

5.6 Example for 2-D dividing line 203

after the refinement and therefore we do not have to execute the refinement cascade here.
As the scaling property of the mesh refinement can only be tested if we refine the whole
mesh in a refinement cycle, we cannot test the scaling of the refinement cascade because
all elements will have the same refinement stage in each cycle.

For the second part of the mesh refinement process, the real mesh refinement, the CPU
times are between 6.14 seconds and 6.77 seconds. This is a difference of about 10% which
is an acceptable result but obviously the communication overhead gradually affects the
performance as the time increases more and more for the higher numbers of processors.
On the other hand, as we increase the number of nodes in y-direction from one grid to the
other, the number of overlap edges also increases, and so the time for the exchange of the
ptl array where we store the data of the overlap refinement edges must also increase.

5.6 Example for 2-D dividing line

The following is an example for a 2-D dividing line. In figure 5.6.1 the grid is shown. It
consists of two subdomains divided by a dividing line at y = 0. First we generated subdo-
main 1 with I-DEAS and then we got subdomain 2 by mirroring the nodes of subdomain 1.
We use on both subdomains a 40 × 19 grid, i.e. we have 760 nodes and 1,404 elements in
each subdomain, and we have matching grids. Again we solve the problem (5.3.1), (5.3.2)
from above. The test function in the upper subdomain is the sugar loaf (5.3.5) with top at
x = 0, y = 0, but we add +1, so the function is

ū(x, y) = e−8(x2+y2) + 1 = v̄(x, y) = ω̄(x, y). (5.6.1)

In the lower subdomain we use the constant function (5.3.6). The dividing line consists
of an upper dividing line which is the lower boundary of the upper domain and of a lower
dividing line which is the upper boundary of the lower domain. The coupling conditions at
the dividing line are the jump in the function values and equal y-derivatives, so we have

uup − ūup = ulow − ūlow (5.6.2)

on the upper dividing line and

uy,low − ūy,low = uy,up − ūy,up (5.6.3)

on the lower one. We choose the consistency order q = 2, the parameters ∆q and εpivot for
the generation of the difference and error formulas are set to ∆q = 4 and εpivot = 10−2.
We prescribe a relative tolerance tol = 10−2, the safety factor sgrid for the determination
of the refinement nodes in (3.4.15) is sgrid = 1. Again, we start the computation with the
exact test solution. We compute on np = 2 processors of the IBM SP as above, and we use
the BiCGStab2 method without preconditioning for the solution of the large sparse linear
system of equations in LINSOL.

204 Numerical examples

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.6.1: Domains for the example with dividing line and initial grid.

In table 5.6.1 the results of the refinement process are shown. For each cycle we have in
the third column the maximum of the three solution components u, v and ω. These maxima
are the maxima over all nodes, i.e. we do not distinguish between nodes of subdomain 1
and 2. In columns 4 and 5 we have the maximum of the relative estimated and exact error,
respectively, which are maxima over all nodes as well. The CPU time for the whole cycle
is given in column 6, in column 7 the CPU time for the mesh refinement process.

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6 1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

Figure 5.6.2: Solution for the example with dividing line for the four cycles.

5.6 Example for 2-D dividing line 205

Cycle max. of global relative error CPU CPU ref.
number comp. comp. estimated exact [sec] [sec]

1 u 2.0000 0.125 · 10−2 0.128 · 10−2 1.10 0.05
v 2.0001 0.882 · 10−3 0.916 · 10−3

ω 2.0003 0.235 · 10−1 0.250 · 10−1

2 u 2.0000 0.675 · 10−3 0.483 · 10−3 4.00 0.08
v 2.0000 0.287 · 10−3 0.261 · 10−3

ω 2.0001 0.324 · 10−1 0.165 · 10−1

3 u 2.0000 0.129 · 10−2 0.268 · 10−3 8.09 0.13
v 2.0001 0.456 · 10−3 0.329 · 10−3

ω 2.0000 0.145 · 10−1 0.112 · 10−1

4 u 2.0000 0.449 · 10−3 0.335 · 10−3 23.92
v 2.0000 0.305 · 10−3 0.257 · 10−3

ω 2.0001 0.732 · 10−2 0.848 · 10−2

Table 5.6.1: Results for pure mesh refinement with dividing line (part one).

The maximum of the exact solution is 2 in both subdomains, and this should be the maxi-
mum of the computed solution for each solution component. This goal is already attained in
the first cycle where we obtain an exact error for the maximum of the solution of 0.15 ·10−3

for component ω. But there are nodes with a relative estimated error of 2.4% which is above
our requested tolerance of 1%—in other words: the requested tolerance is about 40% of the
maximum of the relative estimated error in the first cycle—, so that the mesh has to be re-
fined. The computed solution of component ω in the first cycle is illustrated in figure 5.6.2.
You can see very well the contours of constant height in the upper subdomain where the
exact solution is the sugar loaf function. In the lower subdomain the solution is constant
over the whole subdomain. For the solution components u and v the appearance is very
similar just as the solution in the following cycles, so we forgo their illustration.

Table 5.6.2 shows the development of the refinement process. With the request (3.4.15) we
get 578 refinement nodes altogether in the first cycle of which 562 are refinement nodes
(97%) in the upper subdomain and 16 refinement nodes (3%) in the lower one. As the
maximum of the relative estimated error is below the requested tolerance in the lower sub-
domain, this is not astonishing at all. The refinement in the first cycle results in 2,676
nodes in the upper subdomain and 905 nodes in the lower one. This grid is illustrated in
figure 5.6.3. Here you can see that the grid of the lower subdomain has not only been refined
in the middle of the dividing line—because of errors in the upper subdomain—but also at
the right boundary. Here the selection of the nodes for the error formulas is unfavourable.

206 Numerical examples

Cycle Domain number of number of number of number of
number number nodes elements ref. nodes ref. elem.

1 1 760 1,404 562 1,238
2 760 1,404 16 61

2 1 2,676 5,119 347 902
2 905 1,586 0 8

3 1 4,178 7,831 234 790
2 943 1,613 2 16

4 1 5,674 10,213 — —
2 982 1,661 — —

Table 5.6.2: Results for pure mesh refinement with dividing line (part two). Domain 1: upper
domain, domain 2: lower domain.

In the following cycles the estimated errors go down as the grid in the upper subdomain
gets finer, see figure 5.6.6a)–d) for the relative estimated error of solution component ω.
At the same time the errors in the lower subdomain go down as a consequence of the fact
that by the coupling conditions the discretization error of a dividing line node on the upper
dividing line enters into the right hand side of the dividing line node on the lower side of
the dividing line in the linear system of equations for the computation of the error estimate.

