
AMD Core Math Library (ACML)
Version 3.6.0

Copyright c© 2003-2006 Advanced Micro Devices, Inc., Numerical Algorithms Group Ltd.

AMD, the AMD Arrow logo, AMD Opteron, AMD Athlon and combinations thereof are
trademarks of Advanced Micro Devices, Inc.

i

Short Contents

1 Introduction. 1

2 General Information . 2

3 BLAS: Basic Linear Algebra Subprograms 19

4 LAPACK: Package of Linear Algebra Subroutines 20

5 Fast Fourier Transforms (FFTs) . 24

6 Random Number Generators. 74

7 ACML MV: Fast Math and Fast Vector Math Library 161

8 References . 227

Subject Index . 228

Routine Index . 231

ii

Table of Contents

1 Introduction . 1

2 General Information . 2
2.1 Determining the best ACML version for your system 2
2.2 Accessing the Library (Linux) . 4

2.2.1 Accessing the Library under Linux using GNU g77/gcc 4
2.2.2 Accessing the Library under Linux using GNU gfortran/gcc

. 5
2.2.3 Accessing the Library under Linux using PGI compilers

pgf77/pgf90/pgcc . 6
2.2.4 Accessing the Library under Linux using PathScale compilers

pathf90/pathcc . 6
2.2.5 Accessing the Library under Linux using the NAGWare f95

compiler . 7
2.2.6 Accessing the Library under Linux using the Intel ifort

compiler . 7
2.2.7 Accessing the Library under Linux using compilers other than

GNU, PGI, PathScale, NAGWare or Intel 8
2.3 Accessing the Library (Microsoft Windows) 8

2.3.1 Accessing the Library under 32-bit Windows using GNU
g77/gcc . 8

2.3.2 Accessing the Library under 32-bit Windows using PGI
compilers pgf77/pgf90/Microsoft C . 9

2.3.3 Accessing the Library under 32-bit Windows using Microsoft
C or Intel Fortran . 10

2.3.4 Accessing the Library under 32-bit Windows using the
Compaq Visual Fortran compiler . 11

2.3.5 Accessing the Library under 32-bit Windows using the Salford
FTN95 compiler . 11

2.3.6 Accessing the Library under 64-bit Windows using PGI
compilers pgf77/pgf90/pgcc . 11

2.3.7 Accessing the Library under 64-bit Windows using Microsoft
C or Intel Fortran . 12

2.4 Accessing the Library (Solaris) . 13
2.4.1 Accessing the Library under Solaris . 13

2.5 ACML FORTRAN and C interfaces . 14
2.6 ACML variants using 64-bit integer (INTEGER*8) arguments . . 15
2.7 Library Version and Build Information . 16
2.8 Library Documentation . 16
2.9 Example programs calling ACML . 17
2.10 Example ACML programs demonstrating performance 17

3 BLAS: Basic Linear Algebra Subprograms . . 19

iii

4 LAPACK: Package of Linear Algebra
Subroutines . 20

4.1 Introduction to LAPACK . 20
4.2 Reference sources for LAPACK . 20
4.3 LAPACK block sizes, ILAENV and ILAENVSET 21
4.4 IEEE exceptions and LAPACK . 23

5 Fast Fourier Transforms (FFTs) 24
5.1 Introduction to FFTs . 24

5.1.1 Transform definitions and Storage for Complex Data 24
5.1.2 Transform definitions and Storage for Real Data 25
5.1.3 Efficiency . 25
5.1.4 Default and Generated Plans . 26

5.2 FFTs on Complex Sequences . 27
5.2.1 FFT of a single sequence . 27

ZFFT1D Routine Documentation . 28
CFFT1D Routine Documentation . 29
ZFFT1DX Routine Documentation . 30
CFFT1DX Routine Documentation . 32

5.2.2 FFT of multiple complex sequences . 34
ZFFT1M Routine Documentation . 35
CFFT1M Routine Documentation . 37
ZFFT1MX Routine Documentation . 39
CFFT1MX Routine Documentation . 41

5.2.3 2D FFT of two-dimensional arrays of data 43
ZFFT2D Routine Documentation . 44
CFFT2D Routine Documentation . 45
ZFFT2DX Routine Documentation . 46
CFFT2DX Routine Documentation . 49

5.2.4 3D FFT of three-dimensional arrays of data 52
ZFFT3D Routine Documentation . 53
CFFT3D Routine Documentation . 54
ZFFT3DX Routine Documentation . 55
CFFT3DX Routine Documentation . 57
ZFFT3DY Routine Documentation . 59
CFFT3DY Routine Documentation . 62

5.3 FFTs on real and Hermitian data sequences 65
5.3.1 FFT of single sequences of real data . 66

DZFFT Routine Documentation . 66
SCFFT Routine Documentation . 67

5.3.2 FFT of multiple sequences of real data 68
DZFFTM Routine Documentation . 68
SCFFTM Routine Documentation . 69

5.3.3 FFT of single Hermitian sequences . 70
ZDFFT Routine Documentation . 70
CSFFT Routine Documentation . 71

5.3.4 FFT of multiple Hermitian sequences . 72
ZDFFTM Routine Documentation . 72

iv

CSFFTM Routine Documentation . 73

6 Random Number Generators 74
6.1 Base Generators. 74

6.1.1 Initialization of the Base Generators . 75
DRANDINITIALIZE / SRANDINITIALIZE . 76
DRANDINITIALIZEBBS / SRANDINITIALIZEBBS 79

6.1.2 Calling the Base Generators . 80
DRANDBLUMBLUMSHUB / SRANDBLUMBLUMSHUB 81

6.1.3 Basic NAG Generator . 81
6.1.4 Wichmann-Hill Generator . 82
6.1.5 Mersenne Twister . 82
6.1.6 L’Ecuyer’s Combined Recursive Generator 83
6.1.7 Blum-Blum-Shub Generator . 83
6.1.8 User Supplied Generators . 84

DRANDINITIALIZEUSER / SRANDINITIALIZEUSER 85
UINI . 87
UGEN . 88

6.2 Multiple Streams . 88
6.2.1 Using Different Seeds . 89
6.2.2 Using Different Generators . 89
6.2.3 Skip Ahead . 89

DRANDSKIPAHEAD / SRANDSKIPAHEAD . 90
6.2.4 Leap Frogging . 92

DRANDLEAPFROG / SRANDLEAPFROG . 93
6.3 Distribution Generators . 95

6.3.1 Continuous Univariate Distributions . 95
DRANDBETA / SRANDBETA . 95
DRANDCAUCHY / SRANDCAUCHY . 97
DRANDCHISQUARED / SRANDCHISQUARED . 99
DRANDEXPONENTIAL / SRANDEXPONENTIAL 101
DRANDF / SRANDF . 103
DRANDGAMMA / SRANDGAMMA . 105
DRANDGAUSSIAN / DRANDGAUSSIAN . 107
DRANDLOGISTIC / SRANDLOGISTIC . 109
DRANDLOGNORMAL / SRANDLOGNORMAL . 111
DRANDSTUDENTST / SRANDSTUDENTST . 113
DRANDTRIANGULAR / SRANDTRIANGULAR . 115
DRANDUNIFORM / SRANDUNIFORM. 117
DRANDVONMISES / SRANDVONMISES . 119
DRANDWEIBULL / SRANDWEIBULL. 121

6.3.2 Discrete Univariate Distributions . 123
DRANDBINOMIAL / SRANDBINOMIAL . 123
DRANDGEOMETRIC / SRANDGEOMETRIC . 125
DRANDHYPERGEOMETRIC / SRANDHYPERGEOMETRIC 127
DRANDNEGATIVEBINOMIAL / SRANDNEGATIVEBINOMIAL 129
DRANDPOISSON / SRANDPOISSON. 131
DRANDDISCRETEUNIFORM / SRANDDISCRETEUNIFORM 133

v

DRANDGENERALDISCRETE / SRANDGENERALDISCRETE 135
DRANDBINOMIALREFERENCE / SRANDBINOMIALREFERENCE 137
DRANDGEOMETRICREFERENCE / SRANDGEOMETRICREFERENCE . . . 139
DRANDHYPERGEOMETRICREFERENCE /

SRANDHYPERGEOMETRICREFERENCE . 141
DRANDNEGATIVEBINOMIALREFERENCE /

SRANDNEGATIVEBINOMIALREFERENCE 143
DRANDPOISSONREFERENCE / SRANDPOISSONREFERENCE 145

6.3.3 Continuous Multivariate Distributions 147
DRANDMULTINORMAL / SRANDMULTINORMAL 147
DRANDMULTISTUDENTST / SRANDMULTISTUDENTST 149
DRANDMULTINORMALR / SRANDMULTINORMALR 151
DRANDMULTISTUDENTSTR / SRANDMULTISTUDENTSTR 153
DRANDMULTINORMALREFERENCE / SRANDMULTINORMALREFERENCE

. 155
DRANDMULTISTUDENTSTREFERENCE /

SRANDMULTISTUDENTSTREFERENCE . 157
6.3.4 Discrete Multivariate Distributions . 159

DRANDMULTINOMIAL / SRANDMULTINOMIAL 159

7 ACML MV: Fast Math and Fast Vector Math
Library . 161

7.1 Introduction to ACML MV . 161
7.1.1 Terminology . 161
7.1.2 Weak Aliases . 162
7.1.3 Defined Types . 162

7.2 Fast Basic Math Functions . 163
fastcos: fast double precision Cosine . 163
fastcosf: fast single precision Cosine . 164
fastexp: fast double precision exponential function 165
fastexpf: fast single precision exponential function 166
fastlog: fast double precision natural logarithm function 167
fastlogf: fast single precision natural logarithm function 168
fastlog10: fast double precision base-10 logarithm function 169
fastlog10f: fast single precision base-10 logarithm function 170
fastlog2: fast double precision base-2 logarithm function 171
fastlog2f: fast single precision base-2 logarithm function 172
fastpow: fast double precision power function. 173
fastpowf: fast single precision power function 175
fastsin: fast double precision Sine . 177
fastsinf: fast single precision Sine . 178
fastsincos: fast double precision Sine and Cosine 179
fastsincosf: fast single precision Sine and Cosine 180

7.3 Fast Vector Math Functions . 181
vrd2 cos: Two-valued double precision Cosine 181
vrd4 cos: Four-valued double precision Cosine 182
vrda cos: Array double precision Cosine . 183
vrs4 cosf: Four-valued single precision Cosine 184

vi

vrsa cosf: Array single precision Cosine . 185
vrd2 exp: Two-valued double precision exponential function 186
vrd4 exp: Four-valued double precision exponential function . . . 187
vrda exp: Array double precision exponential function 188
vrs4 expf: Four-valued single precision exponential function 189
vrs8 expf: Eight-valued single precision exponential function . . . 190
vrsa expf: Array single precision exponential function 191
vrd2 log: Two-valued double precision natural logarithm 192
vrd4 log: Four-valued double precision natural logarithm 193
vrda log: Array double precision natural logarithm 194
vrs4 logf: Four-valued single precision natural logarithm 195
vrs8 logf: Eight-valued single precision natural logarithm 196
vrsa logf: Array single precision natural logarithm 197
vrd2 log10: Two-valued double precision base-10 logarithm 198
vrd4 log10: Four-valued double precision base-10 logarithm 199
vrda log10: Array double precision base-10 logarithm 200
vrs4 log10f: Four-valued single precision base-10 logarithm 201
vrs8 log10f: Eight-valued single precision base-10 logarithm 202
vrsa log10f: Array single precision base-10 logarithm 203
vrd2 log2: Two-valued double precision base-2 logarithm 204
vrd4 log2: Four-valued double precision base-2 logarithm 205
vrda log2: Array double precision base-2 logarithm 206
vrs4 log2f: Four-valued single precision base-2 logarithm 207
vrs8 log2f: Eight-valued single precision base-2 logarithm 208
vrsa log2f: Array single precision base-2 logarithm 209
vrs4 powf: Four-valued single precision power function 210
vrsa powf: Array single precision power function 211
vrs4 powxf: Four-valued single precision power function with

constant y . 213
vrsa powxf: Array single precision power function, constant y . . 215
vrd2 sin: Two-valued double precision Sine 217
vrd4 sin: Four-valued double precision Sine 218
vrda sin: Array double precision Sine . 219
vrs4 sinf: Four-valued single precision Sine . 220
vrsa sinf: Array single precision Sine . 221
vrd2 sincos: Two-valued double precision Sine and Cosine 222
vrda sincos: Array double precision Sine and Cosine 223
vrs4 sincosf: Four-valued single precision Sine and Cosine 225
vrsa sincosf: Array single precision Sine and Cosine 226

8 References . 227

Subject Index . 228

Routine Index . 231

Chapter 1: Introduction 1

1 Introduction

The AMD Core Math Library (ACML) is a set of numerical routines tuned specifically for
AMD64 platform processors (including OpteronTM and AthlonTM64). The routines, which
are available via both FORTRAN 77 and C interfaces, include:
• BLAS - Basic Linear Algebra Subprograms (including Sparse Level 1 BLAS);
• LAPACK - A comprehensive package of higher level linear algebra routines;
• FFT - a set of Fast Fourier Transform routines for real and complex data;
• RNG - a set of random number generators and statistical distribution functions.

The BLAS and LAPACK routines provide a portable and standard set of interfaces
for common numerical linear algebra operations that allow code containing calls to these
routines to be readily ported across platforms. Full documentation for the BLAS and
LAPACK are available online. This manual will, therefore, be restricted to providing brief
descriptions of the BLAS and LAPACK and providing links to their documentation and
other materials (see Chapter 3 [The BLAS], page 19 and see Chapter 4 [LAPACK], page 20).

The FFT is an implementation of the Discrete Fourier Transform (DFT) that makes use
of symmetries in the definition to reduce the number of operations required from O(n*n) to
O(n*log n) when the sequence length, n, is the product of small prime factors; in particular,
when n is a power of 2. Despite the popularity and widespread use of FFT algorithms, the
definition of the DFT is not sufficiently precise to prescribe either the forward and backward
directions (these are sometimes interchanged), or the scaling factor associated with the
forward and backward transforms (the combined forward and backward transforms may
only reproduce the original sequence by following a prescribed scaling).

Currently, there is no agreed standard API for FFT routines. Hardware vendors usually
provide a set of high performance FFTs optimized for their systems: no two vendors employ
the same interfaces for their FFT routines. The ACML provides a set of FFT routines, op-
timized for AMD64 processors, using an ACML-specific set of interfaces. The functionality,
interfaces and use of the ACML FFT routines are described below (see Chapter 5 [Fast
Fourier Transforms], page 24).

The RNG is a comprehensive set of statistical distribution functions which are founded on
various underlying uniform distribution generators (base generators) including Wichmann-
Hill and an implementation of the Mersenne Twister. In addition there are hooks which
allow you to supply your own preferred base generator if it is not already included in ACML.
All RNG functionality and interfaces are described below (see Chapter 6 [Random Number
Generators], page 74).

Chapter 2 [General Information], page 2 provides details on:
• how to link a user program to the ACML;
• FORTRAN and C interfaces to ACML routines;
• how to obtain the ACML version and build information;
• how to access the ACML documentation.

A supplementary library of fast math and fast vector math functions (ACML MV) is also
provided with some 64-bit versions of ACML. Some of the functions included in ACML MV
are not callable from high-level languages, but must be called via assembly language; the
documentation of ACML MV (see Chapter 7 [Fast Vector Math Library], page 161) gives
details for each individual routine.

Chapter 2: General Information 2

2 General Information

2.1 Determining the best ACML version for your system

ACML comes in versions for 64-bit and 32-bit processors, running both Linux and Microsoft
Windows R©operating systems. To use the following tables, you will need to know answers
to these questions:
• Are you running a 64-bit operating system (on AMD64 hardware such as Opteron or

Athlon64)? Or are you running a 32-bit operating system?
• Is the operating system Linux or Microsoft Windows?
• Do you have the GNU compilers (g77/gcc or gfortran/gcc) or compatible compilers

(compilers that are interoperable with the GNU compilers) installed?
• Do you have the PGI compilers (pgf77/pgf90/pgcc) installed?
• Do you have the PathScale compilers (pathf90/pathcc) installed?
• Do you have the NAGWare compiler (f95) installed?
• On a 32-bit Windows machine, do you have Microsoft C, or PGI Visual Fortran, or

Intel Fortran, or compatible compilers installed?
• Do you have a single processor system or a multiprocessor (SMP) system? The single

processor version of ACML can be run on an SMP machine and vice versa, but (if
you have the right compilers) it is more efficient to run the version appropriate to the
machine.

• If you’re on a 32-bit machine, does it support Streaming SIMD Extension instructions
(SSE and SSE2)?

The ACML installation includes a binary utility that can help you find an answer to the
last question. The utility lies in directory util, and is named cpuid.exe. It interrogates the
processor to determine whether SSE and SSE2 instructions exist.

util/cpuid.exe

Under a Linux operating system, another way of finding out the answer to the last
question is to look at the special file /proc/cpuinfo, and see what appears under the “flags”
label. Try this command:

cat /proc/cpuinfo | grep flags

If the list of flags includes the flag “sse” then your machine supports SSE instructions.
If it also includes “sse2” then your machine supports SSE2 instructions. If your machine
supports these instructions, it is better to use a version of ACML which was built to take
advantage of them, for reasons of good performance.

The method of examining /proc/cpuinfo can also be used under Microsoft Windows if
you have the Cygwin UNIX-like tools installed (see http://www.cygwin.com/) and run a
bash shell. Note that AMD64 machines always support both SSE and SSE2 instructions,
under both Linux and Windows. Older (32-bit) AMD chips may support SSE but not
SSE2, or neither SSE nor SSE2 instructions. Other manufacturers’ hardware may or may
not support SSE or SSE2.

If you link to a version of ACML that was built to use SSE or SSE2 instructions, and
your machine does not in fact support them, it is likely that your program will halt due

Chapter 2: General Information 3

to encountering an “illegal instruction” - you may or may not be notified of this by the
operating system.

For 32-bit machines, older versions of ACML (ACML 3.1.0 and earlier) came in variants
suitable for hardware without SSE/SSE2 instructions (Streaming SIMD Extensions). This
is no longer the case, and if you have older 32-bit hardware that does not support SSE/SSE2,
and wish to use ACML, you must continue to use an older version.

Once you have answered the questions above, use these tables to decide which version
of ACML to link against.
Linux 64-bit� �
Number of processors Compilers ACML install directory
Single processor GNU g77/gcc or compatible acml3.6.0/gnu64

” GNU gfortran/gcc acml3.6.0/gfortran64
” PGI pgf77/pgf90/pgcc acml3.6.0/pgi64
” PathScale pathf90/pathcc acml3.6.0/pathscale64
” NAGWare f95 acml3.6.0/nag64
” Intel Fortran acml3.6.0/ifort64

Multi processor PGI pgf77/pgf90/pgcc acml3.6.0/pgi64_mp
” PathScale pathf90/pathcc acml3.6.0/pathscale64_mp
” GNU gfortran/gcc acml3.6.0/gfortran64_mp
” Intel Fortran acml3.6.0/ifort64_mp
 	

Linux 32-bit� �
Number of processors Compilers ACML install directory
Single GNU g77 / gcc or compat. acml3.6.0/gnu32

” GNU gfortran / gcc acml3.6.0/gfortran32
” PGI pgf77 / pgf90 / pgcc acml3.6.0/pgi32
” PathScale pathf90 / pathcc acml3.6.0/pathscale32
” NAGWare f95 acml3.6.0/nag32
” Intel Fortran acml3.6.0/ifort32

Multiple PGI pgf77 / pgf90 / pgcc acml3.6.0/pgi32_mp
” PathScale pathf90 / pathcc acml3.6.0/pathscale32_mp
” GNU gfortran / gcc acml3.6.0/gfortran32_mp
” Intel Fortran acml3.6.0/ifort32_mp
 	

Microsoft Windows 64-bit� �
Number of processors Compilers ACML install directory
Single processor PGI pgf77/pgf90/pgcc/MSC acml3.6.0/win64

” Intel Fortran/Microsoft C acml3.6.0/ifort64
Multi processor PGI pgf77/pgf90/pgcc/MSC acml3.6.0/win64_mp

” Intel Fortran/Microsoft C acml3.6.0/ifort64_mp
 	

Chapter 2: General Information 4

Microsoft Windows 32-bit� �
Number of processors Compilers ACML install directory
Single GNU g77/gcc acml3.6.0/gnu32

” PGI pgf77/pgf90/Microsoft C acml3.6.0/pgi32
” Intel Fortran/Microsoft C acml3.6.0/ifort32

Multi PGI pgf77/pgf90/Microsoft C acml3.6.0/pgi32_mp
” Intel Fortran/Microsoft C acml3.6.0/ifort32_mp
 	

2.2 Accessing the Library (Linux)

2.2.1 Accessing the Library under Linux using GNU g77/gcc

If the Linux 64-bit g77 version of ACML was installed in the default directory,
/opt/acml3.6.0/gnu64, then the command:

g77 -m64 driver.f -L/opt/acml3.6.0/gnu64/lib -lacml

can be used to compile the program driver.f and link it to the ACML.
The ACML Library is supplied in both static and shareable versions, libacml.a and

libacml.so, respectively. By default, the commands given above will link to the shareable
version of the library, libacml.so, if that exists in the directory specified. Linking with the
static library can be forced either by using the compiler flag -static, e.g.

g77 -m64 driver.f -L/opt/acml3.6.0/gnu64/lib -static -lacml

or by inserting the name of the static library explicitly in the command line, e.g.
g77 -m64 driver.f /opt/acml3.6.0/gnu64/lib/libacml.a

Notice that if the application program has been linked to the shareable ACML Library,
then before running the program, the environment variable LD_LIBRARY_PATH must be set,
for example, by the C-shell command:

setenv LD_LIBRARY_PATH /opt/acml3.6.0/gnu64/lib

where it is assumed that libacml.so was installed in the directory /opt/acml3.6.0/gnu64/lib
(see the man page for ld(1) for more information about LD_LIBRARY_PATH.).

The command
g77 -m32 driver.f -L/opt/acml3.6.0/gnu32/lib -lacml

will compile and link a 32-bit program with a 32-bit ACML.
To compile and link a 64-bit C program with a 64-bit ACML, invoke

gcc -m64 -I/opt/acml3.6.0/gnu64/include driver.c
-L/opt/acml3.6.0/gnu64/lib -lacml -lg2c

The switch "-I/opt/acml3.6.0/gnu64/include" tells the compiler to search the directory
/opt/acml3.6.0/gnu64/include for the ACML C header file acml.h, which should be included
by driver.c. Note that it is necessary to add the compiler run-time library -lg2c when linking
the program.

Chapter 2: General Information 5

2.2.2 Accessing the Library under Linux using GNU gfortran/gcc

If the Linux 64-bit gfortran version of ACML was installed in the default directory,
/opt/acml3.6.0/gfortran64, then the command:

gfortran -m64 driver.f -L/opt/acml3.6.0/gfortran64/lib -lacml

can be used to compile the program driver.f and link it to the ACML.
The ACML Library is supplied in both static and shareable versions, libacml.a and

libacml.so, respectively. By default, the commands given above will link to the shareable
version of the library, libacml.so, if that exists in the directory specified. Linking with the
static library can be forced either by using the compiler flag -static, e.g.

gfortran -m64 driver.f -L/opt/acml3.6.0/gfortran64/lib -static -lacml

or by inserting the name of the static library explicitly in the command line, e.g.
gfortran -m64 driver.f /opt/acml3.6.0/gfortran64/lib/libacml.a

Notice that if the application program has been linked to the shareable ACML Library,
then before running the program, the environment variable LD_LIBRARY_PATH must be set.
Assuming that libacml.so was installed in the directory /opt/acml3.6.0/gfortran64/lib, then
LD_LIBRARY_PATH may be set by, for example, the C-shell command

setenv LD_LIBRARY_PATH /opt/acml3.6.0/gfortran64/lib

(See the man page for ld(1) for more information about LD_LIBRARY_PATH.)
The command

gfortran -m32 driver.f -L/opt/acml3.6.0/gfortran32/lib -lacml

will compile and link a 32-bit program with a 32-bit ACML.
If you have an SMP machine and want to take best advantage of it, link against the

gfortran OpenMP version of ACML like this:
gfortran -fopenmp -m64 driver.f

-L/opt/acml3.6.0/gfortran64_mp/lib -lacml_mp
gfortran -fopenmp -m32 driver.f

-L/opt/acml3.6.0/gfortran32_mp/lib -lacml_mp

Note that the directories and library names involved now include the suffix mp.
To compile and link a 64-bit C program with a 64-bit ACML, invoke

gcc -m64 -I/opt/acml3.6.0/gfortran64/include driver.c
-L/opt/acml3.6.0/gfortran64/lib -lacml -lgfortran

The switch "-I/opt/acml3.6.0/gfortran64/include" tells the compiler to search the directory
/opt/acml3.6.0/gfortran64/include for the ACML C header file acml.h, which should be
included by driver.c. Note that it is necessary to add the gfortran compiler run-time library
-lgfortran when linking the program.

Chapter 2: General Information 6

2.2.3 Accessing the Library under Linux using PGI compilers
pgf77/pgf90/pgcc

Similar commands apply for the PGI versions of ACML. For example,
pgf77 -tp=k8-64 -Mcache_align driver.f -L/opt/acml3.6.0/pgi64/lib -lacml
pgf77 -tp=k8-32 -Mcache_align driver.f -L/opt/acml3.6.0/pgi32/lib -lacml

will compile driver.f and link it to the ACML using 64-bit and 32-bit versions respectively.
In the example above we are linking with the single-processor PGI version of ACML.

If you have an SMP machine and want to take best advantage of it, link against the PGI
OpenMP version of ACML like this:

pgf77 -tp=k8-64 -mp -Mcache_align driver.f
-L/opt/acml3.6.0/pgi64_mp/lib -lacml_mp

pgf77 -tp=k8-32 -mp -Mcache_align driver.f
-L/opt/acml3.6.0/pgi32_mp/lib -lacml_mp

Note that the directories and library names involved now include the suffix mp.
The -mp flag is important - it tells pgf77 to link with the appropriate compiler OpenMP

run-time library. Without it you might get an "unresolved symbol" message at link time.
The -Mcache align flag is also important - it tells the compiler to align objects on cache-line
boundaries.

The commands
pgcc -c -tp=k8-64 -mp -Mcache_align

-I/opt/acml3.6.0/pgi64_mp/include driver.c
pgcc -tp=k8-64 -mp -Mcache_align driver.o

-L/opt/acml3.6.0/pgi64_mp/lib -lacml_mp -lpgftnrtl -lm

will compile driver.c and link it to the 64-bit ACML. Again, the -mp flag is important if you
are linking to the PGI OpenMP version of ACML. The C compiler is instructed to search
the directory /opt/acml3.6.0/pgi64 mp/include for the ACML C header file acml.h, which
should be included by driver.c, by using the switch "-I/opt/acml3.6.0/pgi64 mp/include".
Note that in the example we add the libraries -lpgftnrtl and -lm to the link command, so
that required PGI compiler run-time libraries are found.

Note that since ACML version 3.5.0, all PGI 64-bit variants are compiled with the PGI
-Mlarge arrays switch to allow use of larger data arrays (see PGI compiler documentation
for more information). The special ’large array’ variants that were distributed with earlier
versions of ACML are therefore no longer required.