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.6.3: Domains for the example with dividing line in the second cycle.

5.6 Example for 2-D dividing line 207

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.6.4: Domains for the example with dividing line in the third cycle.

The grids for cycle 3 and 4 are illustrated in figure 5.6.4 and 5.6.5, respectively. The lower
subdomain is almost unchanged as one can also see from table 5.6.2: we have not any re-
finement nodes in the second refinement and only 2 refinement nodes after the third cycle.
The greatest estimated errors occur in the region of the upper boundary in all 4 cycles, see
figure 5.6.6a)–d). This may be quite surprising as the test function is rather harmless here.

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.6.5: Domains for the example with dividing line in the fourth cycle.

208 Numerical examples
a)

b)

x

y

-1
-0.5

0
0.5

1

-0.4

-0.2 0

0.2

0.4

0.6
2.0E

-02
1.6E

-02
1.2E

-02
8.0E

-03
4.0E

-03
1.0E

-03
1.0E

-04
1.0E

-05

x

y

-1
-0.5

0
0.5

1

-0.4

-0.2 0

0.2

0.4

0.6
2.4E

-02
2.0E

-02
1.6E

-02
1.2E

-02
8.0E

-03
4.0E

-03
1.0E

-03
1.0E

-04
1.0E

-05

c)
d)

x

y

-1
-0.5

0
0.5

1

-0.4

-0.2 0

0.2

0.4

0.6
1.2E

-02
1.0E

-02
8.0E

-03
6.0E

-03
4.0E

-03
2.0E

-03
1.0E

-03
1.0E

-04
1.0E

-05

x
y

-1
-0.5

0
0.5

1

-0.4

-0.2 0

0.2

0.4

0.6
6.0E

-03
5.0E

-03
4.0E

-03
3.0E

-03
2.0E

-03
1.0E

-03
1.0E

-04
1.0E

-05

F
igure

5.6.6:
R

elative
estim

ated
error

of
solution

com
ponent

w
for

the
exam

ple
w

ith
dividing

line
for

the
four

cycles:
a)

cycle
1,b)

cycle
2,c)

cycle
3,d)

cycle
4.

5.7 Example for 2-D sliding dividing line 209

So the reason is that we have one or more nodes on the upper boundary for which we get
bad error formulas. You can also see very well that the grid is locally refined in the middle
of the upper boundary (see figures 5.6.4 and 5.6.5).

The refined elements in the third grid directly below the dividing line result from the re-
finement cascade because of the refinement of elements in the upper subdomain. In the
upper subdomain the mesh is mainly refined around the peak of the sugar-loaf in the third
cycle but also in the region where the function goes flat. In the fourth cycle two thirds of
the refinement nodes are of refinement stage 2, i.e. they have been created just during the
last mesh refinement. So this is only a minor correction of the grid that finally leads to a
relative estimated error below the prescribed tolerance.

At the end we have 7 times the original number of nodes in the upper subdomain, whereas
in the lower subdomain the number of nodes has been increased only by 30%! The total
CPU time for the four cycles is 37.11 seconds. Most of the time—overall 82%—is spent
in the linear solver LINSOL, this part needs 66% of the time for the first cycle and the
percentage increases to 88% in the last cycle. So the time increase one may observe in
table 5.6.2 results mainly from LINSOL. This comes from the fact that not only the number
of unknowns increases from one cycle to the next but also because we need more matrix
vector multiplications for the solution of the large linear system of equations. Remember
that the more unknowns we have, the worse the condition of the large sparse matrix Qd

becomes. The time for the mesh refinement is about 3% of the total time for one cycle.
At the end the average edge length of the mesh is about 40% of the original average edge
length and we meet the requested tolerance that has been 42% of the maximum of the
relative estimated error of the basic solution.

5.7 Example for 2-D sliding dividing line

The next example is for a 2-D sliding dividing line. The original grid that consists of two
subdomains similar to the last example is illustrated in figure 5.7.1a). First we generated
the 2 × 1 subdomain 1 which is the upper subdomain in the figure with I-DEAS and then
we got subdomain 2 by mirroring, scaling and displacing the nodes of subdomain 1. Here
we used a scaling factor of 0.5. We use 41 nodes in x-direction and 21 nodes in y-direction
on both grids, so that each subdomain has got 861 nodes and 1,600 elements. Therefore
the lower subdomain has half the edge lengths of the larger subdomain, and thus we have
non-matching grids. Additionally, we have moving grids, i.e. we refine both grids until
the maximum of the estimated error is lesser than the prescribed tolerance. Then the lower
domain is displaced by −0.175 which corresponds to 3.5 mesh sizes of the upper grid and
we start a new refinement process if the tolerance is not met for the new grids. We want to
move the lower grid twice. Again we solve the problem (5.3.1), (5.3.2) from above with
Reynolds number Re = 100.

210 Numerical examples

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a)

b)

c)

Figure 5.7.1: Domains for the example with sliding dividing line for a) cycle 1, b) cycle 2,
c) cycle 3.

5.7 Example for 2-D sliding dividing line 211

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2.2E-02
1.8E-02
1.4E-02
1.0E-02
6.0E-03
2.0E-03

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.0E-02
8.0E-03
6.0E-03
4.0E-03
2.0E-03

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2.8E-03
2.4E-03
2.0E-03
1.6E-03
1.2E-03
8.0E-04
4.0E-04

a)

b)

c)

Figure 5.7.2: Estimated error of component ω for the example with sliding dividing line for
a) cycle 1, b) cycle 2, c) cycle 3.

212 Numerical examples

We have one test function for each subdomain, in the upper one it is the sugar loaf

ū(x, y) = e−8(x2+y2) = v̄(x, y) = ω̄(x, y). (5.7.1)

with top at x = 0, y = 0, but we add +1, and in the lower subdomain we use the constant
test function

ū(x, y) = 2 = v̄(x, y) = ω̄(x, y). (5.7.2)

The coupling conditions at the sliding dividing line are the jump in the function values and
equal y-derivatives, so we have

uup − ūup = ulow − ūlow (5.7.3)

for the sliding dividing line nodes on the upper sliding dividing line and

uy,low − ūy,low = uy,up − ūy,up (5.7.4)

for those on the lower one.

Cycle max. of global relative error CPU CPU ref.
number comp. comp. estimated exact [sec] [sec]

1 u 2.0000 0.144 · 10−2 0.146 · 10−2 1.27 0.05
v 2.0000 0.117 · 10−2 0.179 · 10−2

ω 2.0480 0.246 · 10−1 0.234 · 10−1

2 u 2.0000 0.247 · 10−2 0.695 · 10−3 3.08 0.11
v 2.0000 0.256 · 10−2 0.853 · 10−3

ω 2.0291 0.120 · 10−1 0.151 · 10−1

3 u 2.0000 0.366 · 10−3 0.268 · 10−3 9.97 0.00
v 2.0001 0.387 · 10−3 0.255 · 10−3

ω 2.0017 0.310 · 10−2 0.197 · 10−2

4 u 2.0000 0.550 · 10−2 0.385 · 10−2 9.27 0.00
v 2.0001 0.555 · 10−2 0.391 · 10−2

ω 2.0166 0.848 · 10−2 0.823 · 10−2

5 u 2.0001 0.116 · 10−2 0.297 · 10−3 9.12 0.00
v 2.0002 0.120 · 10−2 0.266 · 10−3

ω 2.0005 0.625 · 10−2 0.562 · 10−2

Table 5.7.1: Results for pure mesh refinement with sliding dividing line (part one).

We choose the consistency order q = 2 and set ∆q = 4, εpivot = 10−2 and start with the
exact solution. The requested tolerance on the level of solution is tol = 10−2 which is

5.7 Example for 2-D sliding dividing line 213

about 40% of the maximum of the estimated error of the basic solution. The safety factor
sgrid for the mesh refinement is set to 0.5.

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

Figure 5.7.3: Solution component ω for the example with sliding dividing line.

We compute on np = 2 processors of the IBM SP as above. Again we use the BiCGStab2
method without preconditioning for the solution of the large sparse linear system of equa-
tions. The results of the refinement process are presented in tables 5.7.1 and 5.7.2. The
layout of the tables is the same as in the preceding section, i.e. in table 5.7.1 we have the
maxima of the solution and the relative estimated and exact error for each cycle and each
solution component in columns 3, 4 and 5. The CPU times for the whole cycle and for the
mesh refinement process are given in columns 6 and 7. In table 5.7.2 the numbers of nodes

Cycle Domain number of number of number of number of
number number nodes elements ref. nodes ref. elem.

1 1 861 1,600 292 713
2 861 1,600 80 270

2 1 1,989 3,756 913 2,178
2 1,335 2,405 201 609

3, 4, 5 1 5,506 10,279 0 0
2 2,409 4,261 0 0

Table 5.7.2: Results for pure mesh refinement with sliding dividing line (part two). Domain 1:
upper domain, domain 2: lower domain.

214 Numerical examples

and elements for each cycle and each subdomain are presented as well as the number of
refinement nodes and elements.

The maximum of the exact solution is 2 in both subdomains, and this should be the max-
imum of the computed solution for each solution component. This goal is attained in the
first cycle for the solution components u and v, but for ω the maximum is 2.048. The maxi-
mum of the relative estimated error for ω is 2.5% and is found in the upper subdomain. The
computed solution of component ω in the cycle 1 is illustrated in figure 5.7.3. You can see
very well the contours of constant height in the upper subdomain where the exact solution
is the sugar loaf function. In the lower subdomain the solution is constant over the whole
subdomain. In the first three cycles the grid is not moved yet, so we forgo the illustration
of ω for cycle 2 and 3. For the solution components u and v the appearance is very similar,

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 7.5E-03
6.0E-03
4.5E-03
3.0E-03
1.5E-03

a)

b)

Figure 5.7.4: Cycle 4 for the example with sliding dividing line: a) solution component ω,
b) error estimate of ω.

5.7 Example for 2-D sliding dividing line 215

so we also forgo their illustration.

By request (3.4.15) we get 372 refinement nodes (about 80% of these nodes are in subdo-
main 1 and 20% in subdomain 2), see table 5.7.2. The refinement nodes are positioned in
a circle around the peak of the sugar-loaf in the upper subdomain. In the lower subdomain
the refinement nodes are in the proximity of the sliding dividing line. Only in the lower
left corner and at the right boundary of the subdomain we have some bad error formulas
that produce some refinement nodes, see figure 5.7.1b) for the grid of the second cycle.
The refinement in the first cycle leads to 1,989 nodes in the upper subdomain and 1,335
nodes in the lower one. The maximum of the relative estimated error decreases to 1.2% for
solution component ω and therefore is still above the prescribed tolerance so that another
refinement and another computation cycle is necessary.

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

x

y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 5.0E-03
4.0E-03
3.0E-03
2.0E-03
1.0E-03

a)

b)

Figure 5.7.5: Cycle 5 for the example with sliding dividing line: a) solution component ω,
b) error estimate of ω.

216 Numerical examples

The grid of the third cycle is illustrated in figure 5.7.1c). We can see that the refinement
concentrates on the peak of the sugar-loaf in the upper subdomain, in the lower subdomain
only some nodes in the direct proximity of the sliding dividing line become refinement
nodes. In the third cycle the maximum of the relative estimated error is 0.3% and so we
meet the requested tolerance now. The estimated error for solution component ω, the sig-
nificant component for the refinement, is illustrated in figure 5.7.2 for the three cycles.

Afterwards the lower subdomain is moved by 0.175 to the left and again, we start the re-
finement process until the prescribed tolerance is met for the new constellation. As the
maximum of the estimated error is 0.8% for solution component ω, no further mesh re-
finement is necessary. We illustrate solution component ω and the error of this solution
component in figure 5.7.4. Again, we forgo the illustration of the other solution compo-
nents and their error estimates. The lower subdomain is moved to the left once more and we
immediately get an estimated error of 0.6% so that we do not have to refine the mesh any
more and the computation is finished. Figure 5.7.5 illustrates solution component ω and its
error estimate for cycle 5, u and v are forgone. As the upper subdomain is not changed at
all and the lower one is only moved to the left, we also forgo the illustration of the grid for
cycle 4 and 5.

5.8 A 3-D example

In 3-D we want to solve a system of 3 partial differential equations for the variables u, v
and w which is again of Navier-Stokes type:

uxx + uyy + uzz + u + Re · (uux + vuy + wuz) − f1 = 0
vxx + vyy + vzz + v + Re · (uvx + vvy + wvz) − f2 = 0
wxx + wyy + wzz + w + Re · (uwx + vwy + wwz) − f3 = 0

(5.8.1)

with the boundary conditions

u − g1 = 0

v − g2 = 0 (5.8.2)

w − g3 = 0.