2.2.4 Accessing the Library under Linux using PathScale
compilers pathf90/pathcc

Similar commands apply for the PathScale versions of ACML. For example,
pathf90 driver.f -L/opt/acml3.6.0/pathscale64/lib -lacml

will compile driver.f and link it to the ACML using the 64-bit version.
The commands

pathcc -c -I/opt/acml3.6.0/pathscale64/include driver.c
pathcc driver.o -L/opt/acml3.6.0/pathscale64/lib -lacml -lpathfortran

will compile driver.c and link it to the 64-bit ACML. The switch

Chapter 2: General Information 7

-I/opt/acml3.6.0/pathscale64/include

tells the C compiler to search directory /opt/acml3.6.0/pathscale64/include for the ACML
C header file acml.h, which should be included by driver.c. Note that in the example we
add the library -lpathfortran to the link command, so that the required PathScale compiler
run-time library is found.

If you have an SMP machine and want to take best advantage of it, link against the
PathScale OpenMP version of ACML like this:

pathf90 -mp driver.f -L/opt/acml3.6.0/pathscale64_mp/lib -lacml_mp
pathf90 -mp driver.f -L/opt/acml3.6.0/pathscale32_mp/lib -lacml_mp

Note that the directories and library names involved now include the suffix mp.
The -mp flag is important - it tells pathf90 to link with the appropriate compiler OpenMP

run-time library. Without it you might get an "unresolved symbol" message at link time.
The commands

pathcc -c -mp -I/opt/acml3.6.0/pathscale64_mp/include driver.c
pathcc -mp driver.o -L/opt/acml3.6.0/pathscale64_mp/lib -lacml_mp

-lpathfortran

will compile driver.c and link it to the 64-bit ACML. Again, the -mp flag is important
if you are linking to the PathScale OpenMP version of ACML. The C compiler is
instructed to search the directory /opt/acml3.6.0/pathscale64 mp/include for the
ACML C header file acml.h, which should be included by driver.c, by using the switch
"-I/opt/acml3.6.0/pathscale64 mp/include". Note that in the example we add the library
-lpathfortran to the link command, so that a required PathScale compiler run-time library
is found.

2.2.5 Accessing the Library under Linux using the NAGWare f95
compiler

Similar commands apply for the NAGware f95 versions of ACML. For example,
f95 driver.f -L/opt/acml3.6.0/nag64/lib -lacml
f95 -32 driver.f -L/opt/acml3.6.0/nag32/lib -lacml

will compile driver.f and link it to the ACML using the 64-bit version and 32-bit version
respectively.

2.2.6 Accessing the Library under Linux using the Intel ifort
compiler

Similar commands apply for the Intel ifort versions of ACML. For example,
ifort driver.f -L/opt/acml3.6.0/ifort64/lib -lacml

will compile driver.f and link it to the ACML using the 64-bit version.
The commands

gcc -c -I/opt/acml3.6.0/ifort64/include driver.c
ifort -nofor-main driver.o -L/opt/acml3.6.0/ifort64/lib -lacml

will compile driver.c and link it to the 64-bit ACML. The switch

Chapter 2: General Information 8

-I/opt/acml3.6.0/ifort64/include

tells the C compiler to search directory /opt/acml3.6.0/ifort64/include for the ACML C
header file acml.h, which should be included by driver.c. Note that in the example we link
the C program using the ifort compiler with the -nofor-main switch, so that required ifort
compiler run-time libraries are found.

If you have an SMP machine and want to take best advantage of it, link against the ifort
OpenMP version of ACML like this:

ifort -openmp driver.f -L/opt/acml3.6.0/ifort64_mp/lib -lacml_mp
ifort -openmp driver.f -L/opt/acml3.6.0/ifort32_mp/lib -lacml_mp

Note that the directories and library names involved now include the suffix mp.
The -openmp flag is important - it tells ifort to link with the appropriate compiler

OpenMP run-time library. Without it you might get an "unresolved symbol" message at
link time.

2.2.7 Accessing the Library under Linux using compilers other
than GNU, PGI, PathScale, NAGWare or Intel

It may be possible to link to some versions of ACML using compilers other than those
already mentioned, if they are compatible with one of the other versions. If you do this, it
may be necessary to link to the run-time library of the compiler used to build the ACML
you link to, in order to satisfy run-time symbols. Since doing this is very compiler-specific,
we give no further details here.

2.3 Accessing the Library (Microsoft Windows)

2.3.1 Accessing the Library under 32-bit Windows using GNU
g77/gcc

Under Microsoft Windows R©, for the g77/gcc version of ACML it is assumed that you have
the Cygwin UNIX-like tools installed (see http://www.cygwin.com/), including the g77/gcc
compiler and associated tools. Assuming you have installed the ACML in the default place,
then in a DOS command prompt window, the command

g77 driver.f "c:\Program Files\AMD\acml3.6.0\gnu32\lib\libacml.a"

can be used to link the application program driver.f to the static library version of the
ACML.

The g77 version of the ACML Library is supplied in both static and shareable versions,
libacml.a and libacml.dll, respectively. The command given above links to the static version
of the library, libacml.a. To link to the DLL version, the command

g77 driver.f "c:\Program Files\AMD\acml3.6.0\gnu32\lib\libacml.dll"

can be used. Notice that if the application program has been linked to the DLL version of
the ACML Library, then before running the program, the environment variable PATH must
have been set to include the location of the DLL, for example by the DOS command:

PATH="c:\Program Files\AMD\acml3.6.0\gnu32\lib";%PATH%

where it was assumed that libacml.dll was installed in the directory "c:\Program
Files\AMD\acml3.6.0\gnu32\lib". Alternatively, the PATH environment variable may be
set in the system category of the Windows control panel.

The command

Chapter 2: General Information 9

gcc "-Ic:\Program Files\AMD\acml3.6.0\gnu32\include" driver.c
"c:\Program Files\AMD\acml3.6.0\gnu32\lib\libacml.a" -lg2c

will compile driver.c and link it to the 32-bit g77/gcc version of ACML. The switch "-
Ic:\Program Files\AMD\acml3.6.0\gnu32\include" tells the gcc compiler to search di-
rectory "c:\Program Files\AMD\acml3.6.0\gnu32\include" for the ACML C header file
acml.h, which should be included by driver.c. Note that it is necessary to add the compiler
run-time library -lg2c when linking the program.

2.3.2 Accessing the Library under 32-bit Windows using PGI
compilers pgf77/pgf90/Microsoft C

To use the 32-bit Windows PGI version of ACML, use a command like
pgf77 -Munix driver.f

"c:\Program Files\AMD\acml3.6.0\pgi32\lib\libacml_dll.lib"

where libacml dll.lib is the import library for the ACML DLL. Note that it is important
to use the compiler switch -Munix in order to tell the compiler to use the same calling
convention as was used to build ACML.

In the example above we are linking with the single-processor PGI version of ACML.
If you have an SMP machine and want to take best advantage of it, link against the PGI

OpenMP version of ACML like this:
pgf77 -Munix -mp driver.f

"c:\Program Files\AMD\acml3.6.0\pgi32\lib\libacml_mp_dll.lib"

Note that the directories and library names involved now include the suffix mp.
For the OpenMP version of ACML, if you link to the static library libacml mp.lib rather

than the DLL import library libacml mp dll.lib, you will need to use the PGI compiler flag
-mp in order to tell the compiler to link with the appropriate compiler OpenMP run-time
library. Without it you might get an "unresolved symbol" message at link time. This
should not be necessary when linking to the ACML DLL because the DLL itself knows that
it depends on the run-time library; but using the -mp flag in any case will do no harm.

To compile and link a C program using the Microsoft C command line compiler, cl, the
commands

cl "-Ic:\Program Files\AMD\acml3.6.0\pgi32\include"
/MD driver.c
"c:\Program Files\AMD\acml3.6.0\pgi32\lib\libacml_dll.lib"

cl "-Ic:\Program Files\AMD\acml3.6.0\pgi32_mp\include"
/MD driver.c
"c:\Program Files\AMD\acml3.6.0\pgi32_mp\lib\libacml_mp_dll.lib"

will link against the single-threaded DLL and multi-threaded versions of ACML respec-
tively.

Chapter 2: General Information 10

2.3.3 Accessing the Library under 32-bit Windows using Microsoft
C or Intel Fortran

To use the 32-bit Windows MSC/Intel Fortran version of ACML, use a command like
ifort /threads /libs:dll driver.f

"c:\Program Files\AMD\acml3.6.0\ifort32\lib\libacml_dll.lib"

where libacml dll.lib is the import library for the ACML DLL.
In the example above we are linking with the single-processor ifort version of ACML.
If you have an SMP machine and want to take best advantage of it, link against the ifort

OpenMP version of ACML like this:
ifort /libs:dll -Qopenmp driver.f
c:\acml3.6.0\ifort32_mp\lib\libacml_mp_dll.lib

Note that the directories and library names involved now include the suffix mp.
For the OpenMP version of ACML, if you link to the static library libacml mp.lib rather

than the DLL import library libacml mp dll.lib, you will need to use the ifort compiler flag
-Qopenmp in order to tell the compiler to link with the appropriate compiler OpenMP
run-time library. Without it you might get an "unresolved symbol" message at link time.
This should not be necessary when linking to the ACML DLL because the DLL itself knows
that it depends on the run-time library; but using the -Qopenmp flag in any case will do
no harm.

To compile and link a C program using the Microsoft C command line compiler, cl, the
commands

cl "-Ic:\Program Files\AMD\acml3.6.0\ifort32\include"
/MD driver.c
"c:\Program Files\AMD\acml3.6.0\ifort32\lib\libacml_dll.lib"

cl "-Ic:\Program Files\AMD\acml3.6.0\ifort32_mp\include"
/MD driver.c
"c:\Program Files\AMD\acml3.6.0\ifort32_mp\lib\libacml_mp_dll.lib"

will link against the single-threaded DLL and multi-threaded versions of ACML respec-
tively.

ACML can also be linked from inside a development environment such as Microsoft
Visual Studio or Visual Studio.NET. Again, it is important to get compilation options
correct. The directory acml3.6.0\ifort32\examples\Projects contains a few sample Visual
Studio project directories showing how this can be done.

Note that in both examples above we linked to a DLL version of ACML, and so be-
fore running the resulting programs the environment variable PATH must be set to in-
clude the location of the DLL. For example, assuming that libacml dll.dll was installed
in "c:\Program Files\AMD\acml3.6.0\ifort32\lib", PATH may be set by, for example, the
DOS command

PATH="c:\Program Files\AMD\acml3.6.0\ifort32\lib";%PATH%

Alternatively, the PATH environment variable may be set in the system category of the
Windows control panel.

ACML also comes as a static (non-DLL) library, named libacml.lib, in the same directory
as the DLL. If you link to the static library instead of the DLL import library then there is
no need to set the PATH.

Chapter 2: General Information 11

2.3.4 Accessing the Library under 32-bit Windows using the
Compaq Visual Fortran compiler

The win32 Intel Fortran variant of ACML can be used with the Compaq Visual Fortran
compiler as follows:

f90 /iface:cref,nomixed_str_len_arg /threads /libs:dll driver.f
"c:\Program Files\AMD\acml3.6.0\ifort32\lib\libacml_dll.lib"

where f90 is the Compaq Visual Fortran command line compiler and libacml dll.lib is
the import library for the ACML DLL. The switch /iface:cref,nomixed str len arg used on
the f90 compiler command line is important - it tells the compiler to use a calling convention
equivalent to the default Intel Fortran calling convention, rather than the default cvf stdcall
calling convention. If you forget to use this switch your program is likely to crash on
execution.

2.3.5 Accessing the Library under 32-bit Windows using the
Salford FTN95 compiler

The win32 Intel Fortran variant of ACML can be used with the Salford ftn95 compiler as
follows:

ftn95 driver.f

The resulting object file can be linked using the Salford linker, slink, for example like
this:

slink driver.obj install_dir\libacml_dll.dll

where install dir is the location of the DLL. The full pathname of install dir should be
specified to the DLL and should be enclosed within quotes if it contains spaces. It is worth
emphasising that the linker should link directly against the DLL itself, not the libacml dll.lib
import library.

2.3.6 Accessing the Library under 64-bit Windows using PGI
compilers pgf77/pgf90/pgcc

Under 64-bit versions of Windows, ACML 3.6.0 comes as a static (.LIB) library or a DLL.
To link with the 64-bit Windows DLL library PGI version of ACML, in a DOS command

prompt use a command like
pgf77 -Mdll driver.f c:/acml3.6.0/win64/lib/libacml_dll.lib

where libacml dll.lib is the import library for the DLL. In the example above we are linking
with the single-processor WIN64 version of ACML.

If you have an SMP machine and want to take best advantage of it, link against the
WIN64 OpenMP version of ACML like this:

pgf77 -Mdll -mp driver.f c:/acml3.6.0/win64_mp/lib/libacml_mp_dll.lib

Note that the directories and library names involved now include the suffix mp.
For the OpenMP version of ACML, if you link to the static library libacml mp.lib rather

than the DLL import library libacml mp dll.lib, you will need to use the PGI compiler flag
-mp in order to tell the compiler to link with the appropriate compiler OpenMP run-time
library. Without it you might get an "unresolved symbol" message at link time. This
should not be necessary when linking to the ACML DLL because the DLL itself knows that
it depends on the run-time library; but using the -mp flag in any case will do no harm.

Chapter 2: General Information 12

Note that the performance of OpenMP code produced with the PGI WIN64 compilers
depends on environment variables named MP BIND and MP SPIN, which control how
multiple threads behave (see PGI compiler documentation for discussion of these variables).
For ACML, empirical experiments show that higher values of MP SPIN than the default
are likely to give better performance. We recommend that users set MP BIND=yes and
MP SPIN=100000000.

Under WIN64, to compile and link a C program, the commands
pgcc -Mdll driver.c -Ic:/acml3.6.0/win64/include

c:/acml3.6.0/win64/lib/libacml_dll.lib
pgcc -Mdll -mp driver.c -Ic:/acml3.6.0/win64_mp/include

c:/acml3.6.0/win64_mp/lib/libacml_mp_dll.lib

will link against the single-threaded DLL and multi-threaded versions of ACML respec-
tively.

To use the Microsoft C command line compiler, cl, use commands like this:
cl driver.c -Ic:/acml3.6.0/win64/include

c:/acml3.6.0/win64/lib/libacml_dll.lib
cl driver.c -Ic:/acml3.6.0/win64_mp/include

c:/acml3.6.0/win64_mp/lib/libacml_mp_dll.lib

for single- and multi-threaded ACML variants respectively.

2.3.7 Accessing the Library under 64-bit Windows using Microsoft
C or Intel Fortran

Under 64-bit versions of Windows, ACML 3.6.0 comes as a static (.LIB) library or a DLL.
To link with the 64-bit Windows DLL library Intel Fortran version of ACML, in a DOS

command prompt use a command like
ifort /libs:dll driver.f c:\acml3.6.0\ifort64\lib\libacml_dll.lib

where libacml dll.lib is the import library for the DLL. In the example above we are linking
with the single-processor ifort version of ACML.

If you have an SMP machine and want to take best advantage of it, link against the ifort
OpenMP version of ACML like this:

ifort /libs:dll -Qopenmp driver.f
c:\acml3.6.0\win64_mp\lib\libacml_mp_dll.lib

Note that the directories and library names involved now include the suffix mp.
For the OpenMP version of ACML, if you link to the static library libacml mp.lib rather

than the DLL import library libacml mp dll.lib, you will need to use the ifort compiler flag
-Qopenmp in order to tell the compiler to link with the appropriate compiler OpenMP
run-time library. Without it you might get an "unresolved symbol" message at link time.
This should not be necessary when linking to the ACML DLL because the DLL itself knows
that it depends on the run-time library; but using the -Qopenmp flag in any case will do
no harm.

Under WIN64, to compile and link a C program using the Microsoft C command line
compiler, cl, the commands

Chapter 2: General Information 13

cl driver.c -Ic:/acml3.6.0/ifort64/include
c:/acml3.6.0/ifort64/lib/libacml_dll.lib

cl driver.c -Ic:/acml3.6.0/ifort64_mp/include
c:/acml3.6.0/ifort64_mp/lib/libacml_mp_dll.lib

will link against the single-threaded DLL and multi-threaded versions of ACML respec-
tively.

2.4 Accessing the Library (Solaris)

2.4.1 Accessing the Library under Solaris

If the Solaris 64-bit f95 version of ACML was installed in the default directory,
/opt/acml3.6.0/sun64, then the command:

f95 -xarch=amd64 driver.f -L/opt/acml3.6.0/sun64/lib -lacml

can be used to compile the program driver.f and link it to the ACML.
The ACML Library is supplied in both static and shareable versions, libacml.a and

libacml.so, respectively. By default, the commands given above will link to the shareable
version of the library, libacml.so, if that exists in the directory specified. Linking with the
static library can be forced either by using the compiler flag -Bstatic, e.g.

f95 -xarch=amd64 driver.f -L/opt/acml3.6.0/sun64/lib -Bstatic -lacml

or by inserting the name of the static library explicitly in the command line, e.g.
f95 -xarch=amd64 driver.f /opt/acml3.6.0/sun64/lib/libacml.a

Notice that if the application program has been linked to the shareable ACML Library,
then before running the program, the environment variable LD_LIBRARY_PATH must be set,
for example, by the C-shell command:

setenv LD_LIBRARY_PATH /opt/acml3.6.0/sun64/lib

where it is assumed that libacml.so was installed in the directory /opt/acml3.6.0/sun64/lib
(see the man page for ld(1) for more information about LD_LIBRARY_PATH.).

The command
f95 -xarch=sse2 driver.f -L/opt/acml3.6.0/sun32/lib -lacml

will compile and link a 32-bit program with a 32-bit ACML.
To compile and link a 64-bit C program with a 64-bit ACML, invoke

cc -xarch=amd64 -I/opt/acml3.6.0/sun64/include driver.c
-L/opt/acml3.6.0/sun64/lib -lacml -lfsu -lsunmath -lm

The switch "-I/opt/acml3.6.0/sun64/include" tells the compiler to search the directory
/opt/acml3.6.0/sun64/include for the ACML C header file acml.h, which should be included
by driver.c. Note that it is necessary to add the Sun compiler run-time libraries -lfsu
-lsunmath -lm when linking the program.

If you have an SMP machine and want to take best advantage of it, link against the
Solaris OpenMP version of ACML like this:

f95 -openmp -xarch=amd64 driver.f -L/opt/acml3.6.0/sun64_mp/lib -lacml_mp
f95 -openmp -xarch=sse2 driver.f -L/opt/acml3.6.0/sun32_mp/lib -lacml_mp

Note that the directories and library names involved now include the suffix mp.
The -openmp flag is important - it tells f95 to link with the appropriate compiler OpenMP

run-time library. Without it you might get an "unresolved symbol" message at link time.
The command

Chapter 2: General Information 14

cc -openmp -xarch=amd64 -I/opt/acml3.6.0/sun64/include driver.c
-L/opt/acml3.6.0/sun64/lib -lacml_mp -lfsu -lsunmath -lm -lmtsk

will compile driver.c and link it to the 64-bit ACML. Again, the -openmp flag is important
if you are linking to the OpenMP version of ACML. The C compiler is instructed to search
the directory /opt/acml3.6.0/sun64 mp/include for the ACML C header file acml.h, which
should be included by driver.c, by using the switch "-I/opt/acml3.6.0/sun64 mp/include".
Note that in the example we add the libraries -lfsu -lsunmath -lm -lmtsk to the link com-
mand, so that required compiler run-time libraries are found.

2.5 ACML FORTRAN and C interfaces

All routines in ACML come with both FORTRAN and C interfaces. The FORTRAN
interfaces typically follow the relevant standard (e.g. LAPACK, BLAS). Here we document
how a C programmer should call ACML routines.

In C code that uses ACML routines, be sure to include the header file <acml.h>, which
contains function prototypes for all ACML C interfaces. The header file also contains C
prototypes for FORTRAN interfaces, thus the C programmer could call the FORTRAN
interfaces from C, though there is little reason to do so.

C interfaces to ACML routines differ from FORTRAN interfaces in the following major
respects:
• The FORTRAN interface names are appended by an underscore (except for the Win-

dows 32-bit Microsoft C/Intel Fortran version of ACML, where FORTRAN interface
names are distinguished from C by being upper case rather than lower case - this is
the default for the Intel Fortran compiler)

• The C interfaces contain no workspace arguments; all workspace memory is allocated
internally.

• Scalar input arguments are passed by value in C interfaces. FORTRAN interfaces pass
all arguments (except for character string length arguments that are normally hidden
from FORTRAN programmers) by reference.

• Most arguments that are passed as character string pointers to FORTRAN interfaces
are passed by value as single characters to C interfaces. The character string length
arguments of FORTRAN interfaces are not required in the C interfaces.

• Unlike FORTRAN, C has no native complex data type. ACML C routines which
operate on complex data use the types complex and doublecomplex defined in <acml.h>
for single and double precision computations respectively. Some of the programs in the
ACML examples directory (see Section 2.9 [Examples], page 17) make use of these
types.

It is important to note that in both the FORTRAN and C interfaces, 2-dimensional
arrays are assumed to be stored in column-major order. e.g. the matrix

A =
(

1.0 2.0
3.0 4.0

)
would be stored in memory as 1.0, 3.0, 2.0, 4.0. This storage order corresponds to a
FORTRAN-style 2-D array declaration A(2,2), but not to an array declared as a[2][2] in C
which would be stored in row-major order as 1.0, 2.0, 3.0, 4.0.

Chapter 2: General Information 15

As an example, compare the FORTRAN and C interfaces of LAPACK routine dsytrf as
implemented in ACML.

FORTRAN:
void dsytrf_(char *uplo, int *n, double *a, int *lda, int *ipiv,

double *work, int *lwork, int *info, int uplo_len);

C:
void dsytrf(char uplo, int n, double *a, int lda, int *ipiv,

int *info);

C code calling both the above variants might look like this:
double *a;
int *ipiv;
double *work;
int n, lda, lwork, info;

/* Assume that all arrays and variables are allocated and
initialized as required by dsytrf. */

/* Call the FORTRAN version of dsytrf. The first argument
is a character string, and the last argument is the
length of that string. The input scalar arguments n, lda
and lwork, as well as the output scalar argument info,
are all passed by reference. */

dsytrf_("Upper", &n, a, &lda, ipiv, work, &lwork, &info, 5);

/* Call the C version of dsytrf. The first argument is a
character, workspace is not required, and input scalar
arguments n and lda are passed by value. Output scalar
argument info is passed by reference. */

dsytrf(’U’, n, a, lda, ipiv, &info);

2.6 ACML variants using 64-bit integer (INTEGER*8)
arguments

Where compilers support, through the use of switches, the automatic promotion of regular
INTEGER (32-bit) arguments to INTEGER*8 (64-bit) arguments, ACML variants exist to
use this facility. This means that if you have a 64-bit Fortran program using INTEGER*8
variables, or a 64-bit C program using 8-byte long variables, there is an ACML version that
you can use. This applies to 64-bit ACML versions built with PGI, PathScale, and gfortran
compilers.

The INTEGER*8 versions of these libraries are distinguished from the usual versions
by having the string “ int64” as part of the name of the directory under which ACML is
installed. Thus, for example, if the regular PGI 64-bit library is in a directory named pgi64,
then the INTEGER*8 version will be installed in directory pgi64 int64.

For these ACML variants, all ACML documentation that mentions arguments of Fortran
type INTEGER or C type int should be read as INTEGER*8 or long respectively.

It is important to ensure that if you have INTEGER*8 variables in your code, you link
to the int64 variant, and not otherwise. Unexpected program crashes are likely to occur if
you link to the wrong version.

Chapter 2: General Information 16

2.7 Library Version and Build Information

This document is applicable to version 3.6.0 of ACML. The utility routine acmlversion can
be called to obtain the major, minor and patch version numbers of the installed ACML. This
routine returns three integers; the major, minor and patch version numbers, respectively.

The utility routine acmlinfo can be called to obtain information on the compiler used
to build ACML, the version of the compiler, and the options used for building the Library.
This subroutine takes no arguments and prints the information to the current standard
output.

FORTRAN specifications:

[SUBROUTINE]ACMLVERSION (MAJOR, MINOR, PATCH)

[INTEGER]MAJOR, MINOR, PATCH

[SUBROUTINE]ACMLINFO ()

C specifications:

[function]void acmlversion (int *major, int *minor, int *patch);

[function]void acmlinfo (void);

2.8 Library Documentation

The /Doc subdirectory of the top ACML installation directory, (e.g. /opt/acml3.6.0/Doc
under Linux, or c:\Program Files\AMD\acml3.6.0\Doc under Windows), should contain
this document in the following formats:
• Printed Manual / PDF format – acml.pdf
• Info Pages – acml.info (Linux only)
• Html – html/index.html
• Plain text – acml.txt

Under Linux the info file can be read using info after updating the environment variable
INFOPATH to include the doc subdirectory of the ACML installation directory, e.g.

% setenv INFOPATH ${INFOPATH}:/opt/acml3.6.0/Doc

% info acml

or simply by using the full name of the file:
% info /opt/acml3.6.0/Doc/acml.info

Chapter 2: General Information 17

2.9 Example programs calling ACML

The /examples subdirectory of the top ACML installation directory (for example, possi-
ble default locations are /opt/acml3.6.0/gnu64/examples under Linux, or, under windows,
c:\Program Files\AMD\acml3.6.0\gnu32\examples), contains example programs showing
how to call the ACML, along with a GNUmakefile to build and run them. Examples of
calling both FORTRAN and C interfaces are included. They may be used as an ACML
installation test.

Depending on where your copy of the ACML is installed, and which compiler and flags
you wish to use, it may be necessary to modify some variables in the GNUmakefile before
using it.

The 32-bit Windows versions of ACML assume that you have the Cygwin UNIX-like tools
installed, and can use the make command that comes with them to build the examples.

For the 64-bit Windows version of ACML, it is not necessary to have the Cygwin tools.
The examples directory contains a bat script, acmlexample.bat, which can be used to run
one of the example programs. Another bat script, acmlallexamples.bat, builds and runs all
the examples in the directory. Alternatively, if you do have the Cygwin tools installed, you
can use the GNUmakefile to build the examples.

If you need more example programs showing how to call LAPACK routines from Fortran,
we refer you to this web page:

http://www.nag.com/lapack/

Here you will find examples for all double precision LAPACK driver routines, and all
of these should work when linked with ACML. Note that as well as the example programs
themselves, it is necessary to download and compile a small amount of utility code used by
the programs. See the web page for detailed instructions.

2.10 Example ACML programs demonstrating performance

The /examples/performance subdirectory of the top ACML installation directory (for
example, possible default locations are /opt/acml3.6.0/gnu64/examples/performance
under Linux, or c:\Program Files\AMD\acml3.6.0\gnu32\examples\performance under
windows) contains several timing programs designed to show the performance of ACML
when running on your machine. Again, a GNUmakefile may be used to build and run
them.

Depending on where your copy of the ACML is installed, and which compiler and flags
you wish to use, it may be necessary to modify some variables in the GNUmakefile before
using it.

The 32- and 64-bit Windows versions of ACML assume that you have the Cygwin UNIX-
like tools installed, and can use the make command that comes with them to build the
examples.