The fi and gi are forcing functions that are determined so that the exact solution is

ū(x, y) = e−32(x2+y2+z2) = v̄(x, y) = ω̄(x, y) (5.8.3)

which is the 3-D equivalent to (5.3.4) with maximum 1 in the origin and decaying in balls
around the origin. We solve (5.8.1) and (5.8.2) with Reynolds number Re = 100 on a unit
cube with center in the origin of the coordinate system. We compute with np = 16 proces-
sors of the HP XC1 6000 with 1500 MHz Itanium-2 processors with a peak performance of

5.8 A 3-D example 217

6000 MFLOPS. We use the slow, but very robust iterative CG solver ATPRES, see [10], be-
cause other CG solvers, e.g. BiCGStab2, do no longer converge for the third cycle because
of the large number of unknowns, and LU preconditioning is slower because of the large
fill-in for 3-D problems. We start with a 17× 17× 17 grid, compute with fixed consistency
order q = 2 with ∆q = 4 and εpivot = 10−3. The initial solution is the sugar-loaf function
(5.8.3), i.e. the exact solution. We compute with pure mesh refinement where we choose
sgrid = 10−3 and request a tolerance on the level of solution tol = 10−2. The given CPU
time is that for the master processor 1.

The results of the refinement process are presented in tables 5.8.1 and 5.8.2. The layout of
the tables is the same as in the preceding sections, i.e. in table 5.8.1 we have the maxima
of the solution and the relative estimated and exact error for each cycle and each solution
component in columns 3, 4 and 5. The CPU times for the whole cycle and for the mesh
refinement process are given in columns 6 and 7. In table 5.8.2 the numbers of nodes and
elements for each cycle are presented as well as the number of refinement nodes and ele-
ments.

Cycle max. of global relative error CPU CPU ref.
number comp. comp. estimated exact [sec] [sec]

1 u 1.0417 0.375 · 10−1 0.400 · 10−1 2.21 0.25
v 1.0417 0.375 · 10−1 0.400 · 10−1

ω 1.0417 0.375 · 10−1 0.400 · 10−1

2 u 1.0121 0.328 · 10−1 0.300 · 10−1 70.80 44.99
v 1.0121 0.318 · 10−1 0.300 · 10−1

ω 1.0121 0.334 · 10−1 0.300 · 10−1

3 u 1.0003 0.957 · 10−2 0.787 · 10−2 488.29
v 1.0003 0.857 · 10−2 0.785 · 10−2

ω 1.0003 0.887 · 10−2 0.784 · 10−2

Table 5.8.1: Results for pure mesh refinement for 3-D example (part one).

In cycle 1 we start with 4,913 nodes and 24,576 elements of the original grid. The maximum
of the solution of the first cycle is 1.0417 for each component because of the symmetric
structure of the PDEs. In figure 5.8.1 the solution for component u is illustrated, for the
other components the appearance is almost the same, so we forgo their illustration. As it is
quite difficult to illustrate the solution of a 3-D problem we have chosen the illustration of
a 2-D cut through the cube, the section plane is the yz-plane, i.e. x = 0. The maximum of
the relative error is 3.75% for all solution components. By condition (3.4.15) we get 2,649
refinement nodes which results in 30,113 nodes and 163,561 elements for cycle 2.

218 Numerical examples

y

z

-0.5 0 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 5.8.1: Solution u of the 3-D example for the section plane x = 0.

Of course, the illustration of the grids is difficult, too. So we do not illustrate the grid
but the average edge length for all edges from each node to its neighbour nodes where we
also show a 2-D cut through the cube with the section plane x = 0, see figure 5.8.2. You
can see that the average edge length becomes smaller in the middle of the grid where we
have the peak value of the 3-D sugar-loaf. As the maximum of the solution is 1.0121 for
all components in the second cycle and as this is better than in the first one as the exact
maximum is 1, we get a smaller error estimate of 3.34%. Nevertheless, we get 25,253
refinement nodes by (3.4.15), and by the refinement process the grid for the third cycle has
got 228,258 nodes and 1.3 Million elements. Then the maximum of the solution is 1.0003
and the relative estimated error decreases to 0.96% which is below the prescribed tolerance.

Cycle number of number of number of number of
number nodes elements ref. nodes ref. elem.

1 4,913 24,576 2,649 19,855

2 30,113 163,561 25,253 162,512

3 228,258 1,301,145 — —

Table 5.8.2: Results for pure mesh refinement for 3-D example (part two).

5.8 A 3-D example 219

y

z

-0.5 -0.25 0 0.25 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.070
0.069
0.068
0.067
0.066
0.065
0.064
0.063

y

z

-0.5 -0.25 0 0.25 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.064
0.060
0.056
0.052
0.048
0.044
0.040
0.036

y

z

-0.5 -0.25 0 0.25 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025

a)

b)

c)

Figure 5.8.2: Average edge length between a node and its neighbour nodes for the 3-D example
for a) cycle 1, b) cycle 2, c) cycle 3, section plane x = 0.

220 Numerical examples

So the computation is finished. It is clear that in 3-D the number of nodes and elements
increases rapidly with the number of refinement cycles. The attentive reader may observe
that the subfigures with the average edge lengths in figure 5.8.2 are not symmetric. This
comes from the fact that the grid is not symmetric, too. So this results in different difference
stars and therefore also in (slightly) different values for the solution and the error estimate.

The total time for the computation is 561.30 seconds, but we can see that the time for the
individual cycles increases more than we expect when we look at the number of nodes and
elements. This comes from the fact that the data fits into the L2-cache in the first cycle and
partly in the second cycle, but in the third cycle the arrays need too much memory so the
data must be loaded from the memory. This also holds for the mesh refinement. The num-
ber of refinement nodes and elements is increased ninefold to tenfold in the second cycle
compared with the first cycle, but the time for the mesh refinement is 45 seconds instead
of 0.25 seconds! But with an increasing number of unknowns the condition number of the
large sparse matrix Qd increases, too.

For the 3-D example we can see that the FDEM program package is still working if we
compute on a number of processors (16) that is almost equal to the number of nodes in x-
direction (17). It is even working if you choose a number of processors that is greater than
the number of nodes in x-direction. This has been quite difficult to realize because then the
owning processor numbers of neighboured nodes and elements may differ by more than
one and the righmost processors may own no elements at all. This shows the advantage of
our automatic 1-D domain decomposition that we need for the black-box property of the
domain of FDEM.

In 3-D the mesh refinement is very critical. It is very difficult to find parameters so that
we get a computation for which the relative estimated error decreases when the space step
size is reduced. If we refine the grid completely, the error will decrease to 25% of the error
of the basic solution (for consistency order q = 2) but for a “mixed” grid where we have
elements of different refinement stages, there will be almost surely at least one node with
bad formulas. Therefore it is recommended to refine the grid completely in 3-D which
gives better decrease in the error than local refinement, but the number of nodes is the
eight-fold. If we look at the mean error, i.e. we sum up the relative errors of all n nodes
and divide the result by n, we will see that it decreases from 0.79 · 10−3 in the first cycle
to 0.90 · 10−4 in the third cycle. Simultaneously, the average edge length goes down to
0.21 ·10−2 in the last cycle from 0.71 ·10−2 for the original grid. So the ratio of the average
edge lengths is 30% and we therefore expect an error ratio of about 9% as the error should
decrease quadratically with the space step size. Actually, the ratio of the mean errors in our
computation is 11%.

Summary and Outlook 221

6 Summary and Outlook

In this chapter, a summary of the theoretical and practical results of this thesis is given.
Further, open questions and problems are identified.

In chapter 3, we have explained the Finite Difference Element Method to solve nonlinear
systems of partial differential equations on an arbitrary FEM mesh. We designed a robust
black-box solver that gives us, additionally to the solution of the problem, a reliable error
estimate for each component in each grid point, which is a unique feature among the FDM
and FEM program packages where one usually only gets an error indicator. By the means
of the error estimate we can assign an individual consistency order to each node and we
are able to refine the mesh locally if necessary. By the introduction of dividing lines and
coupling conditions we may solve problems on domains that are composed from different
subdomains with different PDEs which is also unique for the FDM. Starting from this base
we developed FDEM with sliding dividing lines where we do not need matching grids for
the subdomains that even may slide relatively to each other.

For the mesh refinement the nodes that have a relative error estimate that is above a pre-
scribed tolerance become refinement nodes, the elements that contain at least one refine-
ment node become refinement elements. The refinement is executed by the bisection of
the edges of the refinement elements. If an element is a neighbour element of a refinement
element and has a smaller refinement stage at the same time, i.e. it is “larger”, this element
must also be refined (refinement cascade) because otherwise, we would have more than
3 nodes on the edge the two elements share. This must be avoided because of the data
storage scheme.

In chapter 4 we explained all aspects of the mesh refinement algorithm in 2-D and 3-D,
with and without dividing lines and sliding dividing lines, respectively. The parallelization
of the mesh refinement algorithm on distributed memory parallel computers is very chal-
lenging, especially in 3-D where we may have many elements that share an edge, and these
elements may be owned by different processors. In order to manage this task we had to
put up clear rules that define the responsibility of the processors for the refinement of the
elements. The refinement then is reduced to the bisection of the edges and the combination
of the new mid-points and corner nodes of the old elements to get the new refined elements
for the following refinement cycle. Another hard problem was to take care that all neces-
sary information is available on each processor at any time.

FDEM is a black-box, i.e. you never know what the solution domain looks like on which
the user wants to solve the PDEs. Only by the means of our 1-D domain decomposition
we are able to realize an automatic mesh refinement on an arbitraray domain with fixed
data structures (maximal 3 nodes per edge). This results in the left and right overlap where

222 Summary and Outlook

the processors hold the necessary data of their neighbours, and it results during the mesh
refinement process in the refinement cascade. Therefore the 1-D domain decomposition is
the kernel of the whole mesh refinement process.

For the parallelization we elaborated some principles that are of great importance, not only
for the FDEM program package and its mesh refinement algorithm, but for many algo-
rithms implemented on a distributed memory parallel computer. The first principle con-
cerns the data itself to be passed to neighbour processors. We always collect as much data
as possible before the data exchange is started. This is because the performance will go
down drastically if we send each piece of information individually as the startup time of
the communication will rise above the transfer time for the messages. The second principle
concerns the method of data exchange: After we compiled in an array a number of data el-
ements that we want to send to a remote process, we first send the number of data elements
into the direction of the communication, so that it is known afterwards on each overlap
processor how many data elements it will receive from which processor in the following
data exchange process, and if there is no information at all to receive in a communication
cycle, this is also known both on the sending and on the receiving processor, and the com-
munication is omitted.

In chapter 5 we first gave an example for the pure mesh refinement on the unit circle where
we solved a nonlinear system of equations of Navier-Stokes type. We saw by the relative
estimated error that the test polynomial of order 6 is approximated better and better from
cycle to cycle, by the local mesh refinement, although we computed with consistency order
q = 2.
Then we illustrated the scalability of the FDEM code in general, and afterwards of the
mesh refinement algorithm in particular. We learned that the mesh refinement algorithm
scales very well, whereas the scalability of the whole FDEM code largely depends on the
linear solver LINSOL that does not scale very well. Ignoring the LINSOL time, we see
that FDEM scales very well. The performance is excellent as long as the data comes from
the L2-cache. However, when the data comes from the memory for large problems, the
performance goes down as expected.
Afterwards we illustrated two examples for a computation with pure mesh refinement for a
domain composed from several subdomains, first separated by dividing lines, then by slid-
ing dividing lines where we additionally moved one of the subdomains. From the example
with dividing lines we saw how the mesh refinement continues on the other side of a divid-
ing line. For the dividing line example we met the prescribed tolerance after 4 refinement
cycles, for the example with sliding dividing lines we must refine the mesh until the pre-
scribed tolerance is met before we move the sliding subdomain. We needed 3 refinement
cycles for this, afterwards we moved the sliding subdomain twice, and each time we imme-
diately met the tolerance in the first refinement cycle.
The last example is a 3-D example where we solved a system of 3 Navier-Stokes equations

Summary and Outlook 223

on the unit cube. We saw that the number of nodes and elements goes up very fast as almost
the whole grid is refined in a refinement cycle, after three refinement cycles the prescribed
tolerance is finally met. In the last computation cycle we see very clearly that the perfor-
mance of FDEM goes down drastically if the data comes from the memory.
We saw that the relative estimated error can be brought down below the prescribed toler-
ance by the means of pure mesh refinement. However, this is also the result of an expensive
process of the variation of the computational parameters such as the safety factor sgrid for
the mesh refinement, consistency order q and the pivot bound εpivot for the selection of the
appropriate nodes for the difference formaulas. Especially in 3-D, it is very difficult to find
a set of parameters to get a computation where the estimated error decreases uniformly
without refining the whole grid. So we can conclude that the best set of parameters that can
be applied for each problem does not exist, and it is a challenge to find a set of parameters
that gives the desired result. This search is executed with “open eyes” because the error
estimate shows the quality of the solution.