In addition, the GNUmakefile uses the gnuplot plotting program to display graphs of
the timing results. If you do not have gnuplot installed, the timing programs will still run
and show their results, but you will see no graph plots. Under linux, gnuplot may come
with your linux distribution, but you may need to explicitly ask for it to be installed. Note
that version 4.0 or later of gnuplot is required.

The gnuplot program is also available for Windows machines. See
http://www.gnuplot.info for more information.

http://www.nag.com/lapack/
http://www.gnuplot.info

Chapter 2: General Information 18

If you are on an SMP (multiprocessor) machine and have installed an OpenMP version
of the ACML, then in the examples/performance directory a command such as

% make OMP_NUM_THREADS=5

will run the timing programs on P processors, where P = 1, 2, 4, 5; i.e., P equals an
integer power of 2 and also equals OMP NUM THREADS if this value is not a power of 2.
The results for a particular routine are concatenated into one file. gnuplot then shows on
one graph for each routine the results of varying the number of processors for that routine.

Setting OMP NUM THREADS in this way is not useful if you are not on an SMP
machine or are not using an OpenMP version of ACML. Neither is it useful to set
OMP NUM THREADS to a value higher than the number of processors (or processor
cores) on your machine. A way to find the number of processors (or cores) under linux is
to examine the special file /proc/cpuinfo which has an entry for every core.

Not all routines in ACML are SMP parallelized, so in this context the
OMP NUM THREADS setting only applies to those examples, including time cfft2d.f,
time dgemm.f and time dgetrf.f, which are for parallelized routines. The other timing
programs run on one thread regardless of the setting of OMP NUM THREADS.

In all cases, timing graphs can be viewed without regenerating timing results by typing
the command

% make plots

Note that all results generated by timing programs will vary depending on the load on
your machine at run time.

Chapter 3: BLAS: Basic Linear Algebra Subprograms 19

3 BLAS: Basic Linear Algebra Subprograms

The BLAS are a set of well defined basic linear algebra operations ([1], [2], [3]). These
operations are subdivided into three groups:
• Level 1: operations acting on vectors only (e.g. dot product)
• Level 2: matrix-vector operations (e.g. matrix-vector multiplication)
• Level 3: matrix-matrix operations (e.g. matrix-matrix multiplication)

Efficient machine-specific implementations of the BLAS are available for many modern
high-performance computers. The implementation of higher level linear algebra algorithms
on these systems depends critically on the use of the BLAS as building blocks. AMD
provides, as part of the ACML, an implementation of the BLAS optimized for performance
on AMD64 processors.

For any information relating to the BLAS please refer to the BLAS FAQ:
http://www.netlib.org/blas/faq.html

ACML also includes interfaces to the extensions to Level 1 BLAS known as the sparse
BLAS. These routines perform operations on a sparse vector x which is stored in compressed
form and a vector y in full storage form. See reference [4] for more information.

http://www.netlib.org/blas/faq.html

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 20

4 LAPACK: Package of Linear Algebra
Subroutines

4.1 Introduction to LAPACK

LAPACK ([5]) is a library of FORTRAN 77 subroutines for solving commonly occurring
problems in numerical linear algebra. LAPACK components can solve systems of linear
equations, linear least squares problems, eigenvalue problems and singular value problems.
Dense and banded matrices are provided for, but not general sparse matrices. In all areas,
similar functionality is provided for real and complex matrices.

LAPACK routines are written so that as much as possible of the computations is per-
formed by calls to the BLAS. The efficiency of LAPACK routines depends, in large part, on
the efficiency of the BLAS being called. Block algorithms are employed wherever possible
to maximize the use of calls to level 3 BLAS, which generally run faster than lower level
BLAS due to the high number of operations per memory access.

The performance of some of the LAPACK routines has been further improved by re-
working the computational algorithms. Some of the LAPACK routines contained in ACML
are therefore based on code that is different from the LAPACK sources available in the
public domain. In all these cases the algorithmic and numerical properties of the origi-
nal LAPACK routines have been strictly preserved. Furthermore, key LAPACK routines
have been treated using OpenMP to take advantage of multiple processors when running
on SMP machines. Your application will automatically benefit when you link with the
OpenMP versions of ACML.

4.2 Reference sources for LAPACK

The LAPACK homepage can be accessed on the World Wide Web via the URL address:
http://www.netlib.org/lapack/

The on-line version of the Lapack User’s Guide, Third Edition ([5]) is available from this
homepage, or directly using the URL:

http://www.netlib.org/lapack/lug/index.html

The standard source code is available for download from netlib, with separate distributions
for UNIX/Linux and Windows R© installations:

http://www.netlib.org/lapack/lapack.tgz
http://www.netlib.org/lapack/lapack-pc.zip

A list of known problems, bugs, and compiler errors for LAPACK, as well as an errata list
for the LAPACK User’s Guide ([5]), is maintained on netlib

http://www.netlib.org/lapack/release_notes

A LAPACK FAQ (Frequently Asked Questions) file can also be accessed via the LAPACK
homepage

http://www.netlib.org/lapack/faq.html

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lug/index.html
http://www.netlib.org/lapack/lapack.tgz
http://www.netlib.org/lapack/lapack-pc.zip
http://www.netlib.org/lapack/release_notes
http://www.netlib.org/lapack/faq.html

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 21

4.3 LAPACK block sizes, ILAENV and ILAENVSET

As described in Section 6.2 of the LAPACK User’s Guide, block sizes and other parameters
used by various LAPACK routines are returned by the LAPACK inquiry function ILAENV.
In ACML, values returned by ILAENV have been chosen to achieve very good performance
on a wide variety of hardware and problem sizes.

In general it is unlikely that you will want or need to be concerned with these parameters.
However, in some cases it may be that a default value returned by ILAENV is not optimal
for your particular hardware and problem size. Following the advice in the LAPACK User’s
Guide may enable you to choose a better value in some circumstances.

For convenience, ACML includes a subroutine which allows you to override default values
returned by ILAENV if you have superior knowledge. The routine is named ILAENVSET
and has the following specification.

[SUBROUTINE]ILAENVSET (ISPEC,NAME,OPTS,N1,N2,N3,N4,NVALUE,INFO)

[Input]INTEGER ISPEC
On input: ISPEC specifies the parameter to be set (see Section 6.2 of the
LAPACK User’s Guide for details).

[Input]CHARACTER*(*) NAME
On input: NAME specifies the name of the LAPACK subroutine for which the
parameter is to be set.

[Input]CHARACTER*(*) OPTS
On input: OPTS is a character string of options to the subroutine.

[Input]INTEGER N1, N2, N3, N4
On input: N1, N2, N3 and N4 are problem dimensions. A value of -1 means
that the dimension is unused or irrelevant.

[Input]INTEGER NVALUE
On input: NVALUE is the value to be set for the parameter specified by IS-
PEC. This value will be retrieved by any future call of ILAENV with similar
arguments, including the call of ILAENV coming directly from the routine spec-
ified by argument NAME. In most cases, but not all, the value set will apply
irrespective of the values of arguments OPTS, N1, N2, N3 and N4.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

All arguments of ILAENVSET apart from the last two, NVALUE and INFO, are identical
to the arguments of ILAENV. ILAENVSET should be called before you call the LAPACK
routine in question.

It should be noted that not all LAPACK routines make use of the ILAENV mechanism
(because not all routines use blocked algorithms or require other tuning parameters). Calls
of ILAENVSET with argument NAME set to the name of such a routine will fail with INFO=0.
In addition, the ACML versions of some important routines that do use blocked algorithms,
such as the QR factorization routine DGEQRF, bypass ILAENV because they make use of a
different tuning system which is independent of standard LAPACK. For all such routines,

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 22

ILAENVSET can still be called with no error exit, but calls will have no effect on performance
of the routine.

Below we give examples of how to call ILAENVSET in both FORTRAN and C.
Example (FORTRAN code):� �

INTEGER ILO, IHI, INFO, N, NS
CHARACTER COMPZ, JOB
INTEGER ILAENV
EXTERNAL ILAENV, ILAENVSET
JOB = ’E’
COMPZ = ’I’
N = 512
ILO = 1
IHI = 512

C Check the default shift parameter (ISPEC=4) used by DHSEQR
NS = ILAENV(4, ’DHSEQR’, JOB//COMPZ, N, ILO, IHI, -1)
WRITE (*,*) ’Default NS = ’, NS

C Set a new value 5 for the shift parameter
CALL ILAENVSET(4, ’DHSEQR’, JOB//COMPZ, N, ILO, IHI, -1, 5, INFO)

C Then check the shift parameter again
NS = ILAENV(4, ’DHSEQR’, JOB//COMPZ, N, ILO, IHI, -1)
WRITE (*,*) ’Revised NS = ’, NS
END
 	

Example (C code):� �
#include <acml.h>
#include <stdio.h>
int main(void)
{

int n=512, ilo=1, ihi=512, ns, info;
char compz = ’I’, job = ’E’, opts[3];
opts[0] = job;
opts[1] = compz;
opts[2] = ’\0’;

/* Check the default shift parameter (ISPEC=4) used by DHSEQR */
ns = ilaenv(4, "DHSEQR", opts, n, ilo, ihi, -1);
printf("Default ns = %d\n", ns);

/* Set a new value 5 for the shift parameter */
ilaenvset(4, "DHSEQR", opts, n, ilo, ihi, -1, 5, &info);

/* Then check the shift parameter again */
ns = ilaenv(4, "DHSEQR", opts, n, ilo, ihi, -1);
printf("Revised ns = %d\n", ns);
return 0;

}
 	

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 23

4.4 IEEE exceptions and LAPACK

Some LAPACK eigensystem routines (namely CHEEVR, DSTEVR, DSYEVR, SSTEVR,
SSYEVR, ZHEEVR) are able to take advantage of a faster algorithm when the full eigen-
spectrum is requested on machines which conform to the IEEE-754 floating point standard
[14].

Normal execution of the faster algorithm (implemented by LAPACK routines SSTEGR
and DSTEGR, which are called by the routines mentioned above) may create NaNs and
infinities and hence may abort due to a floating point exception in environments which do
not handle NaNs and infinities in the IEEE standard default manner. This may depend
upon the compiler flags used to compile and link the main program.

The LAPACK routine ILAENV, called with ISPEC = 10 or 11, states whether or not
NaNs or infinities respectively will cause a trap. In ACML, by default ILAENV assumes
that NaNs and infinities cause traps, even if this reduces the performance of the eigensystem
routines. This is because it is not possible in general to reliably check whether they do trap
or not at run-time. The intention is to ensure that these routines always function correctly,
irrespective of how the main program calling ACML is compiled.

However, if your main program is compiled in such a way that NaNs and infinities
do not cause traps, the ACML-specific routine ILAENVSET (see Section 4.3 [ILAENV-
ILAENVSET], page 21) may be used to override the default operative mode of ILAENV,
and allow the xxxEVR routines to use the faster xSTEGR algorithm when calculating the
full eigenspectrum. When used for this purpose, ILAENVSET should be called as follows:

CALL ILAENVSET(10,’X’,’X’,0,0,0,0,1,INFO)
CALL ILAENVSET(11,’X’,’X’,0,0,0,0,1,INFO)

(or the C equivalent).
It is important to note that if you use ILAENVSET in this way before calling an xxxEVR

routine, but your program does trap on IEEE exceptions, then there is a chance that
your program will terminate unexpectedly. You should consult the documentation for the
compiler you are using to find out whether there are compiler flags controlling this.

Chapter 5: Fast Fourier Transforms (FFTs) 24

5 Fast Fourier Transforms (FFTs)

5.1 Introduction to FFTs

There are two main types of Discrete Fourier Transform (DFT):
• routines for the transformation of complex data: in the ACML, these routines have

names beginning with ZFFT or CFFT, for double and single precision, respectively;
• routines for the transformation of real to complex data and vice versa: in the ACML

the names for the former begin with DZFFT or SCFFT, for double and single precision,
respectively; the names for the latter begin with ZDFFT or CSFFT.

The following subsections provide definitions of the DFT for complex and real data types,
and some guidelines on the efficient use of the ACML FFT routines.

5.1.1 Transform definitions and Storage for Complex Data

The simplest transforms to describe are those performed on sequences of complex data.
Such data are stored as arrays of type complex. The result of a complex FFT is also a
complex sequence of the same length and, for the simple interfaces, is written back to the
original array. Where multiple (m, say), same-length sequences (of length n) of complex
data are to be transformed, the sequences are held in a single complex array; in the simple
interfaces the array will be of length m ∗ n containing m end-to-end sequences and the
results of the m FFTs are returned in the original array. Expert interfaces are provided
which give: greater flexibility in the storage of the original data and results, user provided
scaling, and whether results should be written to a separate array or not.

The definition of a complex DFT used here is given by:

x̃j =
1√
n

n−1∑
k=0

xk exp
(
±i

2πjk

n

)
for j = 0, 1, . . . , n− 1

where xk are the complex data to be transformed, x̃j are the transformed data, and the sign
of ± determines the direction of the transform: (−) for forward and (+) for backward. Note
that, in this definition, both directional transforms have the same scaling and performing
both consecutively recovers the original data; this is the prescribed scaling provided in the
simple FFT interfaces, whereas, in the expert interfaces, the scaling factor must be supplied
by the user.

For the simple interfaces, a two dimensional array of complex data, with m rows and n
columns is stored in the same order as a set of n sequences of length m (as described above).
That is, column elements are stored contiguously and the first element of the next column
follows the last element of the current column. In the expert interfaces, column elements
may be separated by a fixed step length (increment) while row elements may be separated
by a second increment; if the first increment is 1 and the second increment is m then we
have the same storage as in the simple interface.

The definition of a complex 2D DFT used here is given by:

x̃jp =
1√

m ∗ n

m−1∑
l=0

n−1∑
k=0

xkl exp
(
±i

2πjk

n

)
exp

(
±i

2πpl

m

)
for j = 0, 1, . . . , n− 1 and l = 0, 1, . . . ,m− 1, where xkl are the complex data to be trans-
formed, x̃jp are the transformed data, and the sign of ± determines the direction of the
transform.

Chapter 5: Fast Fourier Transforms (FFTs) 25

5.1.2 Transform definitions and Storage for Real Data

The DFT of a sequence of real data results in a special form of complex sequence known as
a Hermitian sequence. The symmetries defining such a sequence mean that it can be fully
represented by a set of n real values, where n is the length of the original real sequence.
It is therefore conventional for the array containing the real sequence to be overwritten by
such a representation of the transformed Hermitian sequence.

If the original sequence is purely real valued, i.e. zj = xj, then the definition of the real
DFT used here is given by:

z̃j = aj + ibj =
1√
n

n−1∑
k=0

xk exp
(
−i

2πjk

n

)
for j = 0, 1, . . . , n− 1

where xk are the real data to be transformed, z̃j are the transformed complex data.
In full complex representation, the Hermitian sequence would be a sequence of n complex

values Z(i) for i = 0, 1, ..., n − 1, where Z(n − j) is the complex conjugate of Z(j) for
j = 1, 2, ..., (n−1)/2; Z(0) is real valued; and, if n is even, Z(n/2) is real valued. In ACML,
the representation of Hermitian sequences used on output from DZFFT routines and on input
to ZDFFT routines is as follows:
let X be an array of length N and with first index 0,
• X(i) contains the real part of Z(i) for i = 0, ..., N/2
• X(N − i) contains the imaginary part of Z(i) for i = 1, ..., (N − 1)/2

Also, given a Hermitian sequence, the discrete transform can be written as:

xj =
1√
n

a0 + 2
n/2−1∑
k=1

(
ak cos

(
2πjk

n

)
− bk sin

(
2πjk

n

))
+ an/2

where an/2 = 0 if n is odd, and z̃k = ak + ibk is the Hermitian sequence to be transformed.
Note that, in the above definitions, both transforms have the same (negative) sign in the
exponent; performing both consecutively does not recover the original data. To recover
original real data, or otherwise to perform an inverse transform on a set of Hermitian data,
the Hermitian data must be conjugated prior to performing the transform (i.e. changing
the sign of the stored imaginary parts).

5.1.3 Efficiency

The efficiency of the FFT is maximized by choosing the sequence length to be a power of 2.
Good efficiency can also be achieved when the sequence length has small prime factors, up
to a factor 13; however, the time taken for an FFT increases as the size of the prime factor
increases.

Chapter 5: Fast Fourier Transforms (FFTs) 26

5.1.4 Default and Generated Plans

For those FFT routines that can be initialized prior to computing the FFTs, the initializa-
tion can be performed in one of two ways. In either case, initialization involves the storing
of the factorization of N, and the twiddle factors associated with this factorization, in the
communication array COMM.

The simpler way to initialize is by setting the argument MODE to zero. This means
that a default plan, for the given input dimensions, is used to calculate the FFT. This has
the advantage that the initialization phase is very quick and is generally a small fraction of
the time required to perform the FFT computation. However, for some problem dimensions
the default plan may not be optimal, especially where there is a mixture of prime factors.

Under some circumstances, optimality of performance of an FFT computation may be
crucial. For example, where a very large number of FFTs are to be performed on problems
of a fixed size (e.g. N remains the same), then it is best to initialize by setting the argument
MODE to 100. This will time a number of plans (this number can be quite large when N
has a significant number of prime factors) and initialize using the plan with the best time.
Using this form of initialization can, potentially, lead to significant improvements in the
performance of the FFT computation for the given dimensions.

Where problem dimensions will not change over a number of runs of a program, the
communication array could, for example, be written out to a file during an initialization
run, and then read in from the same file on subsequent computation runs. This would be
effective for problem dimensions that have a large number of possible plans (factor orderings
and groupings) and therefore take a significant amount of time to find the optimal plan.

Please consult the individual FFT routine documents to determine whether plan gener-
ation is enabled.

Chapter 5: Fast Fourier Transforms (FFTs) 27

5.2 FFTs on Complex Sequences

5.2.1 FFT of a single sequence

The routines documented here compute the discrete Fourier transform (DFT) of a sequence
of complex numbers in either single or double precision arithmetic. The DFT is computed
using a highly-efficient FFT algorithm. There are two sets of interfaces available: simple
drivers and expert drivers. The simple drivers perform in-place transforms on data held
contiguously in memory using a fixed scaling factor; these are simpler to use and are suffi-
cient for many problems. The expert drivers offer greater flexibility by including a number
of additional arguments. These allow you to control: the scaling factor applied; whether the
result should be output to a separate vector; and, the increments used in storing successive
elements of both the input sequence and the result.

Chapter 5: Fast Fourier Transforms (FFTs) 28

ZFFT1D Routine Documentation

[SUBROUTINE]ZFFT1D (MODE,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT1D.
On input:
• MODE=0 : only default initializations (specific to N) are performed; this

is usually followed by calls to the same routine with MODE=−1 or 1.
• MODE=−1 : a forward transform is performed. Initializations are as-

sumed to have been performed by a prior call to ZFFT1D.
• MODE=1 : a backward (reverse) transform is performed. Initializations

are assumed to have been performed by a prior call to ZFFT1D.
• MODE=−2 : initializations and a forward transform are performed.
• MODE=2 : initializations and a backward transform are performed.
• MODE=100 : similar to MODE=0; only initializations are performed, but

first a plan is generated. This plan is chosen based on the fastest FFT
computation for a subset of all possible plans.

[Input]INTEGER N
On input: N is the length of the complex sequence X

[Input/Output]COMPLEX*16 X(N)
On input: X contains the complex sequence of length N to be transformed.
On output: X contains the transformed sequence.

[Input/Output]COMPLEX*16 COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL ZFFT1D(0,N,X,COMM,INFO)
CALL ZFFT1D(-1,N,X,COMM,INFO)
CALL ZFFT1D(-1,N,Y,COMM,INFO)
DO 10 I = 1, N

X(I) = X(I)*DCONJG(Y(I))
10 CONTINUE

CALL ZFFT1D(1,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 29

CFFT1D Routine Documentation

[SUBROUTINE]CFFT1D (MODE,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT1D.
On input:
• MODE=0 : only default initializations (specific to N) are performed; this

is usually followed by calls to the same routine with MODE=−1 or 1.
• MODE=−1 : a forward transform is performed. Initializations are as-

sumed to have been performed by a prior call to CFFT1D.
• MODE=1 : a backward (reverse) transform is performed. Initializations

are assumed to have been performed by a prior call to CFFT1D.
• MODE=−2 : (default) initializations and a forward transform are per-

formed.
• MODE=2 : (default) initializations and a backward transform are per-

formed.
• MODE=100 : similar to MODE=0; only initializations are performed, but

first a plan is generated. This plan is chosen based on the fastest FFT
computation for a subset of all possible plans.

[Input]INTEGER N
On input: N is the length of the complex sequence X

[Input/Output]COMPLEX X(N)
On input: X contains the complex sequence of length N to be transformed.
On output: X contains the transformed sequence.

[Input/Output]COMPLEX COMM(5*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL CFFT1D(0,N,X,COMM,INFO)
CALL CFFT1D(-1,N,X,COMM,INFO)
CALL CFFT1D(-1,N,Y,COMM,INFO)
DO 10 I = 1, N

X(I) = X(I)*CONJG(Y(I))
10 CONTINUE

CALL CFFT1D(1,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 30

ZFFT1DX Routine Documentation

[SUBROUTINE]ZFFT1DX (MODE,SCALE,INPL,N,X,INCX,Y,INCY,COMM,
INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT1DX.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1DX.

• MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to ZFFT1DX.

• MODE=−2 : (default) initializations and a forward transform are per-
formed.

• MODE=2 : (default) initializations and a backward transform are per-
formed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]DOUBLE PRECISION SCALE
On input: SCALE is the scaling factor to apply to the output sequence

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequence;
otherwise the output sequence is returned in Y.

[Input]INTEGER N
On input: N is the number of elements to be transformed

[Input/Output]COMPLEX*16 X(1+(N-1)*INCX)
On input: X contains the complex sequence of length N to be transformed,
with the ith element stored in X(1+(i-1)*INCX).
On output: if INPL is .TRUE. then X contains the transformed sequence in
the same locations as on input; otherwise X remains unchanged.

[Input]INTEGER INCX
On input: INCX is the increment used to store successive elements of a sequence
in X.
Constraint: INCX > 0.

[Output]COMPLEX*16 Y(1+(N-1)*INCY)
On output: if INPL is .FALSE. then Y contains the transformed sequence, with
the ith element stored in Y(1+(i-1)*INCY); otherwise Y is not referenced.

Chapter 5: Fast Fourier Transforms (FFTs) 31

[Input]INTEGER INCY
On input: INCY is the increment used to store successive elements of a sequence
in Y. If INPL is .TRUE. then INCY is not referenced.
Constraint: INCY > 0.

[Input/Output]COMPLEX*16 COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward FFTs are performed unscaled and in-place on contiguous
C vectors X and Y following initialization. Manipulations on
C resultant Fourier coefficients are stored in X which is then
C transformed back.
C

SCALE = 1.0D0
INPL = .TRUE.
CALL ZFFT1DX(0,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)
CALL ZFFT1DX(-1,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)
CALL ZFFT1DX(-1,SCALE,INPL,N,Y,1,DUM,1,COMM,INFO)
DO 10 I = 1, N

X(I) = X(I)*DCONJG(Y(I))/DBLE(N)
10 CONTINUE

CALL ZFFT1DX(1,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 32

CFFT1DX Routine Documentation

[SUBROUTINE]CFFT1DX (MODE,SCALE,INPL,N,X,INCX,Y,INCY,COMM,
INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT1DX.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1DX.

• MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to CFFT1DX.

• MODE=−2 : (default) initializations and a forward transform are per-
formed.

• MODE=2 : (default) initializations and a backward transform are per-
formed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]REAL SCALE
On input: SCALE is the scaling factor to apply to the output sequence

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequence;
otherwise the output sequence is returned in Y.

[Input]INTEGER N
On input: N is the number of elements to be transformed

[Input/Output]COMPLEX X(1+(N-1)*INCX)
On input: X contains the complex sequence of length N to be transformed,
with the ith element stored in X(1+(i-1)*INCX).
On output: if INPL is .TRUE. then X contains the transformed sequence in
the same locations as on input; otherwise X remains unchanged.

[Input]INTEGER INCX
On input: INCX is the increment used to store successive elements of a sequence
in X.
Constraint: INCX > 0.

[Output]COMPLEX Y(1+(N-1)*INCY)
On output: if INPL is .FALSE. then Y contains the transformed sequence, with
the ith element stored in Y(1+(i-1)*INCY); otherwise Y is not referenced.

Chapter 5: Fast Fourier Transforms (FFTs) 33

[Input]INTEGER INCY
On input: INCY is the increment used to store successive elements of a sequence
in Y. If INPL is .TRUE. then INCY is not referenced.
Constraint: INCY > 0.

[Input/Output]COMPLEX COMM(5*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward FFTs are performed unscaled and in-place on contiguous
C vectors X and Y following initialization. Manipulations on
C resultant Fourier coefficients are stored in X which is then
C transformed back.
C

SCALE = 1.0
INPL = .TRUE.
CALL CFFT1DX(0,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)
CALL CFFT1DX(-1,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)
CALL CFFT1DX(-1,SCALE,INPL,N,Y,1,DUM,1,COMM,INFO)
DO 10 I = 1, N

X(I) = X(I)*CONJG(Y(I))/REAL(N)
10 CONTINUE

CALL CFFT1DX(1,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 34

5.2.2 FFT of multiple complex sequences

The routines documented here compute the discrete Fourier transforms (DFTs) of a num-
ber of sequences of complex numbers in either single or double precision arithmetic. The
sequences must all have the same length. The DFTs are computed using a highly-efficient
FFT algorithm. There are two sets of interfaces available: simple drivers and expert drivers.
The simple drivers perform in-place transforms on data held contiguously in memory us-
ing a fixed scaling factor; these are simpler to use and are sufficient for many problems.
The expert drivers offer greater flexibility by including a number of additional arguments.
These allow you to control: the scaling factor applied; whether the result should be output
to a separate vector; the increments used in storing successive elements of a given sequence
(for both input and output sequences); and the increments used in storing corresponding
elements in successive sequences (for both input and output).

Chapter 5: Fast Fourier Transforms (FFTs) 35

ZFFT1M Routine Documentation

[SUBROUTINE]ZFFT1M (MODE,M,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT1M.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : forward transforms are performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1M.

• MODE=1 : backward (reverse) transforms are performed. Initializations
are assumed to have been performed by a prior call to ZFFT1M.

• MODE=−2 : (default) initializations and forward transforms are per-
formed.

• MODE=2 : (default) initializations and backward transforms are per-
formed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]INTEGER M
On input: M is the number of sequences to be transformed.

[Input]INTEGER N
On input: N is the length of the complex sequences in X

[Input/Output]COMPLEX*16 X(N*M)
On input: X contains the M complex sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j − 1) ∗N of X.
On output: X contains the transformed sequences.

[Input/Output]COMPLEX*16 COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs) 36

Example:� �
CALL ZFFT1M(0,1,N,X,COMM,INFO)
CALL ZFFT1M(-1,2,N,X,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*DCONJG(X(I,2))
X(I,2) = DCMPLX(0.0D0,1.0D0)*X(I,2)

10 CONTINUE
CALL ZFFT1M(1,2,N,X(1,2),COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 37

CFFT1M Routine Documentation

[SUBROUTINE]CFFT1M (MODE,M,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT1M.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : forward transforms are performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1M.