As always there are left some improvements to be done in the future. We already mentioned
in chapter 4 that the performance can be further improved for the search for neighbour ele-
ments of the same refinement stage by sorting the elements a node belongs to in ascending
order before the search. If we also numbered the edges of the elements globally, we did not
need to identify an edge by its end points but by its number. By this means the performance
of the mesh refinement will improve but the realization is quite time-consuming, and poses
new problems for the implementation. Furthermore, it may be useful to implement mesh
coarsening in the FDEM program package for time-dependent problems where we need the
finer grid only for a certain time period.

The refinement of an element is based on the bisection of its edges and the generation of
the mid-points of these refinement edges. The new mid-points and the old corner nodes of
a refinement element are connected such that we get new elements of the next refinement
stage. This is done the same way in 2-D and 3-D, irrespective of the space dimension.
So we can generalize the mesh refinement of the Finite Difference Element Method for
n-dimensional problems in IRn with n ≥ 2. Furthermore, it is possible by some not too
extensive changes to use some different elements when generating the FEM mesh, not only
triangles in 2-D and tetrahedrons in 3-D, respectively. This is one of the improvements for
the Finite Difference Element Method we intend to implement in the future to achieve even
more flexibility.

224 Summary and Outlook

REFERENCES 225

References

[1] H. P. Langtangen, Computational Partial Differential Equations, Texts in Compu-
tational Science and Engineering 1, 2nd edition, Springer-Verlag Berlin Heidelberg
New York, 2003.

[2] S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods, Texts
in Applied Mathematics 45, Springer-Verlag Berlin Heidelberg New York, 2003.

[3] W. Schönauer, T. Adolph, How WE solve PDEs, Journal of Computational and
Applied Mathematics 131, 2001, pp. 473-492.

[4] W. Schönauer, T. Adolph, FDEM: How we make the FDM more flexible than the
FEM, in Computational and Mathematical Methods in Science and Engineering,
Proceedings of the CMMSE-2002, Alicante, Spain, September 20-25, 2003, edited
by J. Vigo-Aguiar and B. A. Wade, Deposito Legal (Spain) S.1026-2002, Vol. II,
pp. 313-322, and in Journal of Computational and Applied Mathematics, Vol. 158,
Issue 1, 2003, pp. 157-167.

[5] W. Schönauer, Scientific Computing on Vector Computers, North-Holland, Amster-
dam, 1987.

[6] T. Adolph, W. Schönauer, The generation of high quality difference and error
formulae of arbitrary order on 3-D unstructured grids, ZAMM 81, Supplement 3,
2001, pp. 753-754.

[7] W. Schönauer, K. Raith, G. Glotz, The SLDGL program package for the selfadaptive
solution of nonlinear systems of elliptic and parabolic PDEs, in Advances in
Computer Methods for Partial Differential Equations-IV, edited by R. Vichnevetsky
and R. S. Stepleman, IMACS, New Brunswick, 1981, pp. 117-125.

[8] W. Schönauer, Scientific Supercomputing: Architecture and Use of Shared and
Distributed Memory Parallel Computers, selfedition Willi Schönauer, Karlsruhe,
Germany, 2000, ISBN 3-00-005484-7, see
http://www.rz.uni-karlsruhe.de/∼rx03/book/ .

226 REFERENCES

[9] M. Schmauder, W. Schönauer, CADSOL - A fully vectorized black box solver for
2-D and 3-D partial differential equations, in R. Vichnevetsky, D. Knight, G. Richter
(Eds.), Advances in Computer Methods for Partial Differential Equations-VII,
IMACS, New Brunswick, 1992, pp. 639-645.

[10] LINSOL, see
http://www.rz.uni-karlsruhe.de/rd/linsol.php .

[11] H. Häfner, W. Schönauer, The Integration of different variants of the (I)LU algorithm
in the LINSOL program package, Applied Numerical Mathematics 41, 2002,
pp. 39-59.

[12] D. Zundel, W. Schönauer, A fast “parallelized” single pass bandwidth optimizer for
sparse matrices, accessible via [10], documentation.

[13] M. H. Gutknecht, Variants of BiCGStab for matrices with complex spectrum, SIAM
Journal of Scientific Computing 14, 1993, pp. 1020-1033.

Remark: A detailed report on FDEM is available: W. Schönauer, T. Adolph, FDEM: The
evolution and application of the Finite Difference Element Method (FDEM) pro-
gram package for the solution of partial differential equations, Rechenzentrum
der Universität Karlsruhe, 2005. The report is accessible online at
http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur/fdem.pdf .

LIST OF ALGORITHMS 227

List of Algorithms

A Algorithm for the preparation step of the mesh refinement on a single
processor. 75

B Algorithm for the preparation step of the mesh refinement on a distributed
memory parallel computer. 83

C Algorithm for one refinement step of the mesh refinement on a single proces-
sor. 122

D Algorithm for the issuing of new node numbers to the mid-points of the
edges in the ptl array (2-D). 135

E Algorithm for updating the element information of elements to be refined
because of the refinement cascade on overlap processors. 157

F Algorithm for the issuing of new node numbers to the mid-points of the
edges in the ptl array (3-D). 162

G Algorithm for passing the edge information to overlap processors that own
neighbour elements of refinement elements on the sending processor. 169

H Algorithm for one refinement step of the mesh refinement on a distributed
memory parallel computer. 174

List of Figures

3.1.1 Illustration for the generation of row i of the matrix Qd for a scalar PDE. . 15
3.3.1 Example of m = 6 nodes for a polynomial of order q = 2. 21
3.3.2 Triangle and corresponding nek array. 23
3.3.3 Array nekinv which gives for each node the element numbers in which it

occurs. 24
3.3.4 Nearest neighbour ring and 3 further rings for inner node. 25
3.3.5 Array fstring with the node numbers of the nearest neighbour ring. 25
3.3.6 Illustration of node collection limits for the order q = 2 on a rectangular

mesh a) for an inner node, b) for a boundary node. 26
3.3.7 Illustration for the selection of m equations out of m + r equations. 27
3.3.8 Illustration for the coordinate transformation (x, y) → (x′, y′). 29
3.3.9 Illustration for the difference formulas of order p for ut. 31
3.4.1 Refinement of a linear triangular element. 36
3.4.2 Illustration of the refinement cascade on a single processor: a) original

grid, b) grid after one refinement, c) grid after two refinement steps with-
out refinement cascade, d) grid after two refinement steps with refinement
cascade. 37