• MODE=1 : backward (reverse) transforms are performed. Initializations
are assumed to have been performed by a prior call to CFFT1M.

• MODE=−2 : (default) initializations and forward transforms are per-
formed.

• MODE=2 : (default) initializations and backward transforms are per-
formed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]INTEGER M
On input: M is the number of sequences to be transformed.

[Input]INTEGER N
On input: N is the length of the complex sequences in X

[Input/Output]COMPLEX X(N*M)
On input: X contains the M complex sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j − 1) ∗N of X.
On output: X contains the transformed sequences.

[Input/Output]COMPLEX COMM(5*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs) 38

Example:� �
CALL CFFT1M(0,1,N,X,COMM,INFO)
CALL CFFT1M(-1,2,N,X,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*CONJG(X(I,2))
X(I,2) = CMPLX(0.0D0,1.0D0)*X(I,2)

10 CONTINUE
CALL CFFT1M(1,2,N,X(1,2),COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 39

ZFFT1MX Routine Documentation

[SUBROUTINE]ZFFT1MX (MODE,SCALE,INPL,NSEQ,N,X,INCX1,INCX2,
Y,INCY1,INCY2,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT1MX.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1MX.

• MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to ZFFT1MX.

• MODE=−2 : (default) initializations and a forward transform are per-
formed.

• MODE=2 : (default) initializations and a backward transform are per-
formed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]DOUBLE PRECISION SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER NSEQ
On input: NSEQ is the number of sequences to be transformed

[Input]INTEGER N
On input: N is the number of elements in each sequence to be transformed

[Input/Output]COMPLEX*16 X(1+(N-1)*INCX1+(NSEQ-1)*INCX2)
On input: X contains the NSEQ complex sequences of length N to be
transformed; the ith element of sequence j is stored in X(1+(i-1)*INCX1+(j-
1)*INCX2).
On output: if INPL is .TRUE. then X contains the transformed sequences in
the same locations as on input; otherwise X remains unchanged.

[Input]INTEGER INCX1
On input: INCX1 is the increment used to store successive elements of a given
sequence in X (INCX1=1 for contiguous data).
Constraint: INCX1 > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 40

[Input]INTEGER INCX2
On input: INCX2 is the increment used to store corresponding elements of
successive sequences in X (INCX2=N for contiguous data).
Constraint: INCX2 > 0.

[Output]COMPLEX*16 Y(1+(N-1)*INCY1+(NSEQ-1)*INCY2)
On output: if INPL is .FALSE. then Y contains the transformed sequences
with the ith element of sequence j stored in Y(1+(i-1)*INCY1+(j-1)*INCY2);
otherwise Y is not referenced.

[Input]INTEGER INCY1
On input: INCY1 is the increment used to store successive elements of a given
sequence in Y. If INPL is .TRUE. then INCY1 is not referenced.
Constraint: INCY1 > 0.

[Input]INTEGER INCY2
On input: INCY2 is the increment used to store corresponding elements of
successive sequences in Y (INCY2=N for contiguous data). If INPL is .TRUE.
then INCY2 is not referenced.
Constraint: INCY2 > 0.

[Input/Output]COMPLEX*16 COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward FFTs are performed unscaled and in-place on two
C contiguous vectors stored in the first two columns of X.
C Manipulations are stored in 2nd and 3rd columns of X which are
C then transformed back.
C

COMPLEX *16 X(N,3)
SCALE = 1.0D0
INPL = .TRUE.
CALL ZFFT1MX(0,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM,INFO)
CALL ZFFT1MX(-1,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*DCONJG(X(I,2))/DBLE(N)
X(I,2) = DCMPLX(0.0D0,1.0D0)*X(I,2)/DBLE(N)

10 CONTINUE
CALL ZFFT1MX(1,SCALE,INPL,2,N,X(1,2),1,N,DUM,1,N,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 41

CFFT1MX Routine Documentation

[SUBROUTINE]CFFT1MX (MODE,SCALE,INPL,NSEQ,N,X,INCX1,INCX2,
Y,INCY1,INCY2,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT1MX.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1MX.

• MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to CFFT1MX.

• MODE=−2 : (default) initializations and a forward transform are per-
formed.

• MODE=2 : (default) initializations and a backward transform are per-
formed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]REAL SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER NSEQ
On input: NSEQ is the number of sequences to be transformed

[Input]INTEGER N
On input: N is the number of elements in each sequence to be transformed

[Input/Output]COMPLEX X(1+(N-1)*INCX1+(NSEQ-1)*INCX2)
On input: X contains the NSEQ complex sequences of length N to be
transformed; the ith element of sequence j is stored in X(1+(i-1)*INCX1+(j-
1)*INCX2).
On output: if INPL is .TRUE. then X contains the transformed sequences in
the same locations as on input; otherwise X remains unchanged.

[Input]INTEGER INCX1
On input: INCX1 is the increment used to store successive elements of a given
sequence in X (INCX1=1 for contiguous data).
Constraint: INCX1 > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 42

[Input]INTEGER INCX2
On input: INCX2 is the increment used to store corresponding elements of
successive sequences in X (INCX2=N for contiguous data).
Constraint: INCX2 > 0.

[Output]COMPLEX Y(1+(N-1)*INCY1+(NSEQ-1)*INCY2)
On output: if INPL is .FALSE. then Y contains the transformed sequences
with the ith element of sequence j stored in Y(1+(i-1)*INCY1+(j-1)*INCY2);
otherwise Y is not referenced.

[Input]INTEGER INCY1
On input: INCY1 is the increment used to store successive elements of a given
sequence in Y. If INPL is .TRUE. then INCY1 is not referenced.
Constraint: INCY1 > 0.

[Input]INTEGER INCY2
On input: INCY2 is the increment used to store corresponding elements of
successive sequences in Y (INCY2=N for contiguous data). If INPL is .TRUE.
then INCY2 is not referenced.
Constraint: INCY2 > 0.

[Input/Output]COMPLEX COMM(5*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward FFTs are performed unscaled and in-place on two
C contiguous vectors stored in the first two columns of X.
C Manipulations are stored in 2nd and 3rd columns of X which are
C then transformed back.
C

COMPLEX X(N,3)
SCALE = 1.0
INPL = .TRUE.
CALL CFFT1MX(0,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM,INFO)
CALL CFFT1MX(-1,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*CONJG(X(I,2))/REAL(N)
X(I,2) = CMPLX(0.0D0,1.0D0)*X(I,2)/REAL(N)

10 CONTINUE
CALL CFFT1MX(1,SCALE,INPL,2,N,X(1,2),1,N,DUM,1,N,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 43

5.2.3 2D FFT of two-dimensional arrays of data

The routines documented here compute the two-dimensional discrete Fourier transforms
(DFT) of a two-dimensional array of complex numbers in either single or double precision
arithmetic. The 2D DFT is computed using a highly-efficient FFT algorithm.
There are two sets of interfaces available: simple drivers and expert drivers. The simple
drivers perform in-place transforms on data held contiguously in memory using a fixed
scaling factor; these are simpler to use and are sufficient for many problems. The expert
drivers offer greater flexibility by including a number of additional arguments. These allow
you to control: the scaling factor applied; whether the result should be output to a separate
array; the increments used in storing successive elements in each dimension (for both input
and output); and the facility to not perform a final transposition. This final facility is useful
for those cases where a forward and backward transform are to be applied with some data
manipulations in between; here two whole transpositions can be saved.

Chapter 5: Fast Fourier Transforms (FFTs) 44

ZFFT2D Routine Documentation

[SUBROUTINE]ZFFT2D (MODE,M,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the direction of transform to be per-
formed by ZFFT2D.
On input:
• MODE=−1 : forward 2D transform is performed.
• MODE=1 : backward (reverse) 2D transform is performed.

[Input]INTEGER M
On input: M is the number of rows in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the first dimension of X.

[Input]INTEGER N
On input: N is the number of columns in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the second dimension of X.

[Input/Output]COMPLEX*16 X(M*N)
On input: X contains the M by N complex 2D array to be transformed. Ele-
ment ij is stored in location i + (j − 1) ∗M of X.
On output: X contains the transformed sequence.

[Input/Output]COMPLEX*16 COMM(M*N+3*(M+N))
COMM is a communication array used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL ZFFT2D(-1,M,N,X,COMM,INFO)
DO 20 J = 1, N

DO 10 I = 1, MIN(J-1,M)
X(I,J) = 0.5D0*(X(I,J) + X(J,I))
X(J,I) = DCONJG(X(I,J))

10 CONTINUE
20 CONTINUE

CALL ZFFT2D(1,M,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 45

CFFT2D Routine Documentation

[SUBROUTINE]CFFT2D (MODE,M,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the direction of transform to be per-
formed by CFFT2D.
On input:
• MODE=−1 : a forward 2D transform is performed.
• MODE=1 : a backward (reverse) 2D transform is performed.

[Input]INTEGER M
On input: M is the number of rows in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the first dimension of X.

[Input]INTEGER N
On input: N is the number of columns in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the second dimension of X.

[Input/Output]COMPLEX X(M*N)
On input: X contains the M by N complex 2D array to be transformed. Ele-
ment ij is stored in location i + (j − 1) ∗M of X.
On output: X contains the transformed sequence.

[Input/Output]COMPLEX COMM(M*N+5*(M+N))
COMM is a communication array used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL CFFT2D(-1,M,N,X,COMM,INFO)
DO 20 J = 1, N

DO 10 I = 1, MIN(J-1,M)
X(I,J) = 0.5D0*(X(I,J) + X(J,I))
X(J,I) = CONJG(X(I,J))

10 CONTINUE
20 CONTINUE

CALL CFFT2D(1,M,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 46

ZFFT2DX Routine Documentation

[SUBROUTINE]ZFFT2DX (MODE,SCALE,LTRANS,INPL,M,N,X,INCX1,
INCX2,Y,INCY1,INCY2,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT2DX.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : a forward 2D transform is performed. Initializations are
assumed to have been performed by a prior call to ZFFT2DX.

• MODE=1 : a backward (reverse) 2D transform is performed. Initializa-
tions are assumed to have been performed by a prior call to ZFFT2DX.

• MODE=−2 : (default) initializations and a forward 2D transform are per-
formed.

• MODE=2 : (default) initializations and a backward 2D transform are
performed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
values of N and M) are performed, but these are based on a plan that is
first generated by timing a subset of all possible plans and choosing the
quickest (i.e. the FFT computation was timed as fastest based on the
chosen plan). The plan generation phase may take a significant amount of
time depending on the values of N and M.

[Input]DOUBLE PRECISION SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL LTRANS
On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data consistent with the values for arguments
INPL, INCX1, INCX2, INCY1 and INCY2. If LTRANS is .FALSE. then the
final transposition is not performed explicitly; the storage format on output is
determined by whether the output data is stored contiguously or not – please
see the output specifications for X and Y for details.

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER M
On input: M is the first dimension of the 2D transform.

[Input]INTEGER N
On input: N is the second dimension of the 2D transform.

Chapter 5: Fast Fourier Transforms (FFTs) 47

[Input/Output]COMPLEX*16 X(1+(M-1)*INCX1+(N-1)*INCX2)
On input: X contains the M by N complex 2D data array to be transformed;
the (ij)th element is stored in X(1+(i-1)*INCX1+(j-1)*INCX2).
On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; in locations X((i-
1)*N+j) when LTRANS=.FALSE., INCX1=1 and INCX2=M; and otherwise
in the same locations as on input. If INPL is .FALSE. X remains unchanged.

[Input]INTEGER INCX1
On input: INCX1 is the increment used to store, in X, successive elements in
the first dimension (INCX1=1 for contiguous data).
Constraint: INCX1 > 0.

[Input]INTEGER INCX2
On input: INCX2 is the increment used to store, in X, successive elements in
the second dimension (INCX2=M for contiguous data).
Constraint: INCX2 > 0;

INCX2 > (M-1)*INCX1 if N > 1.

[Output]COMPLEX*16 Y(1+(M-1)*INCY1+(N-1)*INCY2)
On output: if INPL is .FALSE. then Y contains the transformed data.
If LTRANS=.TRUE. then the (ij)th data element is stored in Y(1+(i-
1)*INCY1+(j-1)*INCY2); if LTRANS=.FALSE., INCY1=1 and INCY2=N
then the (ij)th data element is stored in Y((i-1)*N+j); and otherwise the (ij)th
element is stored in Y(1+(i-1)*INCY1+(j-1)*INCY2). If INPL is .TRUE. then
Y is not referenced.

[Input]INTEGER INCY1
On input: INCY1 is the increment used to store successive elements in the
first dimension in Y (INCY1=1 for contiguous data). If INPL is .TRUE. then
INCY1 is not referenced.
Constraint: INCY1 > 0.

[Input]INTEGER INCY2
On input: INCY2 is the increment used to store successive elements in the
second dimension in Y (for contiguous data, INCY2=M when LTRANS is
.TRUE. or INCY2=N when LTRANS is .FALSE.). If INPL is .TRUE. then
INCY2 is not referenced.
Constraints: INCY2 > 0;

INCY2 > (M-1)*INCY1 if N > 1 and LTRANS is .TRUE.;
INCY2 = N if M > 1 and LTRANS is .FALSE..

[Input/Output]COMPLEX*16 COMM(M*N+3*M+3*N+200)
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same dimensions M and N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs) 48

Example:� �
C Forward 2D FFT is performed unscaled, without final transpose
C and out-of-place on data stored in array X and output to Y.
C Manipulations are stored in vector Y which is then transformed
C back, with scaling, into the first M rows of X.
C

COMPLEX *16 X(M,N), Y(N,M)
SCALE = 1.0D0
INPL = .FALSE.
LTRANS = .FALSE.
CALL ZFFT2DX(0,SCALE,LTRANS,INPL,M,N,X,1,M,Y,1,N,COMM,INFO)
CALL ZFFT2DX(-1,SCALE,LTRANS,INPL,M,N,X,1,M,Y,1,N,COMM,INFO)
DO 20 I = M

DO 10 J = 1, N
Y(J,I) = 0.5D0*Y(J,I)*EXP(0.001D0*(I+J-2))

10 CONTINUE
20 CONTINUE

SCALE = 1.0D0/DBLE(M*N)
CALL ZFFT2DX(1,SCALE,LTRANS,INPL,N,M,Y,1,N,X,1,M,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 49

CFFT2DX Routine Documentation

[SUBROUTINE]CFFT2DX (MODE,SCALE,LTRANS,INPL,M,N,X,INCX1,
INCX2,Y,INCY1,INCY2,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT2DX.
On input:
• MODE=0 : only initializations (specific to the value of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=−1 or 1.

• MODE=−1 : a forward 2D transform is performed. Initializations are
assumed to have been performed by a prior call to CFFT2DX.

• MODE=1 : a backward (reverse) 2D transform is performed. Initializa-
tions are assumed to have been performed by a prior call to CFFT2DX.

• MODE=−2 : (default) initializations and a forward 2D transform are per-
formed.

• MODE=2 : (default) initializations and a backward 2D transform are
performed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
values of N and M) are performed, but these are based on a plan that is
first generated by timing a subset of all possible plans and choosing the
quickest (i.e. the FFT computation was timed as fastest based on the
chosen plan). The plan generation phase may take a significant amount of
time depending on the values of N and M.

[Input]REAL SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL LTRANS
On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data consistent with the values for arguments
INPL, INCX1, INCX2, INCY1 and INCY2. If LTRANS is .FALSE. then the
final transposition is not performed explicitly; the storage format on output is
determined by whether the output data is stored contiguously or not – please
see the output specifications for X and Y for details.

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER M
On input: M is the first dimension of the 2D transform.

[Input]INTEGER N
On input: N is the second dimension of the 2D transform.

Chapter 5: Fast Fourier Transforms (FFTs) 50

[Input/Output]COMPLEX X(1+(M-1)*INCX1+(N-1)*INCX2)
On input: X contains the M by N complex 2D data array to be transformed;
the (ij)th element is stored in X(1+(i-1)*INCX1+(j-1)*INCX2).
On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; in locations X((i-
1)*N+j) when LTRANS=.FALSE., INCX1=1 and INCX2=M; and otherwise
in the same locations as on input. If INPL is .FALSE. X remains unchanged.

[Input]INTEGER INCX1
On input: INCX1 is the increment used to store, in X, successive elements in
the first dimension (INCX1=1 for contiguous data).
Constraint: INCX1 > 0.

[Input]INTEGER INCX2
On input: INCX2 is the increment used to store, in X, successive elements in
the second dimension (INCX2=M for contiguous data).
Constraint: INCX2 > 0;

INCX2 > (M-1)*INCX1 if N > 1.

[Output]COMPLEX Y(1+(M-1)*INCY1+(N-1)*INCY2)
On output: if INPL is .FALSE. then Y contains the transformed data.
If LTRANS=.TRUE. then the (ij)th data element is stored in Y(1+(i-
1)*INCY1+(j-1)*INCY2); if LTRANS=.FALSE., INCY1=1 and INCY2=N
then the (ij)th data element is stored in Y((i-1)*N+j); and otherwise the (ij)th
element is stored in Y(1+(i-1)*INCY1+(j-1)*INCY2). If INPL is .TRUE. then
Y is not referenced.

[Input]INTEGER INCY1
On input: INCY1 is the increment used to store successive elements in the
first dimension in Y (INCY1=1 for contiguous data). If INPL is .TRUE. then
INCY1 is not referenced.
Constraint: INCY1 > 0.

[Input]INTEGER INCY2
On input: INCY2 is the increment used to store successive elements in the
second dimension in Y (for contiguous data, INCY2=M when LTRANS is
.TRUE. or INCY2=N when LTRANS is .FALSE.). If INPL is .TRUE. then
INCY2 is not referenced.
Constraints: INCY2 > 0;

INCY2 > (M-1)*INCY1 if N > 1 and LTRANS is .TRUE.;
INCY2 = N if M > 1 and LTRANS is .FALSE..

[Input/Output]COMPLEX COMM(M*N+5*M+5*N+200)
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same dimensions M and N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs) 51

Example:� �
C Forward 2D FFT is performed unscaled, without final transpose
C and out-of-place on data stored in array X and output to Y.
C Manipulations are stored in vector Y which is then transformed
C back, with scaling, into the first M rows of X.
C

COMPLEX X(M,N), Y(N,M)
SCALE = 1.0
INPL = .FALSE.
LTRANS = .FALSE.
CALL CFFT2DX(0,SCALE,LTRANS,INPL,M,N,X,1,M,Y,1,N,COMM,INFO)
CALL CFFT2DX(-1,SCALE,LTRANS,INPL,M,N,X,1,M,Y,1,N,COMM,INFO)
DO 20 I = M

DO 10 J = 1, N
Y(J,I) = 0.5*Y(J,I)*EXP(-0.001*REAL(I+J-2))
IY = IY + 1

10 CONTINUE
20 CONTINUE

SCALE = 1.0/REAL(M*N)
CALL CFFT2DX(1,SCALE,LTRANS,INPL,N,M,Y,1,N,X,1,M,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 52

5.2.4 3D FFT of three-dimensional arrays of data

The routines documented here compute the three-dimensional discrete Fourier transforms
(DFT) of a three-dimensional array of complex numbers in either single or double precision
arithmetic. The 3D DFT is computed using a highly-efficient FFT algorithm.

Please note that at Release 2.7 of ACML it has been necessary to modify slightly the
interfaces of two of the expert FFT drivers introduced at Release 2.2 of ACML. The two
routines are CFFT3DX and ZFFT3DX. The changes are required to permit the optimization
of these routines by adding an initialization stage which can then use the plan generator
(MODE=100) to select the optimal plan. User codes that called CFFT3DX or ZFFT3DX using
a release of ACML prior to 2.7 will need to be modified in one of two ways. Calls to
CFFT3DX/ZFFT3DX with MODE = -1 or 1 can be fixed for ACML Release 2.7 and later by
either:
• preceding the call with a call setting MODE = 0 (default initialization), or MODE =

100 (initialization using plan generator); or,
• doubling the MODE argument value to MODE = -2 or 2 respectively (thus incorpo-

rating default initialization).

Additionally, the minimum length of the communication (work)space arrays in CFFT3DX
and ZFFT3DX has been increased by 100 to allow for plan storage. Please consult the
individual routine documents for full details on their use.

Chapter 5: Fast Fourier Transforms (FFTs) 53

ZFFT3D Routine Documentation

[SUBROUTINE]ZFFT3D (MODE,L,M,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the direction of transform to be per-
formed by ZFFT3D.
On input:
• MODE=−1 : forward 3D transform is performed.
• MODE=1 : backward (reverse) 3D transform is performed.

[Input]INTEGER L
On input: the length of the first dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then L is the first dimension of X.

[Input]INTEGER M
On input: the length of the second dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then M is the second dimension of
X.

[Input]INTEGER N
On input: the length of the third dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then N is the third dimension of
X.

[Input/Output]COMPLEX*16 X(L*M*N)
On input: X contains the L by M by N complex 3D array to be transformed.
Element ijk is stored in location i + (j − 1) ∗ L + (k − 1) ∗ L ∗M of X.
On output: X contains the transformed sequence.

[Input/Output]COMPLEX*16 COMM(L*M*N+3*(L+M+N))
COMM is a communication array used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL ZFFT3D(-1,L,M,N,X,COMM,INFO)
DO 30 K = 1, N
DO 20 J = 1, M

DO 10 I = 1, L
X(I,J) = X(I,J)*EXP(-0.001D0*DBLE(I+J+K))

10 CONTINUE
20 CONTINUE
30 CONTINUE

CALL ZFFT3D(1,L,M,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 54

CFFT3D Routine Documentation

[SUBROUTINE]CFFT3D (MODE,L,M,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the direction of transform to be per-
formed by CFFT3D.
On input:
• MODE=−1 : forward 3D transform is performed.
• MODE=1 : backward (reverse) 3D transform is performed.

[Input]INTEGER L
On input: the length of the first dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then L is the first dimension of X.

[Input]INTEGER M
On input: the length of the second dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then M is the second dimension of
X.

[Input]INTEGER N
On input: the length of the third dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then N is the third dimension of
X.

[Input/Output]COMPLEX X(L*M*N)
On input: X contains the L by M by N complex 3D array to be transformed.
Element ijk is stored in location i + (j − 1) ∗ L + (k − 1) ∗ L ∗M of X.
On output: X contains the transformed sequence.

[Input/Output]COMPLEX COMM(L*M*N+5*(L+M+N))
COMM is a communication array used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL CFFT3D(-1,L,M,N,X,COMM,INFO)
DO 30 K = 1, N
DO 20 J = 1, M

DO 10 I = 1, L
X(I,J) = X(I,J)*EXP(-0.001D0*REAL(I+J+K))

10 CONTINUE
20 CONTINUE
30 CONTINUE

CALL CFFT3D(1,L,M,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 55

ZFFT3DX Routine Documentation

[SUBROUTINE]ZFFT3DX (MODE,SCALE,LTRANS,INPL,L,M,N,X,Y,
COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT3DX.
On input:
• MODE=0 : only initializations (specific to the values of L, M and N) are

performed using a default plan; this is usually followed by calls to the same
routine with MODE=−1 or 1.

• MODE=−1 : a forward 3D transform is performed. Initializations are
assumed to have been performed by a prior call to ZFFT3DX.

• MODE=1 : a backward (reverse) 3D transform is performed. Initializa-
tions are assumed to have been performed by a prior call to ZFFT3DX.

• MODE=−2 : (default) initializations and a forward 3D transform are per-
formed.

• MODE=2 : (default) initializations and a backward 3D transform are
performed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
values of L, M and M) are performed, but these are based on a plan that
is first generated by timing a subset of all possible plans and choosing the
quickest (i.e. the FFT computation was timed as fastest based on the
chosen plan). The plan generation phase may take a significant amount of
time depending on the values of L, M and N.

[Input]DOUBLE PRECISION SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL LTRANS
On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data using the same storage format as the input
data. If LTRANS is .FALSE. then the final transposition is not performed and
transformed data is stored, in X or Y, in transposed form.

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER L
On input: L is the first dimension of the 3D transform.

[Input]INTEGER M
On input: M is the second dimension of the 3D transform.

[Input]INTEGER N
On input: N is the third dimension of the 3D transform.

Chapter 5: Fast Fourier Transforms (FFTs) 56

[Input/Output]COMPLEX*16 X(L*M*N)
On input: X contains the L by M by N complex 3D data array to be trans-
formed; the (ijk)th element is stored in X(i+(j-1)*L+(k-1)*L*M).
On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; or in locations
X(k+(j-1)*N+(i-1)*N*M) when LTRANS=.FALSE. If INPL is .FALSE. X re-
mains unchanged.

[Output]COMPLEX*16 Y(L*M*N)
On output: if INPL is .FALSE. then Y contains the three-dimensional trans-
formed data. If LTRANS=.TRUE. then the (ijk)th data element is stored in
Y(i+(j-1)*L+(k-1)*L*M); otherwise, the (ijk)th data element is stored in Y(k+(j-
1)*N+(i-1)*N*M). If INPL is .TRUE. then Y is not referenced.

[Input/Output]COMPLEX*16 COMM(L*M*N+3*(L+M+N)+300)
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same sequence dimensions. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward 3D FFT is performed unscaled, without final transpose
C and out-of-place on data stored in array X and output to Y.
C Manipulations are stored in vector Y which is then transformed
C back, with scaling, into the first M rows of X.
C

COMPLEX *16 X(L*M*N), Y(L*M*N)
SCALE = 1.0D0
INPL = .FALSE.
LTRANS = .FALSE.
CALL ZFFT3DX(0,SCALE,LTRANS,INPL,L,M,N,X,Y,COMM,INFO)
CALL ZFFT3DX(-1,SCALE,LTRANS,INPL,L,M,N,X,Y,COMM,INFO)
IY = 1
DO 20 I = 1, L

DO 40 J = 1, M
DO 10 K = 1, N

Y(IY) = Y(IY)*EXP(-0.001D0*DBLE(I+J+K-3))
IY = IY + 1

10 CONTINUE
20 CONTINUE

SCALE = 1.0D0/DBLE(L*M*N)
CALL ZFFT3DX(1,SCALE,LTRANS,INPL,N,M,L,Y,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 57

CFFT3DX Routine Documentation

[SUBROUTINE]CFFT3DX (MODE,SCALE,LTRANS,INPL,L,M,N,X,Y,
COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT3DX.
On input:
• MODE=0 : only initializations (specific to the values of L, M and N) are

performed using a default plan; this is usually followed by calls to the same
routine with MODE=−1 or 1.

• MODE=−1 : a forward 3D transform is performed. Initializations are
assumed to have been performed by a prior call to CFFT3DX.

• MODE=1 : a backward (reverse) 3D transform is performed. Initializa-
tions are assumed to have been performed by a prior call to CFFT3DX.

• MODE=−2 : (default) initializations and a forward 3D transform are per-
formed.

• MODE=2 : (default) initializations and a backward 3D transform are
performed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
values of L, M and M) are performed, but these are based on a plan that
is first generated by timing a subset of all possible plans and choosing the
quickest (i.e. the FFT computation was timed as fastest based on the
chosen plan). The plan generation phase may take a significant amount of
time depending on the values of L, M and N.

[Input]REAL SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL LTRANS
On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data using the same storage format as the input
data. If LTRANS is .FALSE. then the final transposition is not performed and
transformed data is stored, in X or Y, in transposed form.

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER L
On input: L is the first dimension of the 3D transform.

[Input]INTEGER M
On input: M is the second dimension of the 3D transform.

[Input]INTEGER N
On input: N is the third dimension of the 3D transform.

Chapter 5: Fast Fourier Transforms (FFTs) 58

[Input/Output]COMPLEX X(L*M*N)
On input: X contains the L by M by N complex 3D data array to be trans-
formed; the (ijk)th element is stored in X(i+(j-1)*L+(k-1)*L*M).
On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; or in locations
X(k+(j-1)*N+(i-1)*N*M) when LTRANS=.FALSE. If INPL is .FALSE. X re-
mains unchanged.

[Output]COMPLEX Y(L*M*N)
On output: if INPL is .FALSE. then Y contains the three-dimensional trans-
formed data. If LTRANS=.TRUE. then the (ijk)th data element is stored in
Y(i+(j-1)*L+(k-1)*L*M); otherwise, the (ijk)th data element is stored in Y(k+(j-
1)*N+(k-1)*N*M). If INPL is .TRUE. then Y is not referenced.

[Input/Output]COMPLEX COMM(L*M*N+5*(L+M+N)+300)
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same sequence dimensions. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward 3D FFT is performed unscaled, without final transpose
C and out-of-place on data stored in array X and output to Y.
C Manipulations are stored in vector Y which is then transformed
C back, with scaling, into the first M rows of X.
C

SCALE = 1.0
INPL = .FALSE.
LTRANS = .FALSE.
CALL CFFT3DX(0,SCALE,LTRANS,INPL,L,M,N,X,Y,COMM,INFO)
CALL CFFT3DX(-1,SCALE,LTRANS,INPL,L,M,N,X,Y,COMM,INFO)
IY = 1
DO 20 I = 1, L

DO 40 J = 1, M
DO 10 K = 1, N

Y(IY) = Y(IY)*EXP(-0.001*REAL(I+J+K-3))
IY = IY + 1

10 CONTINUE
20 CONTINUE

SCALE = 1.0/REAL(L*M*N)
CALL CFFT3DX(1,SCALE,LTRANS,INPL,N,M,L,Y,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 59

ZFFT3DY Routine Documentation

[SUBROUTINE]ZFFT3DY (MODE,SCALE,INPL,L,M,N,X,
INCX1,INCX2,INCX3,Y,INCY1,INCY2,INCY3,COMM,LCOMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZFFT3DY.
On input:
• MODE=0 : only initializations (specific to the values of L, M and N) are

performed using a default plan; this is usually followed by calls to the same
routine with MODE=−1 or 1.

• MODE=−1 : a forward 3D transform is performed. Initializations are
assumed to have been performed by a prior call to ZFFT3DY.

• MODE=1 : a backward (reverse) 3D transform is performed. Initializa-
tions are assumed to have been performed by a prior call to ZFFT3DY.

• MODE=−2 : (default) initializations and a forward 3D transform are per-
formed.

• MODE=2 : (default) initializations and a backward 3D transform are
performed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
values of L, M and M) are performed, but these are based on a plan that
is first generated by timing a subset of all possible plans and choosing the
quickest (i.e. the FFT computation was timed as fastest based on the
chosen plan). The plan generation phase may take a significant amount of
time depending on the values of L, M and N.

[Input]REAL SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER L
On input: L is the first dimension of the 3D transform.

[Input]INTEGER M
On input: M is the second dimension of the 3D transform.

[Input]INTEGER N
On input: N is the third dimension of the 3D transform.

[Input/Output]COMPLEX*16 X(*)
On input: X contains the L by M by N complex 3D data array to be trans-
formed; the (ijk)th element is stored in X(1+(i-1)*INCX1+(j-1)*INCX2+(k-
1)*INCX3).
On output: if INPL is .TRUE. then X contains the transformed data in the
same locations as on input. If INPL is .FALSE. X remains unchanged.

Chapter 5: Fast Fourier Transforms (FFTs) 60

[Input]INTEGER INCX1
On input: INCX1 is the step in index of X between successive data elements
in the first dimension of the 3D data. Usually INCX1=1 so that succesive
elements in the first dimension are stored contiguously.
Constraint: INCX1 > 0.

[Input]INTEGER INCX2
On input: INCX2 is the step in index of X between successive data elements
in the second dimension of the 3D data. For completely contiguous data (no
gaps in X) INCX2 should be set to L.
Constraint: INCX2 > 0;

INCX2 > (L-1)*INCX1 if max(M,N) > 1.

[Input]INTEGER INCX3
On input: INCX3 is the step in index of X between successive data elements in
the third dimension of the 3D data. For completely contiguous data (no gaps
in X) INCX3 should be set to L*M.
Constraint: INCX3 > 0;

INCX3 > (L-1)*INCX1+(M-1)*INCX2 if N > 1.

[Output]COMPLEX*16 Y(*)
On output: if INPL is .FALSE. then Y contains the three-dimensional trans-
formed data. If LTRANS=.TRUE. then the the (ijk)th element is stored in
Y(1+(i-1)*INCY1+(j-1)*INCY2+(k-1)*INCY3).
If INPL is .TRUE. then Y is not referenced.

[Input]INTEGER INCY1
On input: if INPL is .FALSE. then INCY1 is the step in index of Y between
successive data elements in the first dimension of the 3D transformed data.
Usually INCY1=1 so that succesive elements in the first dimension are stored
contiguously.
If INPL is .TRUE. then INCY1 is not referenced. Constraint: If INPL is
.FALSE. then INCY1 > 0.

[Input]INTEGER INCY2
On input: if INPL is .FALSE. then INCY2 is the step in index of Y between
successive data elements in the second dimension of the 3D transformed data.
For completely contiguous data (no gaps in Y) INCY2 should be set to L.
Constraint: INCY2 > 0 if INPL is .FALSE.;

INCY2 > (L-1)*INCY1, if INPL is .FALSE. and max(M,N) > 1.

[Input]INTEGER INCY3
On input: if INPL is .FALSE. then INCY3 is the step in index of Y between
successive data elements in the third dimension of the 3D transformed data.
For completely contiguous data (no gaps in Y) INCY3 should be set to L*M.
Constraint: INCY3 > 0 if INPL is .FALSE.;

INCY3 > (L-1)*INCY1+(M-1)*INCY2, if INPL is .FALSE. and N > 1.

Chapter 5: Fast Fourier Transforms (FFTs) 61

[Input/Output]COMPLEX*16 COMM(LCOMM)
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same sequence dimensions. The
remainder is used as temporary store; if this is not sufficient for the require-
ments of the routine then temporary storage space will be dynamically allocated
internally.

[Input]INTEGER LCOMM
On input: LCOMM is the length of the communication array COMM. The
amount of internal dynamic allocation of temporary storage can be reduced
significantly by declaring COMM to be of length at least L*M*N + 4*(L+M+N)
+ 300.
Constraint: LCOMM > 3*(L+M+N) + 150.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward 3D FFT is performed unscaled and in-place, on the leading
C 10x10x10 submatrix of a larger 100x100x100 array of data.
C The result is transformed back with scaling.
C

SCALE = 1.0D0
INPL = .TRUE.
L = 10
M = 10
N = 10
LCOMM = 2000000
CALL ZFFT3DY(0,SCALE,INPL,L,M,N,X,1,100,10000,Y,1,1,1,

* COMM,LCOMM,INFO)
CALL ZFFT3DY(-1,SCALE,INPL,L,M,N,X,1,100,10000,Y,1,1,1,

* COMM,LCOMM,INFO)
IY = 1
DO 20 I = 1, L

DO 40 J = 1, M
DO 10 K = 1, N

X(I,J,K) = X(I,J,K)*EXP(-1.0D-3*DBLE(I+J+K-3))
10 CONTINUE
20 CONTINUE

SCALE = 1.0/DBLE(L*M*N)
CALL ZFFT3DY(1,SCALE,INPL,L,M,N,X,1,100,10000,Y,1,1,1,

* COMM,LCOMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 62

CFFT3DY Routine Documentation

[SUBROUTINE]CFFT3DY (MODE,SCALE,INPL,L,M,N,X,
INCX1,INCX2,INCX3,Y,INCY1,INCY2,INCY3,COMM,LCOMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CFFT3DY.
On input:
• MODE=0 : only initializations (specific to the values of L, M and N) are

performed using a default plan; this is usually followed by calls to the same
routine with MODE=−1 or 1.

• MODE=−1 : a forward 3D transform is performed. Initializations are
assumed to have been performed by a prior call to CFFT3DY.

• MODE=1 : a backward (reverse) 3D transform is performed. Initializa-
tions are assumed to have been performed by a prior call to CFFT3DY.

• MODE=−2 : (default) initializations and a forward 3D transform are per-
formed.

• MODE=2 : (default) initializations and a backward 3D transform are
performed.

• MODE=100 : similar to MODE=0; only initializations (specific to the
values of L, M and M) are performed, but these are based on a plan that
is first generated by timing a subset of all possible plans and choosing the
quickest (i.e. the FFT computation was timed as fastest based on the
chosen plan). The plan generation phase may take a significant amount of
time depending on the values of L, M and N.

[Input]REAL SCALE
On input: SCALE is the scaling factor to apply to the output sequences

[Input]LOGICAL INPL
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

[Input]INTEGER L
On input: L is the first dimension of the 3D transform.

[Input]INTEGER M
On input: M is the second dimension of the 3D transform.

[Input]INTEGER N
On input: N is the third dimension of the 3D transform.

[Input/Output]COMPLEX X(*)
On input: X contains the L by M by N complex 3D data array to be trans-
formed; the (ijk)th element is stored in X(1+(i-1)*INCX1+(j-1)*INCX2+(k-
1)*INCX3).
On output: if INPL is .TRUE. then X contains the transformed data in the
same locations as on input. If INPL is .FALSE. X remains unchanged.

Chapter 5: Fast Fourier Transforms (FFTs) 63

[Input]INTEGER INCX1
On input: INCX1 is the step in index of X between successive data elements
in the first dimension of the 3D data. Usually INCX1=1 so that succesive
elements in the first dimension are stored contiguously.
Constraint: INCX1 > 0.

[Input]INTEGER INCX2
On input: INCX2 is the step in index of X between successive data elements
in the second dimension of the 3D data. For completely contiguous data (no
gaps in X) INCX2 should be set to L.
Constraint: INCX2 > 0;

INCX2 > (L-1)*INCX1 if max(M,N) > 1.

[Input]INTEGER INCX3
On input: INCX3 is the step in index of X between successive data elements in
the third dimension of the 3D data. For completely contiguous data (no gaps
in X) INCX3 should be set to L*M.
Constraint: INCX3 > 0;

INCX3 > (L-1)*INCX1+(M-1)*INCX2 if N > 1.

[Output]COMPLEX Y(*)
On output: if INPL is .FALSE. then Y contains the three-dimensional trans-
formed data. If LTRANS=.TRUE. then the the (ijk)th element is stored in
Y(1+(i-1)*INCY1+(j-1)*INCY2+(k-1)*INCY3).
If INPL is .TRUE. then Y is not referenced.

[Input]INTEGER INCY1
On input: if INPL is .FALSE. then INCY1 is the step in index of Y between
successive data elements in the first dimension of the 3D transformed data.
Usually INCY1=1 so that succesive elements in the first dimension are stored
contiguously.
If INPL is .TRUE. then INCY1 is not referenced. Constraint: If INPL is
.FALSE. then INCY1 > 0.

[Input]INTEGER INCY2
On input: if INPL is .FALSE. then INCY2 is the step in index of Y between
successive data elements in the second dimension of the 3D transformed data.
For completely contiguous data (no gaps in Y) INCY2 should be set to L.
Constraint: INCY2 > 0 if INPL is .FALSE.;

INCY2 > (L-1)*INCY1, if INPL is .FALSE. and max(M,N) > 1.

[Input]INTEGER INCY3
On input: if INPL is .FALSE. then INCY3 is the step in index of Y between
successive data elements in the third dimension of the 3D transformed data.
For completely contiguous data (no gaps in Y) INCY3 should be set to L*M.
Constraint: INCY3 > 0 if INPL is .FALSE.;

INCY3 > (L-1)*INCY1+(M-1)*INCY2, if INPL is .FALSE. and N > 1.

Chapter 5: Fast Fourier Transforms (FFTs) 64

[Input/Output]COMPLEX COMM(LCOMM)
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same sequence dimensions. The
remainder is used as temporary store; if this is not sufficient for the require-
ments of the routine then temporary storage space will be dynamically allocated
internally.

[Input]INTEGER LCOMM
On input: LCOMM is the length of the communication array COMM. The
amount of internal dynamic allocation of temporary storage can be reduced
significantly by declaring COMM to be of length at least L*M*N + 4*(L+M+N)
+ 300..
Constraint: LCOMM > L*M*N + 2*(L+M+N) + 300.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Forward 3D FFT is performed unscaled and in-place, on the leading
C 10x10x10 submatrix of a larger 100x100x100 array of data.
C The result is transformed back with scaling.
C

SCALE = 1.0
INPL = .TRUE.
L = 10
M = 10
N = 10
LCOMM = 2000000
CALL CFFT3DY(0,SCALE,INPL,L,M,N,X,1,100,10000,Y,1,1,1,

* COMM,LCOMM,INFO)
CALL CFFT3DY(-1,SCALE,INPL,L,M,N,X,1,100,10000,Y,1,1,1,

* COMM,LCOMM,INFO)
IY = 1
DO 20 I = 1, L

DO 40 J = 1, M
DO 10 K = 1, N

X(I,J,K) = X(I,J,K)*EXP(-0.001*REAL(I+J+K-3))
10 CONTINUE
20 CONTINUE

SCALE = 1.0/REAL(L*M*N)
CALL CFFT3DY(1,SCALE,INPL,L,M,N,X,1,100,10000,Y,1,1,1,

* COMM,LCOMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 65

5.3 FFTs on real and Hermitian data sequences

The routines documented here compute discrete Fourier transforms (DFTs) of sequences
of real numbers or of Hermitian sequences in either single or double precision arithmetic.
The DFTs are computed using a highly-efficient FFT algorithm. Hermitian sequences are
represented in a condensed form that is described in Section 5.1 [Introduction to FFTs],
page 24. The DFT of a real sequence results in a Hermitian sequence; the DFT of a
Hermitian sequence is a real sequence.

Please note that prior to Release 2.0 of ACML the routine ZDFFT/CSFFT and
ZDFFTM/CSFFTM returned results that were scaled by a factor 0.5 compared with the
currently returned results.

Chapter 5: Fast Fourier Transforms (FFTs) 66

5.3.1 FFT of single sequences of real data

DZFFT Routine Documentation

[SUBROUTINE]DZFFT (MODE,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by DZFFT.
On input:
• MODE=0 : only default initializations (specific to N) are performed; this

is usually followed by calls to the same routine with MODE=−1 or 1.
• MODE=1 : a real transform is performed. Initializations are assumed to

have been performed by a prior call to DZFFT.
• MODE=2 : (default) initializations and a real transform are performed.
• MODE=100 : similar to MODE=0; only initializations are performed, but

first a plan is generated. This plan is chosen based on the fastest FFT
computation for a subset of all possible plans.

[Input]INTEGER N
On input: N is the length of the real sequence X

[Input/Output]DOUBLE PRECISION X(N)
On input: X contains the real sequence of length N to be transformed.
On output: X contains the transformed Hermitian sequence.

[Input/Output]DOUBLE PRECISION COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL DZFFT(0,N,X,COMM,INFO)
CALL DZFFT(1,N,X,COMM,INFO)
DO 10 I = N/2+2, N

X(I) = -X(I)
10 CONTINUE

CALL ZDFFT(2,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 67

SCFFT Routine Documentation

[SUBROUTINE]SCFFT (MODE,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by SCFFT.
On input:
• MODE=0 : only default initializations (specific to N) are performed; this

is usually followed by calls to the same routine with MODE=−1 or 1.
• MODE=1 : a real transform is performed. Initializations are assumed to

have been performed by a prior call to SCFFT.
• MODE=2 : (default) initializations and a real transform are performed.
• MODE=100 : similar to MODE=0; only initializations are performed, but

first a plan is generated. This plan is chosen based on the fastest FFT
computation for a subset of all possible plans.

[Input]INTEGER N
On input: N is the length of the real sequence X

[Input/Output]REAL X(N)
On input: X contains the real sequence of length N to be transformed.
On output: X contains the transformed Hermitian sequence.

[Input/Output]REAL COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL SCFFT(0,N,X,COMM,INFO)
CALL SCFFT(1,N,X,COMM,INFO)
DO 10 I = N/2+2, N

X(I) = -X(I)
10 CONTINUE

CALL CSFFT(2,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 68

5.3.2 FFT of multiple sequences of real data

DZFFTM Routine Documentation

[SUBROUTINE]DZFFTM (M,N,X,COMM,INFO)

[Input]INTEGER M
On input: M is the number of sequences to be transformed.

[Input]INTEGER N
On input: N is the length of the real sequences in X

[Input/Output]DOUBLE PRECISION X(N*M)
On input: X contains the M real sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j − 1) ∗N of X.
On output: X contains the transformed Hermitian sequences.

[Input/Output]DOUBLE PRECISION COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL DZFFTM(1,N,X,COMM,INFO)
CALL DZFFTM(2,N,X,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE

CALL ZDFFTM(2,N,X(1,3),COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 69

SCFFTM Routine Documentation

[SUBROUTINE]SCFFTM (M,N,X,COMM,INFO)

[Input]INTEGER M
On input: M is the number of sequences to be transformed.

[Input]INTEGER N
On input: N is the length of the real sequences in X

[Input/Output]REAL X(N*M)
On input: X contains the M real sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j − 1) ∗N of X.
On output: X contains the transformed Hermitian sequences.

[Input/Output]REAL COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL SCFFTM(1,N,X,COMM,INFO)
CALL SCFFTM(2,N,X,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE

CALL CSFFTM(1,N,X(1,3),COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 70

5.3.3 FFT of single Hermitian sequences

ZDFFT Routine Documentation

[SUBROUTINE]ZDFFT (MODE,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by ZDFFT.
On input:
• MODE=0 : only initializations (specific to the values of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=1.

• MODE=1 : a real transform is performed. Initializations are assumed to
have been performed by a prior call to ZDFFT.

• MODE=2 : (default) initializations and a real transform are performed.
• MODE=100 : similar to MODE=0; only initializations (specific to the

value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]INTEGER N
On input: N is length of the sequence in X

[Input/Output]DOUBLE PRECISION X(N)
On input: X contains the Hermitian sequence of length N to be transformed.
On output: X contains the transformed real sequence.

[Input/Output]DOUBLE PRECISION COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL DZFFT(0,N,X,COMM,INFO)
CALL DZFFT(1,N,X,COMM,INFO)
DO 10 I = N/2+2, N

X(I) = -X(I)
10 CONTINUE

CALL ZDFFT(2,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 71

CSFFT Routine Documentation

[SUBROUTINE]CSFFT (MODE,N,X,COMM,INFO)

[Input]INTEGER MODE
The value of MODE on input determines the operation performed by CSFFT.
On input:
• MODE=0 : only initializations (specific to the values of N) are performed

using a default plan; this is usually followed by calls to the same routine
with MODE=1.

• MODE=1 : a real transform is performed. Initializations are assumed to
have been performed by a prior call to CSFFT.

• MODE=2 : (default) initializations and a real transform are performed.
• MODE=100 : similar to MODE=0; only initializations (specific to the

value of N) are performed, but these are based on a plan that is first
generated by timing a subset of all possible plans and choosing the quickest
(i.e. the FFT computation was timed as fastest based on the chosen plan).
The plan generation phase may take a significant amount of time depending
on the value of N.

[Input]INTEGER N
On input: N is the length of the sequence in X

[Input/Output]REAL X(N)
On input: X contains the Hermitian sequence of length N to be transformed.
On output: X contains the transformed real sequence.

[Input/Output]REAL COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL SCFFT(0,N,X,COMM,INFO)
CALL SCFFT(1,N,X,COMM,INFO)
DO 10 I = N/2+2, N

X(I) = -X(I)
10 CONTINUE

CALL CSFFT(2,N,X,COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 72

5.3.4 FFT of multiple Hermitian sequences

ZDFFTM Routine Documentation

[SUBROUTINE]ZDFFTM (M,N,X,COMM,INFO)

[Input]INTEGER M
On input: M is the number of sequences to be transformed.

[Input]INTEGER N
On input: N is the length of the sequences in X

[Input/Output]DOUBLE PRECISION X(N*M)
On input: X contains the M Hermitian sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j − 1) ∗N of X.
On output: X contains the transformed real sequences.

[Input/Output]DOUBLE PRECISION COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL DZFFTM(1,N,X,COMM,INFO)
CALL DZFFTM(2,N,X,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE

CALL ZDFFTM(1,N,X(1,3),COMM,INFO)
 	

Chapter 5: Fast Fourier Transforms (FFTs) 73

CSFFTM Routine Documentation

[SUBROUTINE]CSFFTM (M,N,X,COMM,INFO)

[Input]INTEGER M
On input: M is the number of sequences to be transformed.

[Input]INTEGER N
On input: N is the length of the sequences in X

[Input/Output]REAL X(N*M)
On input: X contains the M Hermitian sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j − 1) ∗N of X.

On output: X contains the transformed real sequences.

[Input/Output]REAL COMM(3*N+100)
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
CALL SCFFTM(1,N,X,COMM,INFO)
CALL SCFFTM(2,N,X,COMM,INFO)
DO 10 I = 1, N

X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE

CALL CSFFTM(1,N,X(1,3),COMM,INFO)
 	

Chapter 6: Random Number Generators 74

6 Random Number Generators

Within the context of this document, a base random number generator (BRNG) is a math-
ematical algorithm that, given an initial state, produces a sequence (or stream) of variates
(or values) uniformly distributed over the open interval (0,1). The period of the BRNG is
defined as the maximum number of values that can be generated before the sequence starts
to repeat. The initial state of a BRNG is often called the seed.

A pseudo-random number generator (PRNG) is a BRNG that produces a stream of
variates that are independent and statistically indistinguishable from a random sequence.
A PRNG has several advantages over a true random number generator in that the generated
sequence is repeatable, has known mathematical properties and is usually much quicker to
generate. A quasi-random number generator (QRNG) is similar to a PRNG, however the
variates generated are not statistically independent, rather they are designed to give a more
even distribution in multidimensional space. Many books on statistics and computer science
have good introductions to PRNGs and QRNGs, see for example Knuth [6] or Banks [7].
All of the BRNGs supplied in the ACML are PRNGs.

In addition to standard PRNGs some applications require cryptologically secure genera-
tors. A PRNG is said to be cryptologically secure if there is no polynomial-time algorithm
which, on input of the first l bits of the output sequence can predict the (l + 1)st bit of
the sequence with probability significantly greater than 0.5. This is equivalent to saying
there exists no polynomial-time algorithm that can correctly distinguish between an output
sequence from the PRNG and a truly random sequence of the same length with probability
significantly greater than 0.5 [8].

A distribution generator is a routine that takes variates generated from a BRNG and
transforms them into variates from a specified distribution, for example the Gaussian (Nor-
mal) distribution.

The ACML contains five base generators, (Section 6.1 [Base Generators], page 74), and
twenty-three distribution generators (Section 6.3 [Distribution Generators], page 95). In
addition users can supply a custom built generator as the base generator for all of the
distribution generators (Section 6.1.8 [User Supplied Generators], page 84).

The base generators were tested using the Big Crush, Small Crush and Pseudo Diehard
test suites from the TestU01 software library [15].

6.1 Base Generators

The five base generators (BRNGs) supplied with the ACML are; the NAG basic genera-
tor [9], a series of Wichmann-Hill generators [10], the Mersenne Twister [11], L’Ecuyer’s
combined recursive generator MRG32k3a [12] and the Blum-Blum-Shub generator [8].

If a single stream of variates is required it is recommended that the Mersenne Twister
(Section 6.1.5 [Mersenne Twister], page 82) base generator is used. This generator combines
speed with good statistical properties and an extremely long period. The NAG basic gen-
erator (Section 6.1.3 [Basic NAG Generator], page 81) is another quick generator suitable
for generating a single stream. However it has a shorter period than the Mersenne Twister
and being a linear congruential generator, its statistical properties are not as good.

If 273 or fewer multiple streams, with a period of up to 280 are required then it is
recommended that the Wichmann-Hill generators are used (Section 6.1.4 [Wichmann-Hill
Generator], page 82). For more streams or multiple streams with a longer period it is

Chapter 6: Random Number Generators 75

recommended that the L’Ecuyer combined recursive generator (Section 6.1.6 [L’Ecuyer’s
Combined Recursive Generator], page 83) is used in combination with the skip ahead routine
(Section 6.2.3 [Skip Ahead], page 89). Generating multiple streams of variates by skipping
ahead is generally quicker than generating the streams using the leap frog method. More
details on multiple streams can be found in Section 6.2 [Multiple Streams], page 88.

The Blum-Blum-Shub generator (Section 6.1.7 [Blum-Blum-Shub Generator], page 83)
should only be used if a cryptologically secure generator is required. This generator is
extremely slow and has poor statistical properties when used as a base generator for any of
the distributional generators.

6.1.1 Initialization of the Base Generators

A random number generator must be initialized before use. Three routines are
supplied within the ACML for this purpose: DRANDINITIALIZE, DRANDINITIALIZEBBS
and DRANDINITIALIZEUSER (see [DRANDINITIALIZE], page 76, [DRANDINITIAL-
IZEBBS], page 79 and [DRANDINITIALIZEUSER], page 85, respectively). Of
these, DRANDINITIALIZE is used to initialize all of the supplied base generators,
DRANDINITIALIZEBBS supplies an alternative interface to DRANDINITIALIZE for the
Blum-Blum-Shub generator, and DRANDINITIALIZEUSER allows the user to register and
initialize their own base generator.

Both double and single precision versions of all RNG routines are supplied. Double
precision names are prefixed by DRAND, and single precision by SRAND. Note that if a
generator has been initialized using the relevant double precision routine, then the double
precision versions of the distribution generators must also be used, and vice versa. This
even applies to generators with no double or single precision parameters; for example, a
call of DRANDDISCRETEUNIFORM must be preceded by a call to one of the double precision
initializers (typically DRANDINITIALIZE).

No utilities for saving, retrieving or copying the current state of a generator have been
provided. All of the information on the current state of a generator (or stream, if multiple
streams are being used) is stored in the integer array STATE and as such this array can be
treated as any other integer array, allowing for easy copying, restoring etc.

The statistical properties of a sequence of random numbers are only guaranteed within
the sequence, and not between sequences provided by the same generator. Therefore it is
likely that repeated initialization will render the numbers obtained less, rather than more,
independent. In most cases there should only be a single call to one of the initialization
routines, per application, and this call must be made before any variates are generated.
One example of where multiple initialization may be required is briefly touched upon in
Section 6.2 [Multiple Streams], page 88.

In order to initialize the Blum-Blum-Shub generator a number of additional parameters,
as well as an initial state (seed), are required. Although this generator can be initialized
through the DRANDINITIALIZE routine it is recommended that the DRANDINITIALIZEBBS
routine is used instead.