3.5.1 Illustration for dividing lines (DLs) and coupling conditions (CCs) with
a) jump in derivative, b) jump in function. 38

3.5.2 Illustration of heat flux problem. 39

228 LIST OF FIGURES

3.5.3 Illustration for sliding dividing line (SDL). 40
3.5.4 Illustration of the coupling across a sliding dividing line. 41
3.5.5 Illustration of algorithm for property free/coupling node. 42
3.5.6 Illustration of property free/coupling node. 43
3.6.1 Illustration of the distribution of the data to the processors. 44
3.6.2 Illustration for the owning of triangles. 45
3.6.3 Illustration of the basket principle for np = 4 processors. 46
3.6.4 Illustration of rings for a rectangular mesh. 47
3.6.5 Distribution of the matrix Qd and the r.h.s. (Pu)d in row blocks to np = 4

processors. 48
4.1.1 Illustration of the passing of the message lengths to the right for np = 4

processors and npmax,r = 3. 55
4.1.2 Illustration of the passing of the message lengths to the left for np = 4

processors and npmax,l = 2. 58
4.1.3 Illustration of the communication pattern for np = 8 processors and

npmax,r = npmax,l = 3. 59
4.3.1 Illustration of neighboured elements: neighbour element of left element

is of a) higher, b) same, c) lower refinement stage. 66
4.3.2 Illustration of the search for neighbour elements of lower refinement stage. 69
4.3.3 Illustration of the neighbour element search with dividing lines. 70
4.3.4 Illustration of the arrays dlote and dloteadr. 73
4.3.5 Illustration for the transformation of the array refel to the arrays indrel and

narpl. 74
4.3.6 Illustration of the refinement cascade on np = 4 processors. 77
4.4.1 Illustration of the arrays nb and nbadd for element 36 (2-D). 88
4.4.2 Illustration of the search for neighbour elements of the same refinement

stage. 90
4.4.3 Local numbering of the nodes in an element (2-D). 90
4.4.4 Illustration of the neighbourhood of two nodes. 91
4.4.5 Illustration of the array infpol and ipadd. 95
4.4.6 Illustration of array elhlp. 101
4.4.7 Illustration of the refinement of a triangle: a) original element, b) original

element with new nodes and elements, c) divide element into four new ones.102
4.4.8 Local numbering of the nodes in an element (3-D). 104
4.4.9 Illustration of the boundary node property (3-D): new node on refinement

edge (bold) is a) a boundary node, b) not a boundary node. 107
4.4.10 Illustration of the refinement of a tetrahedron: a) original element, b) orig-

inal element with new nodes and edges, c) take away the four corner ele-
ments, d) divide kernel into four elements. 110

4.4.11 Illustration of the arrays nb and nbadd for (dividing line) element 42 (3-D). 112
4.4.12 Illustration of array rtl for a dividing line edge a) in 2-D, b) in 3-D. 114

LIST OF FIGURES 229

4.4.13 Illustration of tnod for new dividing line nodes, 3-D crossing of 8 dividing
surfaces (DS). 117

4.4.14 Illustration of the dividing line property in 2-D, edge 1 (bold) is dividing
line edge. 119

4.5.1 Illustration of the refinement process on np = 4 processors. 124
4.5.2 Illustration of array ptl on processor ip after sending to the right for npsr = 3.132
4.5.3 Illustration for global numbering of the new nodes originating from the

ptl array for np = 4 processors. 133
4.5.4 Illustration of a situation where the same refinement edge occurs in the

received ptl array (received from processor 1) and the (local) rtl array of
processor 2. 137

4.5.5 Illustration for global numbering of the new nodes originating from the
ptl and the rtl array for np = 4 processors. 141

4.5.6 Illustration for local numbering of the new nodes originating from the ptl
and the rtl array on processor ip. 142

4.5.7 Illustration of the owning of the new elements in 2-D. 148
4.5.8 Illustration of the known information at the end of a refinement step a) on

refinement processor ip, b) on overlap processor ip − 1. 149
4.5.9 Storage scheme of array infarr. 152
4.5.10 Illustration of a) the numbers of elements stored in the element arrays nek

and nenr, b) the numbers of nodes stored in the node arrays nnr, x, y, u
and q at the end of a refinement step. 155

4.5.11 Illustration of a refinement edge (bold) of which the refinement is caused
by two different overlap processors. 161

4.5.12 Illustration of a refinement edge (bold) where the neighbour elements are
owned by different overlap processors. 163

4.5.13 Illustration of the re-sorting of the new nodes during a refinement step in
3-D. 170

4.5.14 Illustration of the owning of the new elements in 3-D. 170
4.6.1 Illustration of the change of node positions by re-refinement of the mesh:

a) original mesh, b) refined mesh with coarsened elements, c) re-refinement
of mesh, if the refinement history has not been stored. 176

4.7.1 Illustration of the processor borders and the processor widths for a circular
domain for np = 8 processors. 180

4.7.2 Comparison of the cost of the preparatory step for the data exchange for
the easy and our own method. 181

5.3.1 Polynomial f = x6 + y6 on unit circle. 189
5.3.2 Sugar-loaf function f = e−32(x2+y2) on unit circle. 190
5.4.1 Solution of component ω in the a) first and b) sixth computation cycle. . . 192
5.4.2 Resulting grids and estimated errors computed on these grids from pure

mesh refinement: a) original grid, b) grid in cycle 2, c) grid in cycle 3. . . 194

230 LIST OF LISTINGS

5.4.2 (Continued) Resulting grids and estimated errors computed on these grids
from pure mesh refinement: d) grid in cycle 4, e) grid in cycle 5, f) grid in
cycle 6. 195