Chapter 6: Random Number Generators 76

DRANDINITIALIZE / SRANDINITIALIZE

Initialize one of the five supplied base generators; NAG basic generator, Wichmann-Hill
generator, Mersenne Twister, L’Ecuyer’s combined recursive generator (MRG32k3a) or the
Blum-Blum-Shub generator.

(Note that SRANDINITIALIZE is the single precision version of DRANDINITIALIZE.
The argument lists of both routines are identical except that any double precision arguments
of DRANDINITIALIZE are replaced in SRANDINITIALIZE by single precision arguments
- type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDINITIALIZE (GENID,SUBID,SEED,LSEED,STATE,
LSTATE,INFO)

[Input]INTEGER GENID
On input: a numerical code indicating which of the five base generators to
initialize.
• 1 = NAG basic generator (Section 6.1.3 [Basic NAG Generator], page 81).
• 2 = Wichmann-Hill generator (Section 6.1.4 [Wichmann-Hill Generator],

page 82).
• 3 = Mersenne Twister (Section 6.1.5 [Mersenne Twister], page 82).
• 4 = L’Ecuyer’s Combined Recursive generator (Section 6.1.6 [L’Ecuyer’s

Combined Recursive Generator], page 83).
• 5 = Blum-Blum-Shub generator (Section 6.1.7 [Blum-Blum-Shub Genera-

tor], page 83).

Constraint: 1≤ GENID ≤ 5.

[Input]INTEGER SUBID
On input: if GENID = 2, then SUBID indicates which of the 273 Wichmann-
Hill generators to use. If GENID = 5 then SUBID indicates the number of bits
to use (v) from each of iteration of the Blum-Blum-Shub generator. In all other
cases SUBID is not referenced.
Constraint: If GENID = 2 then 1≤ SUBID ≤ 273 .

[Input]INTEGER SEED(LSEED)
On input: if GENID 6= 5 , then SEED is a vector of initial values for the
base generator. These values must be positive integers. The number of values
required depends on the base generator being used. The NAG basic generator
requires one initial value, the Wichmann-Hill generator requires four initial
values, the L’Ecuyer combined recursive generator requires six initial values
and the Mersenne Twister requires 624 initial values. If the number of seeds
required by the chosen generator is > LSEED then SEED(1) is used to initialize
the NAG basic generator. This is then used to generate all of the remaining
seed values required. In general it is best not to set all the elements of SEED
to anything too obvious, such as a single repeated value or a simple sequence.
Using such a seed array may lead to several similar values being created in a
row when the generator is subsequently called. This is particularly true for the
Mersenne Twister generator.

Chapter 6: Random Number Generators 77

In order to initialize the Blum-Blum-Shub generator two large prime values, p
and q are required as well as an initial value s. As p, q and s can be of an
arbitrary size, these values are expressed as a polynomial in B, where B = 224.
For example, p can be factored into a polynomial of order lp, with p = p1 +
p2B + p3B

2 + · · ·+ plpB
lp−1. The elements of SEED should then be set to the

following:
• SEED(1) = lp

• SEED(2) to SEED(lp + 1) = p1 to plp

• SEED(lp + 2) = lq

• SEED(lp + 3) to SEED(lp + lq + 2) = q1 to qlq

• SEED(lp + lq + 3) = ls

• SEED(lp + lq + 4) to SEED(lp + lq + ls + 3) = s1 to sls

Constraint: If GENID 6= 5 then SEED(i) > 0, i = 1, 2, · · ·. If GENID = 5 then
SEED must take the values described above.

[Input/Output]INTEGER LSEED
On input: either the length of the seed vector, SEED, or a value ≤ 0 .
On output: if LSEED≤ 0 on input, then LSEED is set to the number of initial
values required by the selected generator, and the routine returns. Otherwise
LSEED is left unchanged.

[Output]INTEGER STATE(LSTATE)
On output: the state vector required by all of the supplied distributional and
base generators.

[Input/Output]INTEGER LSTATE
On input: either the length of the state vector, STATE, or a value ≤ 0 .
On output: if LSTATE≤ 0 on input, then LSTATE is set to the minimum
length of the state vector STATE for the base generator chosen, and the routine
returns. Otherwise LSTATE is left unchanged.
Constraint: LSTATE≤ 0 or the minimum length for the chosen base generator,
given by:
• GENID = 1: LSTATE≥ 16,

• GENID = 2: LSTATE≥ 20,

• GENID = 3: LSTATE≥ 633,

• GENID = 4: LSTATE≥ 61,

• GENID = 5: LSTATE≥ lp + lq + ls + 6, where lp, lq and ls are the order of
the polynomials used to express the parameters p, q and s respectively.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argument
had an illegal value. If INFO = 1 on exit, then either, or both of LSEED and /
or LSTATE have been set to the required length for vectors SEED and STATE
respectively. Of the two variables LSEED and LSTATE, only those which had
an input value ≤ 0 will have been set. The STATE vector will not have been
initialized. If INFO = 0 then the state vector, STATE, has been successfully
initialized.

Chapter 6: Random Number Generators 78

Example:� �
C Generate 100 values from the Beta distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Beta distribution
CALL DRANDBETA(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 79

DRANDINITIALIZEBBS / SRANDINITIALIZEBBS

Alternative initialization routine for the Blum-Blum-Shub generator. Unlike the other base
generators supplied with the ACML, the Blum-Blum-Shub generator requires two additional
parameters, p and q as well as an initial state, s. The parameters p, q and s can be of an
arbitrary size. In order to avoid overflow these values are expressed as a polynomial in
B, where B = 224. For example, p can be factored into a polynomial of order lp, with
p = p1 + p2B + p3B

2 + · · · + plpB
lp−1, similarly q = q1 + q2B + q3B

2 + · · · + qlqB
lq−1 and

s = s1 + s2B + s3B
2 + · · ·+ slsB

ls−1.
(Note that SRANDINITIALIZEBBS is the single precision version of DRANDINITIAL-

IZEBBS. The argument lists of both routines are identical except that any double precision
arguments of DRANDINITIALIZEBBS are replaced in SRANDINITIALIZEBBS by single
precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDINITIALIZEBBS (NBITS,LP,P,LQ,Q,LS,S,STATE,LSTATE,
INFO)

[Input]INTEGER NBITS
On input: the number of bits, v, to use from each iteration of the Blum-
Blum-Shub generator. If NBITS < 1 then NBITS = 1. If NBITS > 15 then
NBITS = 15.

[Input]INTEGER LP
On input: the order of the polynomial used to express p (lp).
Constraint: 1 ≤ LP ≤ 25.

[Input]INTEGER P(LP)
On input: the coefficients of the polynomial used to express p. P(i) = pi, i = 1
to lp.
Constraint: 0 ≤ P (i) < 224

[Input]INTEGER LQ
On input: the order of the polynomial used to express q (lq).
Constraint: 1 ≤ LQ ≤ 25.

[Input]INTEGER Q(LQ)
On input: the coefficients of the polynomial used to express q. Q(i) = qi, i = 1
to lq.
Constraint: 0 ≤ Q (i) < 224

[Input]INTEGER LS
On input: the order of the polynomial used to express s (ls).
Constraint: 1 ≤ LS ≤ 25.

[Input]INTEGER S(LS)
On input: the coefficients of the polynomial used to express s. S(i) = si, i = 1
to ls.
Constraint: 0 ≤ S (i) < 224

[Output]INTEGER STATE(*)
On output: the initial state for the Blum-Blum-Shub generator with parameters
P,Q,S and NBITS.

Chapter 6: Random Number Generators 80

[Input/Output]INTEGER LSTATE
On input: either the length of the state vector, STATE, or a value ≤ 0 .
On output: if LSTATE≤ 0 on input, then LSTATE is set to the minimum
length of the state vector STATE for the parameters chosen, and the routine
returns. Otherwise LSTATE is left unchanged.
Constraint: LSTATE≤ 0 or LSTATE ≥ lp + lq + ls + 6

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argument
had an illegal value. If INFO = 1 on exit, then LSTATE has been set to the
required length for the STATE vector. If INFO = 0 then the state vector,
STATE, has been successfully initialized.

6.1.2 Calling the Base Generators

With the exception of the Blum-Blum-Shub generator, there are no interfaces for direct
access to the base generators. All of the base generators return variates uniformly dis-
tributed over the open interval (0, 1). This functionality can be accessed using the uniform
distributional generator DRANDUNIFORM, with parameter A = 0.0 and parameter B = 1.0
(see [DRANDUNIFORM], page 117). The base generator used is, as usual, selected during
the initialization process (see Section 6.1.1 [Initialization of the Base Generators], page 75).

To directly access the Blum-Blum-Shub generator, use the routine DRANDBLUMBLUMSHUB.

Chapter 6: Random Number Generators 81

DRANDBLUMBLUMSHUB / SRANDBLUMBLUMSHUB

Allows direct access to the bit stream generated by the Blum-Blum-Shub generator.
(Note that SRANDBLUMBLUMSHUB is the single precision version of DRANDBLUM-

BLUMSHUB. The argument lists of both routines are identical except that any double preci-
sion arguments of DRANDBLUMBLUMSHUB are replaced in SRANDBLUMBLUMSHUB
by single precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDBLUMBLUMSHUB (N,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required. The total number of bits generated is
24N.
Constraint: N≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDBLUMBLUMSHUB STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector holding the bit stream. The least significant 24 bits of
each of the X(i) contain the bit stream as generated by the Blum-Blum-Shub
generator. The least significant bit of X(1) is the first bit generated, the second
least significant bit of X(1) is the second bit generated etc.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

6.1.3 Basic NAG Generator

The NAG basic generator is a linear congruential generator (LCG) and, like all LCGs, has
the form:

xi = a1xi−1 mod m1,

ui =
xi

m1

,

where the ui, i = 1, 2, · · · form the required sequence.

The NAG basic generator takes a1 = 1313 and m1 = 259, which gives a period of ap-
proximately 257. This generator has been part of the NAG numerical library [9] since Mark
6 and as such has been widely used. It suffers from no known problems, other than those
due to the lattice structure inherent in all LCGs, and, even though the period is relatively
short compared to many of the newer generators, it is sufficiently large for many practical
problems.

Chapter 6: Random Number Generators 82

6.1.4 Wichmann-Hill Generator

The Wichmann-Hill [10] base generator uses a combination of four linear congruential gen-
erators (LCGs) and has the form:

wi = a1wi−1 mod m1

xi = a2xi−1 mod m2

yi = a3yi−1 mod m3

zi = a4zi−1 mod m4

ui = (
wi

m1

+
xi

m2

+
yi

m3

+
zi

m4

) mod 1,

where the ui, i = 1, 2, · · · form the required sequence. There are 273 sets of parameters,
{ai,mi : i = 1, 2, 3, 4}, to choose from. These values have been selected so that the resulting
generators are independent and have a period of approximately 280 [10].

6.1.5 Mersenne Twister

The Mersenne Twister [11] is a twisted generalized feedback shift register generator. The
algorithm is as follows:
• Set some arbitrary initial values x1, x2, · · · , xr, each consisting of w bits.
• Letting

A =
(

0 Iw−1

aw aw−1 · · · a1

)
,

where Iw−1 is the (w− 1)× (w− 1) identity matrix and each of the ai, i = 1 to w take
a value of either 0 or 1 (i.e. they can be represented as bits). Define

xi+r = (xi+s ⊕ (x(w:(l+1))
i |x(l:1)

i+1)A),

where x
(w:(l+1))
i |x(l:1)

i+1 indicates the concatenation of the most significant (upper) w − l
bits of xi and the least significant (lower) l bits of xi+1.

• Perform the following operations sequentially:

z = xi+r ⊕ (xi+r � t1)
z = z ⊕ ((z � t2) AND m1)
z = z ⊕ ((z � t3) AND m2)
z = z ⊕ (z � t4)

ui+r = z/(2w − 1),

where t1, t2, t3 and t4 are integers and m1 and m2 are bit-masks and “� t” and “� t”
represent a t bit shift right and left respectively, ⊕ is bit-wise exclusively or (xor)
operation and “AND” is a bit-wise and operation.

Chapter 6: Random Number Generators 83

The ui+r : i = 1, 2, · · · then form a pseudo-random sequence, with ui ∈ (0, 1), for all i.
This implementation of the Mersenne Twister uses the following values for the algorithmic
constants:

w = 32
a = 0x9908b0df
l = 31
r = 624
s = 397
t1 = 11
t2 = 7
t3 = 15
t4 = 18

m1 = 0x9d2c5680
m2 = 0xefc60000

where the notation 0xDD · · · indicates the bit pattern of the integer whose hexadecimal
representation is DD · · ·.

This algorithm has a period length of approximately 219,937 − 1 and has been shown to
be uniformly distributed in 623 dimensions.

6.1.6 L’Ecuyer’s Combined Recursive Generator

The base generator referred to as L’Ecuyer’s combined recursive generator is referred to as
MRG32k3a in [12] and combines two multiple recursive generators:

xi = a11xi−1 + a12xi−2 + a13xi−3 mod m1

yi = a21yi−1 + a22yi−2 + a23yi−3 mod m2

zi = xi − yi mod m1

ui =
zi

m1

,

where the ui, i = 1, 2, · · · form the required sequence and a11 = 0, a12 = 1403580, a13 =
810728,m1 = 232 − 209, a21 = 527612, a22 = 0, a33 = 1370589 and m2 = 232 − 22853.

Combining the two multiple recursive generators (MRG) results in sequences with better
statistical properties in high dimensions and longer periods compared with those generated
from a single MRG. The combined generator described above has a period length of ap-
proximately 2191

6.1.7 Blum-Blum-Shub Generator

The Blum-Blum-Shub pseudo random number generator is cryptologically secure under the
assumption that the quadratic residuosity problem is intractable [8]. The algorithm consists
of the following:
• Generate two large and distinct primes, p and q, each congruent to 3 mod 4. Define

m = pq.
• Select a seed s taking a value between 1 and m − 1, such that the greatest common

divisor between s and m is 1.

Chapter 6: Random Number Generators 84

• Let x0 = s2 mod m. For i = 1, 2, · · · generate:

xi = x2
i−1 mod m

zi = v least significant bits of xi

where v≥ 1 .
• The bit-sequence z1, z2, z3, · · · is then the output sequence used.

6.1.8 User Supplied Generators

All of the distributional generators described in Section 6.3 [Distribution Generators],
page 95 require a base generator which returns a uniformly distributed value in the open
interval (0, 1) and ACML includes several such generators (as detailed in Section 6.1 [Base
Generators], page 74). However, for greater flexibility, the ACML routines allow the user
to register their own base generator function. This user-supplied generator then becomes
the base generator for all of the distribution generators.

A user supplied generator comes in the form of two routines, one to initialize the gen-
erator and one to generate a set of uniformly distributed values in the open interval (0, 1).
These two routines can be named anything, but are referred to as UINI for the initialization
routine and UGEN for the generation routine in the following documentation.

In order to register a user supplied generator a call to DRANDINITIALIZEUSER must
be made. Once registered the generator can be accessed and used in the same manner as
the ACML supplied base generators. The specifications for DRANDINTIALIZEUSER, UINI and
UGEN are given below. See the ACML example programs drandinitializeuser_example.f
and drandinitializeuser_c_example.c (Section 2.9 [Examples], page 17) to understand
how to use these routines in ACML.

Chapter 6: Random Number Generators 85

DRANDINITIALIZEUSER / SRANDINITIALIZEUSER

Registers a user supplied base generator so that it can be used with the ACML distributional
generators.

(Note that SRANDINITIALIZEUSER is the single precision version of DRANDINI-
TIALIZEUSER. The argument lists of both routines are identical except that any double pre-
cision arguments of DRANDINITIALIZEUSER are replaced in SRANDINITIALIZEUSER
by single precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDINITIALIZEUSER (UINI,UGEN,GENID,SUBID,SEED,LSEED,
STATE,LSTATE,INFO)

[Input]SUBROUTINE UINI
On input: routine that will be used to initialize the user supplied generator,
UGEN.

[Input]SUBROUTINE UGEN
On input: user supplied base generator.

[Input]INTEGER GENID
On input: parameter is passed directly to UINI. Its function therefore depends
on that routine.

[Input]INTEGER SUBID
On input: parameter is passed directly to UINI. Its function therefore depends
on that routine.

[Input]INTEGER SEED(LSEED)
On input: parameter is passed directly to UINI. Its function therefore depends
on that routine.

[Input/Output]INTEGER LSEED
On input: length of the vector SEED. This parameter is passed directly to UINI
and therefore its required value depends on that routine.
On output: whether LSEED changes will depend on UINI.

[Output]INTEGER STATE(LSTATE)
On output: the state vector required by all of the supplied distributional gener-
ators. The value of STATE returned by UINI has some housekeeping elements
appended to the end before being returned by DRANDINITIALIZEUSER. See Sec-
tion 6.1.8 [User Supplied Generators], page 84 for details about the form of
STATE.

[Input/Output]INTEGER LSTATE
On input: length of the vector STATE. This parameter is passed directly to
UINI and therefore its required value depends on that routine.
On output: whether LSTATE changes will depend on UINI. If LSTATE≤ 0
then it is assumed that a request for the required length of STATE has been
made. The value of LSTATE returned from UINI is therefore adjusted to allow
for housekeeping elements to be added to the end of the STATE vector. This
results in the value of LSTATE returned by DRANDINITIALIZEUSER being 3
larger than that returned by UINI.

Chapter 6: Random Number Generators 86

[Output]INTEGER INFO
On output: INFO is an error indicator. DRANDINITIALIZEUSER will return a
value of −6 if the value of LSTATE is between 1 and 3. Otherwise INFO is
passed directly back from UINI. It is recommended that the value of INFO
returned by UINI is kept consistent with the rest of the ACML, that is if INFO
= −i on exit, the i-th argument had an illegal value. If INFO = 1 on exit,
then either, or both of LSEED and / or LSTATE have been set to the required
length for vectors SEED and STATE respectively and the STATE vector has
not have been initialized. If INFO = 0 then the state vector, STATE, has been
successfully initialized.

Example:� �
C Generate 100 values from the Uniform distribution using
C a user supplied base generator

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,NSKIP,SEED(1),STATE(LSTATE)
INTEGER X(N)
DOUBLE PRECISION A,B

C Set the seed
SEED(1) = 1234

C Set the distributional parameters
A = 0.0D0
B = 1.0D0

C Initialize the base generator. Here ACMLRNGNB0GND is a user
C supplied generator and ACMLRNGNB0INI its initializer

CALL DRANDINITIALIZEUSER(ACMLRNGNB0INI,ACMLRNGNB0GND,1,0,SEED,
* LSEED,STATE,LSTATE,INFO)

C Generate N variates from the Univariate distribution
CALL DRANDUNIFORM(N,A,B,STATE,X,LDX,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 87

UINI

Specification for a user supplied initialization routine.

[SUBROUTINE]UINI (GENID,SUBID,SEED,LSEED,STATE,LSTATE,INFO)

[Input]INTEGER GENID
On input: the ID associated with the generator. It may be used for anything
you like.

[Input]INTEGER SUBID
On input: the sub-ID associated with the generator. It may be used for anything
you like.

[Input]INTEGER SEED(LSEED)
On input: an array containing the initial seed for your generator.

[Input/Output]INTEGER LSEED
On input: either the size of the SEED array, or a value < 1.
On output: if LSEED < 1 on entry, LSEED must be set to the required size of
the SEED array. This allows a caller of UINI to query the required size.

[Output]INTEGER STATE(LSTATE)
On output: if LSTATE < 1 on entry, STATE should be unchanged.
Otherwise, STATE is a state vector holding internal details required by your
generator. On exit from UINI, the array STATE must hold the following infor-
mation:
STATE(1) = ESTATE, where ESTATE is your minimum allowed size of array
STATE.
STATE(2) = MAGIC, where MAGIC is a magic number of your own choice. This
can be used by your routine UGEN as a check that UINI has previously been
called.
STATE(3) = GENID

STATE(4) = SUBID

STATE(5) ... STATE(ESTATE-1) = internal state values required by your gener-
ator routine UGEN; for example, the current value of your seed.
STATE(ESTATE) = MAGIC, i.e. the same value as STATE(2).

[Input/Output]INTEGER LSTATE
On input: either the size of the STATE array, or a value < 1.
On output: if LSTATE < 1 on entry, LSTATE should be set to the required
size of the STATE array, i.e. the value ESTATE as described above. This allows
the caller of UINI to query the required size.
Constraint: either LSTATE < 1 or LSTATE≥ ESTATE .

[Output]INTEGER INFO
On output: an error code, to be used in whatever way you wish; for example
to flag an incorrect argument to UINI. If no error is encountered, UINI must
set INFO to 0.

Chapter 6: Random Number Generators 88

UGEN

Specification for a user supplied base generator.

[SUBROUTINE]UGEN (N,STATE,X,INFO)

[Input]INTEGER N
On input: the number of random numbers to be generated.

[Input/Output]INTEGER STATE(*)
On input: the internal state of your generator.

[Output]DOUBLE PRECISION X(N)
On output: the array of N uniform distributed random numbers, each in the
half-open interval [0.0, 1.0) - i.e. 0.0 is a legitimate return value, but 1.0 is not.

[Output]INTEGER INFO
On output: a flag which you can use to signal an error in the call of UGEN - for
example, if UGEN is called without being initialized by UINI.

6.2 Multiple Streams

It is often advantageous to be able to generate variates from multiple, independent, streams.
For example when running a simulation in parallel on several processors. There are four
ways of generating multiple streams using the routines available in the ACML:
• (a) Using different seeds
• (b) Using different sequences
• (c) Block-splitting or skipping ahead
• (d) Leap frogging

The four methods are detailed in the following sections. Of the four, (a) should be
avoided in most cases, (b) is only really of any practical use when using the Wichmann-Hill
generator, and is then still limited to 273 streams. Both block-splitting and leap-frogging
work using the sequence from a single generator, both guarantee that the different sequences
will not overlap and both can be scaled to an arbitrary number of streams. Leap-frogging
requires no a-priori knowledge about the number of variates being generated, whereas
block-splitting requires the user to know (approximately) the maximum number of variates
required from each stream. Block-splitting requires no a-priori information on the number
of streams required. In contrast leap-frogging requires the user to know the maximum
number of streams required, prior to generating the first value.

It is known that, dependent on the number of streams required, leap-frogging can lead
to sequences with poor statistical properties, especially when applied to linear congruential
generators (see Section 6.2.4 [Leap Frogging], page 92 for a brief explanation). In addition,
for more complicated generators like a L’Ecuyer’s multiple recursive generator leap-frogging
can increase the time required to generate each variate compared to block-splitting. The
additional time required by block-splitting occurs at the initialization stage, and not at the
variate generation stage. Therefore in most instances block-splitting would be the preferred
method for generating multiple sequences.

Chapter 6: Random Number Generators 89

6.2.1 Using Different Seeds

A different sequence of variates can be generated from the same base generator by initializing
the generator using a different set of seeds. Of the four methods for creating multiple streams
described here, this is the least satisfactory. As mentioned in Section 6.1.1 [Initialization
of the Base Generators], page 75, the statistical properties of the base generators are only
guaranteed within sequences, not between sequences. For example, sequences generated
from different starting points may overlap if the initial values are not far enough apart.
The potential for overlapping sequences is reduced if the period of the generator being used
is large. Although there is no guarantee of the independence of the sequences, due to its
extremely large period, using the Mersenne Twister with random starting values is unlikely
to lead to problems, especially if the number of sequences required is small. This is the
only way in which multiple sequences can be generated with the ACML using the Mersenne
Twister as the base generator.

If the statistical properties of different sequences must be provable then one of the other
methods should be adopted.

6.2.2 Using Different Generators

Independent sequences of variates can be generated using different base generators for each
sequence. For example, sequence 1 can be generated using the NAG basic generator, se-
quence 2 using the L’Ecuyer’s Combined Recursive generator, sequence 3 using the Mersenne
Twister. The Wichmann-Hill generator implemented in the ACML is in fact a series of 273
independent generators. The particular sub-generator being used can be selected using
the SUBID variable (see [DRANDINITIALIZE], page 76 for details). Therefore, in total,
277 independent streams can be generated with each using an independent generator (273
Wichmann-Hill generators, and 4 additional base generators).

6.2.3 Skip Ahead

Independent sequences of variates can be generated from a single base generator through
the use of block-splitting, or skipping-ahead. This method consists of splitting the sequence
into k non-overlapping blocks, each of length n, where n is larger than the maximum number
of variates required from any of the sequences. For example:

x1, x2, · · · , xn,

block 1
xn+1, xn+2, · · · , x2n,

block 2
x2n+1, x2n+2, · · · , x3n,

block 3
etc

where x1, x2, · · · is the sequence produced by the generator of interest. Each of the k blocks
provide an independent sequence.

The block splitting algorithm therefore requires the sequence to be advanced a large
number of places. Due to their form this can be done efficiently for linear congruential
generators and multiple congruential generators. The ACML provides block-splitting for the
NAG Basic generator, the Wichmann-Hill generators and L’Ecuyer’s Combined Recursive
generator.

Chapter 6: Random Number Generators 90

DRANDSKIPAHEAD / SRANDSKIPAHEAD

Advance a generator N places.
(Note that SRANDSKIPAHEAD is the single precision version of DRANDSKIPA-

HEAD. The argument lists of both routines are identical except that any double precision
arguments of DRANDSKIPAHEAD are replaced in SRANDSKIPAHEAD by single
precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDSKIPAHEAD (N,STATE,INFO)

[Input]INTEGER N
On input: number of places to skip ahead.
Constraint: N≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDSKIPAHEAD
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: The STATE vector for a generator that has been advanced N
places.
Constraint: The STATE vector must be for either the NAG basic, Wichmann-
Hill or L’Ecuyer Combined Recursive base generators.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 91

Example:� �
C Generate 3 * 100 values from the Uniform distribution
C Multiple streams generated using the Skip Ahead method

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,NSKIP
INTEGER SEED(1),STATE1(LSTATE),STATE2(LSTATE),STATE3(LSTATE)
INTEGER X1(N),X2(N),X3(N)
DOUBLE PRECISION A,B

C Set the seed
SEED(1) = 1234

C Set the distributional parameters
A = 0.0D0
B = 1.0D0

C Initialize the STATE1 vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE1,LSTATE,INFO)

C Copy the STATE1 vector into other state vectors
DO 20 I = 1,LSTATE

STATE2(I) = STATE1(I)
STATE3(I) = STATE1(I)

20 CONTINUE

C Calculate how many places we want to skip, this
C should be >> than the number of variates we
C wish to generate from each stream

NSKIP = N * N

C Advance each stream, first does not need changing
CALL DRANDSKIPAHEAD(NSKIP,STATE2,INFO)
CALL DRANDSKIPAHEAD(2*NSKIP,STATE3,INFO)

C Generate 3 sets of N variates from the Univariate distribution
CALL DRANDUNIFORM(N,A,B,STATE1,X1,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE2,X2,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE3,X3,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) X1(I),X2(I),X3(I)
40 CONTINUE
 	

Chapter 6: Random Number Generators 92

6.2.4 Leap Frogging

Independent sequences of variates can be generated from a single base generator through
the use of leap-frogging. This method involves splitting the sequence from a single generator
into k disjoint subsequences. For example:

Subsequence 1 : x1, xk+1, x2k+1, · · ·
Subsequence 2 : x2, xk+2, x2k+2, · · ·

...
Subsequence k : xk, x2k, x3k, · · ·

each subsequence is then provides an independent stream.
The leap-frog algorithm therefore requires the generation of every kth variate of a se-

quence. Due to their form this can be done efficiently for linear congruential generators and
multiple congruential generators. The ACML provides leap-frogging for the NAG Basic
generator, the Wichmann-Hill generators and L’Ecuyer’s Combined Recursive generator.

As an illustrative example, a brief description of the algebra behind the implementation
of the leap-frog algorithm (and block-splitting algorithm) for a linear congruential generator
(LCG) will be given. A linear congruential generator has the form xi+1 = a1xi mod m1.
The recursive nature of a LCG means that

xi+v = a1xi+v−1 mod m1

= a1(a1xi+v−2 mod m1) mod m1

= a2
1xi+v−2 mod m1

= av
1xi mod m1

The sequence can be quickly advanced v places by multiplying the current state (xi) by
av

1 mod m1, hence allowing block-splitting. Leap-frogging is implemented by using ak
1 , where

k is the number of streams required, in place of a1 in the standard LCG recursive formula.
In a linear congruential generator the multiplier a1 is constructed so that the generator has
good statistical properties in, for example, the spectral test. When using leap-frogging to
construct multiple streams this multiplier is replaced with ak

1 , and there is no guarantee
that this new multiplier will have suitable properties especially as the value of k depends
on the number of streams required and so is likely to change depending on the application.
This problem can be emphasised by the lattice structure of LCGs.

Note that, due to rounding, a sequence generated using leap-frogging and a sequence
constructed by taking every kth value from a set of variates generated without leap-frogging
may differ slightly. These differences should only affect the least significant digit.

Chapter 6: Random Number Generators 93

DRANDLEAPFROG / SRANDLEAPFROG

Amend a generator so that it will generate every Kth value.
(Note that SRANDLEAPFROG is the single precision version of DRANDLEAPFROG.

The argument lists of both routines are identical except that any double precision arguments
of DRANDLEAPFROG are replaced in SRANDLEAPFROG by single precision arguments
- type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDLEAPFROG (N,K,STATE,INFO)

[Input]INTEGER N
On input: total number of streams being used.
Constraint: N> 0.

[Input]INTEGER K
On input: number of the current stream
Constraint: 0< K ≤ N .

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDLEAPFROG
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: The STATE vector for a generator that has been advanced K − 1
places and will return every Nth value.
Constraint: The STATE array must be for either the NAG basic, Wichmann-
Hill or L’Ecuyer Combined Recursive base generators.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 94

Example:� �
C Generate 3 * 100 values from the Uniform distribution
C Multiple streams generated using the Leap Frog method

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO
INTEGER SEED(1),STATE1(LSTATE),STATE2(LSTATE),STATE3(LSTATE)
INTEGER X1(N),X2(N),X3(N)
DOUBLE PRECISION A,B

C Set the seed
SEED(1) = 1234

C Set the distributional parameters
A = 0.0D0
B = 1.0D0

C Initialize the STATE1 vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE1,LSTATE,INFO)

C Copy the STATE1 vector into other state vectors
DO 20 I = 1,LSTATE

STATE2(I) = STATE1(I)
STATE3(I) = STATE1(I)

20 CONTINUE

C Update each stream so they generate every 3rd value
CALL DRANDLEAPFROG(3,1,STATE1,INFO)
CALL DRANDLEAPFROG(3,2,STATE2,INFO)
CALL DRANDLEAPFROG(3,3,STATE3,INFO)

C Generate 3 sets of N variates from the Univariate distribution
CALL DRANDUNIFORM(N,A,B,STATE1,X1,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE2,X2,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE3,X3,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) X1(I),X2(I),X3(I)
40 CONTINUE
 	

Chapter 6: Random Number Generators 95

6.3 Distribution Generators

6.3.1 Continuous Univariate Distributions

DRANDBETA / SRANDBETA

Generates a vector of random variates from a beta distribution with probability density
function, f(X), where:

f(X) =
Γ(A + B)
Γ(A)Γ(B)

XA−1(1−X)B−1

if 0 ≤ X ≤ 1 and A,B > 0.0, otherwise f(X) = 0.
(Note that SRANDBETA is the single precision version of DRANDBETA. The argument

lists of both routines are identical except that any double precision arguments of DRAND-
BETA are replaced in SRANDBETA by single precision arguments - type REAL in FOR-
TRAN or type float in C).

[SUBROUTINE]DRANDBETA (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: first parameter for the distribution.
Constraint: A> 0.

[Input]DOUBLE PRECISION B
On input: second parameter for the distribution.
Constraint: B> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator be-
ing used and as such its minimum length varies. Prior to calling DRANDBETA
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 96

Example:� �
C Generate 100 values from the Beta distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Beta distribution
CALL DRANDBETA(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 97

DRANDCAUCHY / SRANDCAUCHY

Generates a vector of random variates from a Cauchy distribution with probability density
function, f(X), where:

f(X) =
1

πB(1 + (X−A
B

)2)

(Note that SRANDCAUCHY is the single precision version of DRANDCAUCHY. The
argument lists of both routines are identical except that any double precision arguments of
DRANDCAUCHY are replaced in SRANDCAUCHY by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDCAUCHY (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: median of the distribution.

[Input]DOUBLE PRECISION B
On input: semi-quartile range of the distribution.
Constraint: B≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDCAUCHY
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 98

Example:� �
C Generate 100 values from the Cauchy distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Cauchy distribution
CALL DRANDCAUCHY(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 99

DRANDCHISQUARED / SRANDCHISQUARED

Generates a vector of random variates from a χ2 distribution with probability density func-
tion, f(X), where:

f(X) =
X

ν
2−1e−X

2

2 ν
2 (ν

2
− 1)!

,

if X > 0, otherwise f(X) = 0. Here ν is the degrees of freedom, DF.
(Note that SRANDCHISQUARED is the single precision version of DRANDCHI-

SQUARED. The argument lists of both routines are identical except that any double
precision arguments of DRANDCHISQUARED are replaced in SRANDCHISQUARED by
single precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDCHISQUARED (N,DF,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER DF
On input: degrees of freedom of the distribution.
Constraint: DF> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDCHISQUARED
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 100

Example:� �
C Generate 100 values from the Chi-squared distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER DF
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) DF

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Chi-squared distribution
CALL DRANDCHISQUARED(N,DF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 101

DRANDEXPONENTIAL / SRANDEXPONENTIAL

Generates a vector of random variates from an exponential distribution with probability
density function, f(X), where:

f(X) =
e−

X
A

A

if X > 0, otherwise f(X) = 0.
(Note that SRANDEXPONENTIAL is the single precision version of DRANDEXPO-

NENTIAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDEXPONENTIAL are replaced in SRANDEXPONENTIAL by single
precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDEXPONENTIAL (N,A,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: exponential parameter.
Constraint: A≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDEXPONENTIAL
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 102

Example:� �
C Generate 100 values from the Exponential distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Exponential distribution
CALL DRANDEXPONENTIAL(N,A,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 103

DRANDF / SRANDF

Generates a vector of random variates from an F distribution, also called the Fisher’s
variance ratio distribution, with probability density function, f(X), where:

f(X) =
(µ+ν−2

2
)!X

µ
2−1µ

µ
2

(µ
2
− 1)!(ν

2
− 1)!(1 + µX

ν
)

µ+ν
2 ν

µ
2

,

if X > 0, otherwise f(X) = 0. Here µ is the first degrees of freedom, (DF1) and ν is the
second degrees of freedom, (DF2).

(Note that SRANDF is the single precision version of DRANDF. The argument lists
of both routines are identical except that any double precision arguments of DRANDF are
replaced in SRANDF by single precision arguments - type REAL in FORTRAN or type float
in C).

[SUBROUTINE]DRANDF (N,DF1,DF2,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER DF1
On input: first degrees of freedom.
Constraint: DF1≥ 0.

[Input]INTEGER DF2
On input: second degrees of freedom.
Constraint: DF2≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDF STATE
must have been initialized. See Section 6.1.1 [Initialization of the Base Gener-
ators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 104

Example:� �
C Generate 100 values from the F distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER DF1,DF2
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) DF1,DF2

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the F distribution
CALL DRANDF(N,DF1,DF2,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 105

DRANDGAMMA / SRANDGAMMA

Generates a vector of random variates from a Gamma distribution with probability density
function, f(X), where:

f(X) =
XA−1e−

X
B

BAΓ(A)
,

if X ≥ 0 and A,B > 0.0, otherwise f(X) = 0.
(Note that SRANDGAMMA is the single precision version of DRANDGAMMA. The

argument lists of both routines are identical except that any double precision arguments of
DRANDGAMMA are replaced in SRANDGAMMA by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDGAMMA (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: first parameter of the distribution.
Constraint: A> 0.

[Input]DOUBLE PRECISION B
On input: second parameter of the distribution.
Constraint: B> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator be-
ing used and as such its minimum length varies. Prior to calling DRANDGAMMA
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 106

Example:� �
C Generate 100 values from the Gamma distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Gamma distribution
CALL DRANDGAMMA(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 107

DRANDGAUSSIAN / DRANDGAUSSIAN

Generates a vector of random variates from a Gaussian distribution with probability density
function, f(X), where:

f(X) =
e−

(X−µ)2

2σ2

σ
√

2π
.

Here µ is the mean, (XMU) and σ2 the variance, (VAR) of the distribution.
(Note that SRANDGAUSSIAN is the single precision version of DRANDGAUSSIAN.

The argument lists of both routines are identical except that any double precision arguments
of DRANDGAUSSIAN are replaced in SRANDGAUSSIAN by single precision arguments -
type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDGAUSSIAN (N,XMU,VAR,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION XMU
On input: mean of the distribution.

[Input]DOUBLE PRECISION VAR
On input: variance of the distribution.
Constraint: VAR≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDGAUSSIAN
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 108

Example:� �
C Generate 100 values from the Gaussian distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION XMU,VAR
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) XMU,VAR

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Gaussian distribution
CALL DRANDGAUSSIAN(N,XMU,VAR,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 109

DRANDLOGISTIC / SRANDLOGISTIC

Generates a vector of random variates from a logistic distribution with probability density
function, f(X), where:

f(X) =
e

(X−A)
B

B(1 + e
(X−A)

B)2
.

(Note that SRANDLOGISTIC is the single precision version of DRANDLOGISTIC.
The argument lists of both routines are identical except that any double precision arguments
of DRANDLOGISTIC are replaced in SRANDLOGISTIC by single precision arguments -
type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDLOGISTIC (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: mean of the distribution.

[Input]DOUBLE PRECISION B
On input: spread of the distribution. B =

√
3σ/π where σ is the standard

deviation of the distribution.
Constraint: B> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDLOGISTIC
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 110

Example:� �
C Generate 100 values from the Logistic distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Logistic distribution
CALL DRANDLOGISTIC(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 111

DRANDLOGNORMAL / SRANDLOGNORMAL

Generates a vector of random variates from a lognormal distribution with probability density
function, f(X), where:

f(X) =
e−

(log X−µ)2

2σ2

Xσ
√

2π
,

if X > 0, otherwise f(X) = 0. Here µ is the mean, (XMU) and σ2 the variance, (VAR) of
the underlying Gaussian distribution.

(Note that SRANDLOGNORMAL is the single precision version of DRANDLOGNOR-
MAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDLOGNORMAL are replaced in SRANDLOGNORMAL by single pre-
cision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDLOGNORMAL (N,XMU,VAR,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION XMU
On input: mean of the underlying Gaussian distribution.

[Input]DOUBLE PRECISION VAR
On input: variance of the underlying Gaussian distribution.
Constraint: VAR≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDLOGNORMAL
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 112

Example:� �
C Generate 100 values from the Lognormal distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION XMU,VAR
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) XMU,VAR

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Lognormal distribution
CALL DRANDLOGNORMAL(N,XMU,VAR,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 113

DRANDSTUDENTST / SRANDSTUDENTST

Generates a vector of random variates from a Students T distribution with probability
density function, f(X), where:

f(X) =
(ν−1)

2
!

(ν
2
)!
√

πν(1 + X2

ν
)

(ν+1)
2

.

Here ν is the degrees of freedom, DF.
(Note that SRANDSTUDENTST is the single precision version of DRANDSTU-

DENTST. The argument lists of both routines are identical except that any double precision
arguments of DRANDSTUDENTST are replaced in SRANDSTUDENTST by single
precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDSTUDENTST (N,DF,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER DF
On input: degrees of freedom.
Constraint: DF> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDSTUDENTST
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 114

Example:� �
C Generate 100 values from the Students T distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER DF
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) DF

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Students T distribution
CALL DRANDSTUDENTST(N,DF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 115

DRANDTRIANGULAR / SRANDTRIANGULAR

Generates a vector of random variates from a Triangular distribution with probability den-
sity function, f(X), where:

f(X) =
2(X −XMIN)

(XMAX −XMIN)(XMED −XMIN)
,

if XMIN < X ≤ XMED, else

f(X) =
2(XMAX −X)

(XMAX −XMIN)(XMAX −XMED)
,

if XMED < X ≤ XMAX, otherwise f(X) = 0.
(Note that SRANDTRIANGULAR is the single precision version of DRANDTRIAN-

GULAR. The argument lists of both routines are identical except that any double precision
arguments of DRANDTRIANGULAR are replaced in SRANDTRIANGULAR by single pre-
cision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDTRIANGULAR (N,XMIN,XMED,XMAX,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION XMIN
On input: minimum value for the distribution.

[Input]DOUBLE PRECISION XMED
On input: median value for the distribution.
Constraint: XMIN≤ XMED ≤ XMAX .

[Input]DOUBLE PRECISION XMAX
On input: maximum value for the distribution.
Constraint: XMAX≥ XMIN .

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDTRIANGULAR
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 116

Example:� �
C Generate 100 values from the Triangular distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION XMIN,XMAX,XMED
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) XMIN,XMAX,XMED

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Triangular distribution
CALL DRANDTRIANGULAR(N,XMIN,XMAX,XMED,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 117

DRANDUNIFORM / SRANDUNIFORM

Generates a vector of random variates from a Uniform distribution with probability density
function, f(X), where:

f(X) =
1

B −A
.

(Note that SRANDUNIFORM is the single precision version of DRANDUNIFORM. The
argument lists of both routines are identical except that any double precision arguments of
DRANDUNIFORM are replaced in SRANDUNIFORM by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDUNIFORM (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: minimum value for the distribution.

[Input]DOUBLE PRECISION B
On input: maximum value for the distribution.
Constraint: B≥ A.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDUNIFORM
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 118

Example:� �
C Generate 100 values from the Uniform distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Uniform distribution
CALL DRANDUNIFORM(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 119

DRANDVONMISES / SRANDVONMISES

Generates a vector of random variates from a Von Mises distribution with probability density
function, f(X), where:

f(X) =
eκ cos X

2πI0(κ)

where X is reduced modulo 2π so that it lies between ±π, and κ is the concentration
parameter VK.

(Note that SRANDVONMISES is the single precision version of DRANDVONMISES.
The argument lists of both routines are identical except that any double precision arguments
of DRANDVONMISES are replaced in SRANDVONMISES by single precision arguments
- type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDVONMISES (N,VK,,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION VK
On input: concentration parameter.
Constraint: VK> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDVONMISES
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 120

Example:� �
C Generate 100 values from the Von Mises distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION VK
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) VK

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Von Mises distribution
CALL DRANDVONMISES(N,VK,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 121

DRANDWEIBULL / SRANDWEIBULL

Generates a vector of random variates from a Weibull distribution with probability density
function, f(X), where:

f(X) =
AXA−1e−

XA

B

B
,

if X > 0, otherwise f(X) = 0.
(Note that SRANDWEIBULL is the single precision version of DRANDWEIBULL. The

argument lists of both routines are identical except that any double precision arguments of
DRANDWEIBULL are replaced in SRANDWEIBULL by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDWEIBULL (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION A
On input: shape parameter for the distribution.
Constraint: A> 0.

[Input]DOUBLE PRECISION B
On input: scale parameter for the distribution.
Constraint: B> 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDWEIBULL
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 122

Example:� �
C Generate 100 values from the Weibull distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Weibull distribution
CALL DRANDWEIBULL(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 123

6.3.2 Discrete Univariate Distributions

DRANDBINOMIAL / SRANDBINOMIAL

Generates a vector of random variates from a Binomial distribution with probability, f(X),
defined by:

f(X) =
M !P X(1− P)(M−X)

X!(M − 1)!
, X = 0, 1, · · · ,M

(Note that SRANDBINOMIAL is the single precision version of DRANDBINOMIAL.
The argument lists of both routines are identical except that any double precision arguments
of DRANDBINOMIAL are replaced in SRANDBINOMIAL by single precision arguments -
type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDBINOMIAL (N,M,P,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER M
On input: number of trials.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION P
On input: probability of success.
Constraint: 0≤ P < 1.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDBINOMIAL
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 124

Example:� �
C Generate 100 values from the Binomial distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Binomial distribution
CALL DRANDBINOMIAL(N,M,P,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 125

DRANDGEOMETRIC / SRANDGEOMETRIC

Generates a vector of random variates from a Geometric distribution with probability, f(X),
defined by:

f(X) = P (1− P)(X−1), X = 1, 2, · · ·

(Note that SRANDGEOMETRIC is the single precision version of DRANDGEOMET-
RIC. The argument lists of both routines are identical except that any double precision argu-
ments of DRANDGEOMETRIC are replaced in SRANDGEOMETRIC by single precision
arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDGEOMETRIC (N,P,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION P
On input: distribution parameter.
Constraint: 0≤ P < 1.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDGEOMETRIC
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 126

Example:� �
C Generate 100 values from the Geometric distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION P
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Geometric distribution
CALL DRANDGEOMETRIC(N,P,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 127

DRANDHYPERGEOMETRIC / SRANDHYPERGEOMETRIC

Generates a vector of random variates from a Hypergeometric distribution with probability,
f(X), defined by:

f(X) =
s!m!(p− s)!(p−m)!

X!(s−X)!(m−X)!(p−m− s + X)!p!
,

if X = max(0,m + s − p), · · · ,min(l, m), otherwise f(X) = 0. Here p is the size of the
population, (NP), s is the size of the sample taken from the population, (NS) and m is the
number of labeled, or specified, items in the population, (M).

(Note that SRANDHYPERGEOMETRIC is the single precision version of DRAND-
HYPERGEOMETRIC. The argument lists of both routines are identical except that any
double precision arguments of DRANDHYPERGEOMETRIC are replaced in SRANDHY-
PERGEOMETRIC by single precision arguments - type REAL in FORTRAN or type float
in C).

[SUBROUTINE]DRANDHYPERGEOMETRIC (N,NP,NS,M,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER NP
On input: size of population.
Constraint: NP≥ 0.

[Input]INTEGER NS
On input: size of sample being taken from population.
Constraint: 0≤ NS ≤ NP.

[Input]INTEGER M
On input: number of specified items in the population.
Constraint: 0≤ M ≤ NP.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDHYPERGEOMETRIC STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 128

Example:� �
C Generate 100 values from the Hypergeometric distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER NP,NS,M
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) NP,NS,M

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Hypergeometric distribution
CALL DRANDHYPERGEOMETRIC(N,NP,NS,M,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 129

DRANDNEGATIVEBINOMIAL / SRANDNEGATIVEBINOMIAL

Generates a vector of random variates from a Negative Binomial distribution with proba-
bility f(X) defined by:

f(X) =
(M + X − 1)!P X(1− P)M

X!(M − 1)!
, X = 0, 1, · · ·

(Note that SRANDNEGATIVEBINOMIAL is the single precision version of DRAND-
NEGATIVEBINOMIAL. The argument lists of both routines are identical except that any
double precision arguments of DRANDNEGATIVEBINOMIAL are replaced in SRAND-
NEGATIVEBINOMIAL by single precision arguments - type REAL in FORTRAN or type
float in C).

[SUBROUTINE]DRANDNEGATIVEBINOMIAL (N,M,P,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER M
On input: number of failures.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION P
On input: probability of success.
Constraint: 0≤ P < 1.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDNEGATIVEBINOMIAL STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 130

Example:� �
C Generate 100 values from the Negative Binomial distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Negative Binomial distribution
CALL DRANDNEGATIVEBINOMIAL(N,M,P,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 131

DRANDPOISSON / SRANDPOISSON

Generates a vector of random variates from a Poisson distribution with probability f(X)
defined by:

f(X) =
λXe−λ

X!
, X = 0, 1, · · · ,

where λ is the mean of the distribution, LAMBDA.
(Note that SRANDPOISSON is the single precision version of DRANDPOISSON. The

argument lists of both routines are identical except that any double precision arguments of
DRANDPOISSON are replaced in SRANDPOISSON by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDPOISSON (N,LAMBDA,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER M
On input: number of failures.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION LAMBDA
On input: mean of the distribution.
Constraint: LAMBDA≥ 0.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDPOISSON
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 132

Example:� �
C Generate 100 values from the Poisson distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION LAMBDA
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) LAMBDA

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Poisson distribution
CALL DRANDPOISSON(N,LAMBDA,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 133

DRANDDISCRETEUNIFORM / SRANDDISCRETEUNIFORM

Generates a vector of random variates from a Uniform distribution with probability f(X)
defined by:

f(X) =
1

(B −A)
, X = A,A + 1, · · · , B

(Note that SRANDDISCRETEUNIFORM is the single precision version of DRAND-
DISCRETEUNIFORM. The argument lists of both routines are identical except that any
double precision arguments of DRANDDISCRETEUNIFORM are replaced in SRANDDIS-
CRETEUNIFORM by single precision arguments - type REAL in FORTRAN or type float
in C).

[SUBROUTINE]DRANDDISCRETEUNIFORM (N,A,B,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER A
On input: minimum for the distribution.

[Input]INTEGER B
On input: maximum for the distribution.
Constraint: B≥ A.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDDISCRETEUNIFORM STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 134

Example:� �
C Generate 100 values from the Uniform distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER A,B
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Uniform distribution
CALL DRANDDISCRETEUNIFORM(N,A,B,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 135

DRANDGENERALDISCRETE / SRANDGENERALDISCRETE

Takes a reference vector initialized via one of DRANDBINOMIALREFERENCE, DRANDGEOMETRIC
REFERENCE, DRANDHYPERGEOMETRICREFERENCE, DRANDNEGATIVEBINOMIALREFERENCE, DRAND
POISSONREFERENCE and generates a vector of random variates from it.

(Note that SRANDGENERALDISCRETE is the single precision version of DRAND-
GENERALDISCRETE. The argument lists of both routines are identical except that any
double precision arguments of DRANDGENERALDISCRETE are replaced in SRANDGEN-
ERALDISCRETE by single precision arguments - type REAL in FORTRAN or type float
in C).

[SUBROUTINE]DRANDGENERALDISCRETE (N,REF,STATE,X,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION REF(*)
On input: reference vector generated by one of the following: DRANDBINO-
MIALREFERENCE, DRANDGEOMETRICREFERENCE, DRANDHYPER-
GEOMETRICREFERENCE, DRANDNEGATIVEBINOMIALREFERENCE,
DRANDPOISSONREFERENCE.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDGENERALDISCRETE STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(N)
On output: vector of variates from the specified distribution.

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 136

Example:� �
C Generate 100 values from the Binomial distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Binomial distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 137

DRANDBINOMIALREFERENCE / SRANDBINOMIALREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Binomial distribution with probability, f(X), defined by:

f(X) =
M !P X(1− P)(M−X)

X!(M − 1)!
, X = 0, 1, · · · ,M

(Note that SRANDBINOMIALREFERENCE is the single precision version of DRAND-
BINOMIALREFERENCE. The argument lists of both routines are identical except that any
double precision arguments of DRANDBINOMIALREFERENCE are replaced in SRAND-
BINOMIALREFERENCE by single precision arguments - type REAL in FORTRAN or
type float in C).

[SUBROUTINE]DRANDBINOMIALREFERENCE (M,P,REF,LREF,INFO)

[Input]INTEGER M
On input: number of trials.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION P
On input: probability of success.
Constraint: 0≤ P < 1.

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference infor-
mation required to generate values from a Binomial distribution using DRAND-
GENERALDISCRETE.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Chapter 6: Random Number Generators 138

Example:� �
C Generate 100 values from the Binomial distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Binomial distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 139

DRANDGEOMETRICREFERENCE / SRANDGEOMETRICREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Geometric distribution with probability, f(X), defined by:

f(X) = P (1− P)(X−1), X = 1, 2, · · ·

(Note that SRANDGEOMETRICREFERENCE is the single precision version of
DRANDGEOMETRICREFERENCE. The argument lists of both routines are identical
except that any double precision arguments of DRANDGEOMETRICREFERENCE are
replaced in SRANDGEOMETRICREFERENCE by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDGEOMETRICREFERENCE (P,REF,LREF,INFO)

[Input]DOUBLE PRECISION P
On input: distribution parameter.
Constraint: 0≤ P < 1.

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference
information required to generate values from a Geometric distribution using
DRANDGENERALDISCRETE.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Chapter 6: Random Number Generators 140

Example:� �
C Generate 100 values from the Geometric distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION P
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDGEOMETRICREFERENCE(P,REF,LREF,INFO)

C Generate N variates from the Geometric distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 141

DRANDHYPERGEOMETRICREFERENCE / SRANDHYPERGEOMETRICREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Hypergeometric distribution with probability, f(X), defined by:

f(X) =
s!m!(p− s)!(p−m)!

X!(s−X)!(m−X)!(p−m− s + X)!p!
,

if X = max(0,m + s − p), · · · ,min(l, m), otherwise f(X) = 0. Here p is the size of the
population, (NP), s is the size of the sample taken from the population, (NS) and m is the
number of labeled, or specified, items in the population, (M).

(Note that SRANDHYPERGEOMETRICREFERENCE is the single precision version
of DRANDHYPERGEOMETRICREFERENCE. The argument lists of both routines are
identical except that any double precision arguments of DRANDHYPERGEOMETRICREF-
ERENCE are replaced in SRANDHYPERGEOMETRICREFERENCE by single precision
arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDHYPERGEOMETRICREFERENCE (NP,NS,M,REF,LREF,INFO)

[Input]INTEGER NP
On input: size of population.
Constraint: NP≥ 0.

[Input]INTEGER NS
On input: size of sample being taken from population.
Constraint: 0≤ NS ≤ NP.

[Input]INTEGER M
On input: number of specified items in the population.
Constraint: 0≤ M ≤ NP.

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference
information required to generate values from a Hypergeometric distribution
using DRANDGENERALDISCRETE.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Chapter 6: Random Number Generators 142

Example:� �
C Generate 100 values from the Hypergeometric distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER NP, NS,M
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) NP, NS,M

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDHYPERGEOMETRICREFERENCE(NP, NS,M,REF,LREF,INFO)

C Generate N variates from the Hypergeometric distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 143

DRANDNEGATIVEBINOMIALREFERENCE / SRANDNEGATIVEBINOMIALREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Negative Binomial distribution with probability f(X) defined by:

f(X) =
(M + X − 1)!P X(1− P)M

X!(M − 1)!
, X = 0, 1, · · ·

(Note that SRANDNEGATIVEBINOMIALREFERENCE is the single precision version
of DRANDNEGATIVEBINOMIALREFERENCE. The argument lists of both routines are
identical except that any double precision arguments of DRANDNEGATIVEBINOMIAL-
REFERENCE are replaced in SRANDNEGATIVEBINOMIALREFERENCE by single pre-
cision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDNEGATIVEBINOMIALREFERENCE (M,P,REF,LREF,INFO)

[Input]INTEGER M
On input: number of failures.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION P
On input: probability of success.
Constraint: 0≤ P < 1.