5.5.1 Type of grid for 4 × 1 domain. 197
5.6.1 Domains for the example with dividing line and initial grid. 204
5.6.2 Solution for the example with dividing line for the four cycles. 204
5.6.3 Domains for the example with dividing line in the second cycle. 206
5.6.4 Domains for the example with dividing line in the third cycle. 207
5.6.5 Domains for the example with dividing line in the fourth cycle. 207
5.6.6 Relative estimated error of solution component w for the example with

dividing line for the four cycles: a) cycle 1, b) cycle 2, c) cycle 3, d) cycle 4.208
5.7.1 Domains for the example with sliding dividing line for a) cycle 1, b) cy-

cle 2, c) cycle 3. 210
5.7.2 Estimated error of component ω for the example with sliding dividing line

for a) cycle 1, b) cycle 2, c) cycle 3. 211
5.7.3 Solution component ω for the example with sliding dividing line. 213
5.7.4 Cycle 4 for the example with sliding dividing line: a) solution compo-

nent ω, b) error estimate of ω. 214
5.7.5 Cycle 5 for the example with sliding dividing line: a) solution compo-

nent ω, b) error estimate of ω. 215
5.8.1 Solution u of the 3-D example for the section plane x = 0. 218
5.8.2 Average edge length between a node and its neighbour nodes for the 3-D

example for a) cycle 1, b) cycle 2, c) cycle 3, section plane x = 0. 219

List of Listings

1 Code for communication pattern used to send message lengths to the right. . 57
2 Code for communication pattern used to send messages to the right. 60
3 Code for determination of refinement nodes. 62
4 Code for entering refinement elements because of the error into refel. 64
5 Code for determination of local refinement elements due to the cascade rules. 67
6 Code for neighbour element search. 68
7 Code for twin node search for dividing lines. 72
8 Code for inserting data into arrays sndlto, sndlct and lsent. 81
9 Code for arrays nb and nbadd. 89
10 Code for the update of the nek array for refinement elements. 97
11 Code for the update of the nek array for neighbour elements. 98
12 Code for the determination of new external boundary nodes and sliding

dividing line nodes in 2-D. 99

LIST OF RULES 231

13 Code for the determination of new external boundary nodes and sliding
dividing line nodes in 3-D. 109

14 Code for entering of the new dividing line node data into array tnod (first
node). 115

15 Code for entering of the new dividing line node data into tnod (twin nodes). 116
16 Code for inserting the edge information into ptl. 128
17 Code for the processing of the ptl array that has been sent to the right and

received back with the global node numbers of the mid-points. 136
18 Code for the processing of the ptl array received from the left. 139
18 Code for the processing of the ptl array received from the left (continued). . 140
19 Code for the processing of the received data for neighbour elements of

refinement elements owned by an overlap processor. 146
20 Code for the elimination of the overlap data for the nnr array. 159
21 Code for the elimination of the overlap data for the bnod array. 160
22 Code for the computation of the array lprocs. 166
23 Code for the inserting of the data into etl. 167

List of Rules

1 Refinement elements . 63
2 Difference of refinement stages . 65
3 Refinement element processor . 76
4 Owning of elements . 76
5 Owning of edges . 124
6 Generation of new nodes . 125

List of Tables

3.4.1 Length of arrays for difference and error formulas for the orders q = 2, 4, 6. 35
4.1.1 Array tids with physical processor numbers. 53
4.1.2 Parameter list of the communication routines. 53
4.1.3 List of external procedures. 54
4.1.4 Example of storage scheme of send buffer sndbuf , i is the cycle number. . . 56
4.2.1 Shape of the logical array refel. true means that the corresponding ele-

ment in the corresponding refinement stage is a refinement element. A true
can occur only in the refinement stage of the corresponding element. The
element 4 is not refined. 63

4.3.1 Length and type of arrays for refinement cascade. 78
4.3.2 Illustration of the contents of array nenr. 79

232 LIST OF TABLES

4.3.3 Illustration of the arrays a) sndlto and sndlct, b) sndrto and sndrct for
processor ip, i is number of entry, j identifies number of processor to send
data to. 80

4.4.1 Illustration of the contents of array rtl in 2-D (edge information). 92
4.4.2 Illustration of the contents of array nnr. 93
4.4.3 Update of the nek array information in 2-D for figure 4.4.6. 102
4.4.4 Illustration of the contents of array rtl in 3-D (edge information). 105
4.4.5 Use of array lbnd for assignment of boundary node property (3-D): new

node is a) a boundary node, b) not a boundary node, see figure 4.4.9. 108
4.4.6 Update of the nek array information in 3-D. 108
4.4.7 dividing line property for the new elements in 2-D. 119
4.4.8 Illustration of the dividing line property in 3-D. 121
4.5.1 Illustration of the contents of column k of array ptl in 2-D, k is the column

to be sent to processor ip + k. 126
4.5.2 Illustration of the array nbrs. 129
4.5.3 Illustration of the arrays pcnt and lp for np = 8 processors. 131
4.5.4 Storage scheme of array sndbuf for inserting data of an element of proces-

sor ipown in column colrel. 144
4.7.1 Comparison of the cost of the preparatory step for the data exchange for the

easy and our own method. 180
5.4.1 Results for pure mesh refinement on unit circle with order q = 2. 191
5.4.2 Time analysis for pure mesh refinement with order q = 2 (part one). 193
5.4.3 Time analysis for pure mesh refinement with order q = 2 (part two). 196
5.5.1 Characteristics of the 7 grids for the complete computation. After cycle 1

all elements are refined. 197
5.5.2 Results for seven different grids with sugar-loaf forcing function. CPU ref.

is the CPU time for the refinement only. 199
5.5.3 Time analysis for pure mesh refinement with order q = 2. 200
5.5.4 Characteristics of the 7 grids for the mesh refinement. 202
5.5.5 CPU time for the mesh refinement for the seven grids. 202
5.6.1 Results for pure mesh refinement with dividing line (part one). 205
5.6.2 Results for pure mesh refinement with dividing line (part two). Domain 1:

upper domain, domain 2: lower domain. 206
5.7.1 Results for pure mesh refinement with sliding dividing line (part one). . . . 212
5.7.2 Results for pure mesh refinement with sliding dividing line (part two). Do-

main 1: upper domain, domain 2: lower domain. 213
5.8.1 Results for pure mesh refinement for 3-D example (part one). 217
5.8.2 Results for pure mesh refinement for 3-D example (part two). 218

Lebenslauf

Name: Torsten Dirk Adolph

Geboren: am 07. Mai 1971 in Marbach/Neckar

Familienstand: verheiratet

1977 – 1981 Grundschule in Oberstenfeld

1981 – 1990 Herzog-Christoph-Gymnasium in Beilstein

1990 Abitur

1990 – 1991 Grundwehrdienst

1991 – 1997 Studium der Technomathematik an der Universität
Karlsruhe (TH)

November 1997 Diplomprüfung

Nov. 1997 – Februar 2005 wissenschaftlicher Angestellter in der Forschungsgruppe

”
Numerikforschung für Supercomputer“ am Rechenzen-

trum der Universität Karlsruhe (TH)

Oktober 2002 – Juni 2005 Anfertigung der Dissertation The Parallelization of the
Mesh Refinement Algorithm in the Finite Difference Ele-
ment Method Program Package am Institut für Algorith-
men und Kognitive Systeme der Fakultät für Informatik
der Universität Karlsruhe (TH)