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference
information required to generate values from a Negative Binomial distribution
using DRANDGENERALDISCRETE.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Chapter 6: Random Number Generators 144

Example:� �
C Generate 100 values from the Negative Binomial distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDNEGATIVEBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Negative Binomial distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 145

DRANDPOISSONREFERENCE / SRANDPOISSONREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Poisson distribution with probability f(X) defined by:

f(X) =
λXe−λ

X!
, X = 0, 1, · · · ,

where λ is the mean of the distribution, LAMBDA.
(Note that SRANDPOISSONREFERENCE is the single precision version of DRAND-

POISSONREFERENCE. The argument lists of both routines are identical except that any
double precision arguments of DRANDPOISSONREFERENCE are replaced in SRAND-
POISSONREFERENCE by single precision arguments - type REAL in FORTRAN or type
float in C).

[SUBROUTINE]DRANDPOISSONREFERENCE (LAMBDA,REF,LREF,INFO)

[Input]INTEGER M
On input: number of failures.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION LAMBDA
On input: mean of the distribution.
Constraint: LAMBDA≥ 0.

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference infor-
mation required to generate values from a Poisson distribution using DRAND-
GENERALDISCRETE.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Chapter 6: Random Number Generators 146

Example:� �
C Generate 100 values from the Poisson distribution

INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION LAMBDA
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) LAMBDA

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDPOISSONREFERENCE(LAMBDA,REF,LREF,INFO)

C Generate N variates from the Poisson distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(I),I=1,N)
 	

Chapter 6: Random Number Generators 147

6.3.3 Continuous Multivariate Distributions

DRANDMULTINORMAL / SRANDMULTINORMAL

Generates an array of random variates from a Multivariate Normal distribution with prob-
ability density function, f(X), where:

f(X) =

√
|C−1|
(2π)M

e−(X−µ)T C−1(X−µ),

where µ is the vector of means, XMU.
(Note that SRANDMULTINORMAL is the single precision version of DRANDMULTI-

NORMAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDMULTINORMAL are replaced in SRANDMULTINORMAL by single
precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDMULTINORMAL (N,M,XMU,C,LDC,STATE,X,LDX,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER M
On input: number of dimensions for the distribution.
Constraint: M≥ 1.

[Input]DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

[Input]DOUBLE PRECISION C(LDC,M)
On input: variance / covariance matrix for the distribution.

[Input]INTEGER LDC
On input: leading dimension of C in the calling routine.
Constraint: LDC≥ N .

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDMULTINORMAL
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

[Input]INTEGER LDX
On input: leading dimension of X in the calling routine.
Constraint: LDX≥ M .

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 148

Example:� �
C Generate 100 values from the
C Multivariate Normal distribution

INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

C Set array sizes
LDC = MM
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M
READ(5,*) (XMU(I),I=1,M)
DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the
C Multivariate Normal distribution

CALL DRANDMULTINORMAL(N,M,XMU,C,LDC,STATE,X,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)
40 CONTINUE
 	

Chapter 6: Random Number Generators 149

DRANDMULTISTUDENTST / SRANDMULTISTUDENTST

Generates an array of random variates from a Multivariate Students T distribution with
probability density function, f(X), where:

f(X) =
Γ
(

(ν+M)

2

)
(πν)m

2 Γ(ν
2
) |C|

1
2

(
1 +

(X − µ)T C−1(X − µ)
ν

)− (ν+M)
2

,

where µ is the vector of means, XMU and ν is the degrees of freedom, DF.
(Note that SRANDMULTISTUDENTST is the single precision version of DRANDMUL-

TISTUDENTST. The argument lists of both routines are identical except that any double
precision arguments of DRANDMULTISTUDENTST are replaced in SRANDMULTISTU-
DENTST by single precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDMULTISTUDENTST (N,M,DF,XMU,C,LDC,STATE,X,LDX,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER M
On input: number of dimensions for the distribution.
Constraint: M≥ 1.

[Input]INTEGER DF
On input: degrees of freedom.
Constraint: DF> 2.

[Input]DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

[Input]DOUBLE PRECISION C(LDC,M)
On input: matrix defining the variance / covariance for the distribution. The
variance / covariance matrix is given by ν

ν−2
C, where ν are the degrees of

freedom, DF.

[Input]INTEGER LDC
On input: leading dimension of C in the calling routine.
Constraint: LDC≥ N .

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDMULTISTUDENTST STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

Chapter 6: Random Number Generators 150

[Input]INTEGER LDX
On input: leading dimension of X in the calling routine.
Constraint: LDX≥ M .

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Example:� �
C Generate 100 values from the
C Multivariate Students T distribution

INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M,DF
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

C Set array sizes
LDC = MM
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,DF
READ(5,*) (XMU(I),I=1,M)
DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the
C Multivariate Students T distribution

CALL DRANDMULTISTUDENTST(N,M,DF,XMU,C,LDC,STATE,X,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)
40 CONTINUE
 	

Chapter 6: Random Number Generators 151

DRANDMULTINORMALR / SRANDMULTINORMALR

Generates an array of random variates from a Multivariate Normal distribution using a
reference vector initialized by DRANDMULTINORMALREFERENCE.

(Note that SRANDMULTINORMALR is the single precision version of DRANDMULTI-
NORMALR. The argument lists of both routines are identical except that any double preci-
sion arguments of DRANDMULTINORMALR are replaced in SRANDMULTINORMALR
by single precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDMULTINORMALR (N,REF,STATE,X,LDX,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION REF(*)
On input: a reference vector generated by DRANDMULTINORMALREFER-
ENCE.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDMULTINORMALR STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

[Input]INTEGER LDX
On input: leading dimension of X in the calling routine.
Constraint: LDX≥ M .

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 152

Example:� �
C Generate 100 values from the
C Multivariate Normal distribution

INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set array sizes
LDC = MM
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M
READ(5,*) (XMU(I),I=1,M)
DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDMULTINORMALREFERENCE(M,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the
C Multivariate Normal distribution

CALL DRANDMULTINORMALR(N,REF,STATE,X,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)
40 CONTINUE
 	

Chapter 6: Random Number Generators 153

DRANDMULTISTUDENTSTR / SRANDMULTISTUDENTSTR

Generates an array of random variates from a Multivariate Students T distribution using a
reference vector initialized by DRANDMULTISTUDENTSTREFERENCE.

(Note that SRANDMULTISTUDENTSTR is the single precision version of DRAND-
MULTISTUDENTSTR. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTISTUDENTSTR are replaced in SRAND-
MULTISTUDENTSTR by single precision arguments - type REAL in FORTRAN or type
float in C).

[SUBROUTINE]DRANDMULTISTUDENTSTR (N,REF,STATE,X,LDX,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]DOUBLE PRECISION REF(*)
On input: a reference vector generated by DRANDMULTISTUDENTSTREF-
ERENCE.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator
being used and as such its minimum length varies. Prior to calling
DRANDMULTISTUDENTSTR STATE must have been initialized. See Section 6.1.1
[Initialization of the Base Generators], page 75 for information on initialization
of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

[Input]INTEGER LDX
On input: leading dimension of X in the calling routine.
Constraint: LDX≥ M .

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 154

Example:� �
C Generate 100 values from the
C Multivariate Students T distribution

INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M,DF
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set array sizes
LDC = MM
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,DF
READ(5,*) (XMU(I),I=1,M)
DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDMULTISTUDENTSTREFERENCE(M,DF,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the
C Multivariate Students T distribution

CALL DRANDMULTISTUDENTSTR(N,REF,STATE,X,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)
40 CONTINUE
 	

Chapter 6: Random Number Generators 155

DRANDMULTINORMALREFERENCE / SRANDMULTINORMALREFERENCE

Initializes a reference vector for use with DRANDMULTINORMALR. Reference vector is for a
Multivariate Normal distribution with probability density function, f(X), where:

f(X) =

√
|C−1|
(2π)M

e−(X−µ)T C−1(X−µ),

where µ is the vector of means, XMU.
(Note that SRANDMULTINORMALREFERENCE is the single precision version of

DRANDMULTINORMALREFERENCE. The argument lists of both routines are identi-
cal except that any double precision arguments of DRANDMULTINORMALREFERENCE
are replaced in SRANDMULTINORMALREFERENCE by single precision arguments - type
REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDMULTINORMALREFERENCE (M,XMU,C,LDC,REF,LREF,INFO)

[Input]INTEGER M
On input: number of dimensions for the distribution.
Constraint: M≥ 1.

[Input]DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

[Input]DOUBLE PRECISION C(LDC,M)
On input: variance / covariance matrix for the distribution.

[Input]INTEGER LDC
On input: leading dimension of C in the calling routine.
Constraint: LDC≥ N .

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference
information required to generate values from a Multivariate Normal distribution
using DRANDMULTINORMALR.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Chapter 6: Random Number Generators 156

Example:� �
C Generate 100 values from the
C Multivariate Normal distribution

INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set array sizes
LDC = MM
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M
READ(5,*) (XMU(I),I=1,M)
DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDMULTINORMALREFERENCE(M,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the
C Multivariate Normal distribution

CALL DRANDMULTINORMALR(N,REF,STATE,X,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)
40 CONTINUE
 	

Chapter 6: Random Number Generators 157

DRANDMULTISTUDENTSTREFERENCE / SRANDMULTISTUDENTSTREFERENCE

Initializes a reference vector for use with DRANDMULTISTUDENTSTR. Reference vector is for a
Multivariate Students T distribution with probability density function, f(X), where:

f(X) =
Γ
(

(ν+M)

2

)
(πν)m

2 Γ(ν
2
) |C|

1
2

(
1 +

(X − µ)T C−1(X − µ)
ν

)− (ν+M)
2

,

where µ is the vector of means, XMU and ν is the degrees of freedom, DF.
(Note that SRANDMULTISTUDENTSTREFERENCE is the single precision version

of DRANDMULTISTUDENTSTREFERENCE. The argument lists of both routines are
identical except that any double precision arguments of DRANDMULTISTUDENTSTRE-
FERENCE are replaced in SRANDMULTISTUDENTSTREFERENCE by single precision
arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDMULTISTUDENTSREFERENCE
(M,DF,XMU,C,LDC,REF,LREF,INFO)

[Input]INTEGER M
On input: number of dimensions for the distribution.
Constraint: M≥ 1.

[Input]INTEGER DF
On input: degrees of freedom.
Constraint: DF> 2.

[Input]DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

[Input]DOUBLE PRECISION C(LDC,M)
On input: matrix defining the variance / covariance for the distribution. The
variance / covariance matrix is given by ν

ν−2
C, where ν are the degrees of

freedom, DF.

[Input]INTEGER LDC
On input: leading dimension of C in the calling routine.
Constraint: LDC≥ N .

[Output]DOUBLE PRECISION REF(LREF)
On output: if INFO returns with a value of 0 then REF contains reference infor-
mation required to generate values from a Multivariate Students T distribution
using DRANDMULTISTUDENTSTR.

[Input/Output]INTEGER LREF
On input: either the length of the reference vector REF, or −1.
On output: if LREF = −1 on input, then LREF is set to the recommended
length of the reference vector and the routine returns. Otherwise LREF is left
unchanged.

Chapter 6: Random Number Generators 158

[Output]INTEGER INFO
On output: INFO is an error indicator. If INFO = −i on exit, the i-th argu-
ment had an illegal value. If INFO = 1 on exit, then LREF has been set to
the recommended length for the reference vector REF. If INFO = 0 then the
reference vector, REF, has been successfully initialized.

Example:� �
C Generate 100 values from the
C Multivariate Students T distribution

INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M,DF
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set array sizes
LDC = MM
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,DF
READ(5,*) (XMU(I),I=1,M)
DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDMULTISTUDENTSTREFERENCE(M,DF,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the
C Multivariate Students T distribution

CALL DRANDMULTISTUDENTSTR(N,REF,STATE,X,LDX,INFO)

C Print the results
DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)
40 CONTINUE
 	

Chapter 6: Random Number Generators 159

6.3.4 Discrete Multivariate Distributions

DRANDMULTINOMIAL / SRANDMULTINOMIAL

Generates a matrix of random variates from a Multinomial distribution with probability,
f(X), defined by:

f(X) =
M !∏K

i=1 Xi!

K∏
i=1

pXi
i ,

where X = {X1, X2, · · · , XK}, P = {P1, P2, · · · , PK},
∑K

i=1 Xi = 1 and
∑K

i=1 Pi = 1.
(Note that SRANDMULTINOMIAL is the single precision version of DRANDMULTI-

NOMIAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDMULTINOMIAL are replaced in SRANDMULTINOMIAL by single
precision arguments - type REAL in FORTRAN or type float in C).

[SUBROUTINE]DRANDMULTINOMIAL (N,M,P,K,STATE,X,LDX,INFO)

[Input]INTEGER N
On input: number of variates required.
Constraint: N≥ 0.

[Input]INTEGER M
On input: number of trials.
Constraint: M≥ 0.

[Input]DOUBLE PRECISION P(K)
On input: vector of probabilities for each of the K possible outcomes.
Constraint: 0 ≤ Pi ≤ 1, i = 1, 2, · · · ,K,

∑K
i=1 Pi = 1.

[Input]INTEGER K
On input: number of possible outcomes.
Constraint: K≥ 2.

[Input/Output]INTEGER STATE(*)
The STATE vector holds information on the state of the base generator being
used and as such its minimum length varies. Prior to calling DRANDBINOMIAL
STATE must have been initialized. See Section 6.1.1 [Initialization of the Base
Generators], page 75 for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

[Output]INTEGER X(LDX,K)
On output: matrix of variates from the specified distribution.

[Input]INTEGER LDX
On input: leading dimension of X in the calling routine.
Constraint: LDX≥ M .

[Output]INTEGER INFO
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = −i on exit, the i-th argument had an illegal value.

Chapter 6: Random Number Generators 160

Example:� �
C Generate 100 values from the Multinomial distribution

INTEGER LSTATE,N, MK
PARAMETER (LSTATE=16,N=100,MK=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,K,M
INTEGER X(N,MK)
DOUBLE PRECISION P(MK)

C Set array sizes
LDX = N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) K
READ(5,*) (P(I),I=1,K)

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Multinomial distribution
CALL DRANDMULTINOMIAL(N,M,P,K,STATE,X,LDX,INFO)

C Print the results
DO 20 I = 1,N

WRITE(6,*) (X(I,J),J=1,K)
20 CONTINUE
 	

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 161

7 ACML MV: Fast Math and Fast Vector Math
Library

7.1 Introduction to ACML MV

ACML MV is a library which contains fast and/or vectorized versions of some familiar
math library routines such as sin, cos and exp. The routines take advantage of the AMD64
architecture for performance, and so are currently only available with 64-bit versions of
ACML. The routines in the library are very accurate over the range of acceptable input
arguments.
Some of the performance is gained by sacrificing error handling or the acceptance of certain
arguments. It is therefore the responsibility of the caller of these routines to ensure that
their arguments are suitable. Furthermore, some of the routines are not callable from high-
level languages at all, but must be called via assembly language; see the documentation
of individual routines for details. Hence, these routines are intended to be utilized by
knowledgeable users only.

7.1.1 Terminology

The individual documentation for a routine states what outputs will be returned for special
arguments, and also gives an indication of performance of the routine. In general, special
case arguments for any routine will cause a return value in accordance with the C99 language
standard [13].
Special case arguments include NaNs and infinities, as defined by the IEEE arithmetic
standard [14]. In these documents, NaN means Not a Number, QNaN means Quiet NaN,
and SNaN means Signalling NaN.
A denormal number is a number which is very tiny (close to the machine arithmetic under-
flow threshold) and is stored to less precision than a normal number. Due to their special
nature, operations on such numbers are often very slow. While such numbers might not
necessarily be regarded as special case arguments, for the sake of performance some of the
ACML MV routines have been designed not to handle them. This has been noted in the
documentation for each ACML MV routine.
Performance of a routine is given in machine cycles, and is thus independent of processor
speed.
Accuracy of a routine is quoted in ulps, where ulp stands for Unit in the Last Place. Since
floating-point numbers on a computer are limited precision approximations of mathematical
numbers, not all real numbers can be represented by machine numbers, and the machine
number must in general be rounded to available precision. An ulp is the distance between
the two machine numbers that bracket a real number.
In this document, the ulp is used as a measure of the error in a returned result when
compared with the mathematically exact expected result. Because of the finite nature of
machine arithmetic, a routine can never in general achieve accuracy of better than 0.5 ulps,
and an accuracy of less than 1 ulp is good.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 162

7.1.2 Weak Aliases

Some of the functions in ACML MV include a weak alias to an equivalent function in libm.
For example, the fastcos function includes a weak alias to cos. If ACML MV is included in
the link order before libm, then all calls to the aliased libm function name (e.g. cos) will
use the equivalent ACML MV routine (e.g. fastcos). If ACML MV is included in the link
order after libm, then all calls to libm functions will use the libm versions.
ACML MV routines can always be accessed using their ACML MV names (e.g. fastcos),
regardless of link order.

7.1.3 Defined Types

The following types are used to describe the functions contained in this chapter:
m128d a pair of double precision values;
m128 four single precision values.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 163

7.2 Fast Basic Math Functions

This section documents the interfaces to a set of basic mathematical functions.

fastcos: fast double precision Cosine

double fastcos (double x)

Weak alias: cos
C Prototype:

double fastcos (double x);
Inputs:

double x - the double precision input value.
Outputs:

Cosine of x.
Fortran Function Interface:

DOUBLE PRECISION FASTCOS(X)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Return Value:

Cosine of X.
Notes:

fastcos computes the Cosine function of its argument x.

This is a relaxed version of cos, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 2 ulp over most of the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
88 cycles for most valid inputs < 5e5.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 164

fastcosf: fast single precision Cosine

float fastcosf (float x)

Weak alias: cosf
C Prototype:

float fastcosf (float x);
Inputs:

float x - the single precision input value.
Outputs:

Single precision Cosine of x.
Fortran Function Interface:

REAL FASTCOSF(X)
Inputs:

REAL X - the single precision input value.
Return Value:

Cosine of X.
Notes:

fastcosf computes the single precision Cosine function of its argument x.

This is a relaxed version of cosf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over most of the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
91 cycles for most valid inputs < 5e5.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 165

fastexp: fast double precision exponential function

double fastexp (double x)

Weak alias: exp
C Prototype:

double fastexp (double x);
Inputs:

double x - the double precision input value.
Outputs:

e raised to the power x (exponential of x).
Fortran Function Interface:

DOUBLE PRECISION FASTEXP(X)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Return Value:

e raised to the power X (exponential of X).
Notes:

fastexp computes the double precision exponential function of the input argument
x.

This is a relaxed version of exp, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −708.5 0
> 709.8 +∞

Performance:
75 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 166

fastexpf: fast single precision exponential function

float fastexpf (float x)

Weak alias: expf
C Prototype:

float fastexpf (float x);
Inputs:

float x - the single precision input value.
Outputs:

e raised to the power x (exponential of x).
Fortran Function Interface:

REAL FASTEXPF(X)
Inputs:

REAL X - the single precision input value.
Return Value:

e raised to the power X (exponential of X).
Notes:

fastexpf computes the single precision exponential function of the input argument
x.

This is a relaxed version of expf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −87.5 0
> 88 +∞

Performance:
75 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 167

fastlog: fast double precision natural logarithm function

double fastlog (double x)

Weak alias: log
C Prototype:

double fastlog (double x);
Inputs:

double x - the double precision input value.
Outputs:

The natural logarithm (base e) of x.
Fortran Function Interface:

DOUBLE PRECISION FASTLOG(X)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Return Value:

The natural logarithm (base e) of X.
Notes:

fastlog computes the double precision natural logarithm of its argument x.

This is a relaxed version of log, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
97 cycles for most valid inputs.
86 cycles for .97 < x < 1.03

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 168

fastlogf: fast single precision natural logarithm function

float fastlogf (float x)

Weak alias: logf
C Prototype:

float fastlogf (float x);
Inputs:

float x - the single precision input value.
Outputs:

The natural logarithm (base e) of x.
Fortran Function Interface:

REAL FASTLOGF(X)
Inputs:

REAL X - the single precision input value.
Return Value:

The natural logarithm (base e) of X.
Notes:

fastlogf computes the single precision natural logarithm of its argument x.

This is a relaxed version of logf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
94 cycles for most valid inputs.
85 cycles for .97 < x < 1.03

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 169

fastlog10: fast double precision base-10 logarithm function

double fastlog10 (double x)

Weak alias: log10
C Prototype:

double fastlog10 (double x);
Inputs:

double x - the double precision input value.
Outputs:

The base-10 logarithm of x.
Fortran Function Interface:

DOUBLE PRECISION FASTLOG10(X)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Return Value:

The base-10 logarithm of X.
Notes:

fastlog10 computes the double precision base-10 logarithm of its argument x.

This is a relaxed version of log10, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
112 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 170

fastlog10f: fast single precision base-10 logarithm function

float fastlog10f (float x)

Weak alias: log10f
C Prototype:

float fastlog10f (float x);
Inputs:

float x - the single precision input value.
Outputs:

The base-10 logarithm of x.
Fortran Function Interface:

REAL FASTLOG10F(X)
Inputs:

REAL X - the single precision input value.
Return Value:

The base-10 logarithm of X.
Notes:

fastlog10f computes the single precision base-10 logarithm of its argument x.

This is a relaxed version of log10f, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
104 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 171

fastlog2: fast double precision base-2 logarithm function

double fastlog2 (double x)

Weak alias: log2
C Prototype:

double fastlog2 (double x);
Inputs:

double x - the double precision input value.
Outputs:

The base-2 logarithm of x.
Fortran Function Interface:

DOUBLE PRECISION FASTLOG2(X)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Return Value:

The base-2 logarithm of X.
Notes:

fastlog2 computes the double precision base-2 logarithm of its argument x.

This is a relaxed version of log2, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
112 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 172

fastlog2f: fast single precision base-2 logarithm function

float fastlog2f (float x)

Weak alias: log2f
C Prototype:

float fastlog2f (float x);
Inputs:

float x - the single precision input value.
Outputs:

The base-2 logarithm of x.
Fortran Function Interface:

REAL FASTLOG2F(X)
Inputs:

REAL X - the single precision input value.
Return Value:

The base-2 logarithm of X.
Notes:

fastlog2f computes the single precision base-2 logarithm of its argument x.

This is a relaxed version of log2f, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
107 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 173

fastpow: fast double precision power function

double fastpow (double x, double y)

Weak alias: pow
C Prototype:

double fastpow (double x, double y);
Inputs:

double x - the double precision base input value.
double y - the double precision exponent input value.

Outputs:
x raised to the power y.

Fortran Function Interface:
DOUBLE PRECISION FASTPOW(X,Y)
Inputs:

DOUBLE PRECISION X - the base value.
DOUBLE PRECISION Y - the exponent value.

Return Value:
X raised to the power Y.

Notes:
fastpow computes the x raised to the power y in double precision.

This is a relaxed version of pow, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs will produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input x Input y Output
±0 y < 0, odd integer ±∞
±0 y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0
−1 +∞ 1
+1 y (incl. NaN) 1
x (incl. Nan) ±0 1
x < 0 y, not integer QNaN
|x|<1 −∞ +∞
|x|>1 −∞ +0
|x|<1 +∞ +0
|x|>1 +∞ +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 174

+∞ y < 0, +0
+∞ y > 0, +∞
NaN y nonzero, NaN
x<>1 NaN, NaN

Performance:
200 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 175

fastpowf: fast single precision power function

float fastpowf (float x, float y)

Weak alias: powf
C Prototype:

float fastpowf (float x, float y);
Inputs:

float x - the single precision base input value.
float y - the single precision exponent input value.

Outputs:
x raised to the power y.

Fortran Function Interface:
REAL FASTPOWF(X,Y)
Inputs:

REAL X - the single precision base value.
REAL Y - the single precision exponent value.

Return Value:
X raised to the power Y.

Notes:
fastpowf computes the x raised to the power y in single precision.

This is a relaxed version of powf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs will produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input x Input y Output
±0 y < 0, odd integer ±∞
±0 y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0
−1 +∞ 1
+1 y (incl. NaN) 1
x (incl. Nan) ±0 1
x < 0 y, not integer QNaN
|x|<1 −∞ +∞
|x|>1 −∞ +0
|x|<1 +∞ +0
|x|>1 +∞ +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 176

+∞ y < 0, +0
+∞ y > 0, +∞
NaN y nonzero, NaN
x<>1 NaN, NaN

Performance:
175 cycles for most valid inputs.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 177

fastsin: fast double precision Sine

double fastsin (double x)

Weak alias: sin
C Prototype:

double fastsin (double x);
Inputs:

double x - the double precision input value.
Outputs:

Sine of x.
Fortran Function Interface:

DOUBLE PRECISION FASTSIN(X)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Return Value:

Sine of X.
Notes:

fastsin computes the Sine function of its argument x.

This is a relaxed version of sin, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
88 cycles for most valid inputs < 5e5.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 178

fastsinf: fast single precision Sine

float fastsinf (float x)

Weak alias: sinf
C Prototype:

float fastsinf (float x);
Inputs:

float x - the single precision input value.
Outputs:

Single precision Sine of x.
Fortran Function Interface:

REAL PRECISION FASTSINF(X)
Inputs:

REAL PRECISION X - the single precision input value.
Return Value:

Sine of X.
Notes:

fastsinf computes the Sine function of its argument x.

This is a relaxed version of sinf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
88 cycles for most valid inputs < 5e5.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 179

fastsincos: fast double precision Sine and Cosine

void fastsincos (double x, double s, double c)

Weak alias: sincos
C Prototype:

void fastsincos (double x, double s, double c);
Inputs:

double x - the double precision input value.
Outputs:

double s - Sine of x.
double c - Cosine of x.

Fortran Subroutine Interface:
SUBROUTINE FASTSINCOS(X,S,C)
Inputs:

DOUBLE PRECISION X - the double precision input value.
Outputs:

DOUBLE PRECISION S - Sine of X.
DOUBLE PRECISION C - Cosine of X.

Notes:
fastsincos computes the Sine and Cosine functions of its argument x.

This function can provide a significant performance advantage for applications
that require both the sine and cosine of an angle, such as axis and matrix rotation.
This is a relaxed version of sincos, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
99 cycles for most valid inputs < 5e5.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 180

fastsincosf: fast single precision Sine and Cosine

void fastsincosf (float x, float s, float c)

Weak alias: sincosf
C Prototype:

void fastsincosf (float x, float s, float c);
Inputs:

float x - the single precision input value.
Outputs:

float s - Sine of x.
float c - Cosine of x.

Fortran Subroutine Interface:
SUBROUTINE FASTSINCOSF(X,S,C)
Inputs:

REAL X - the single precision input value.
Outputs:

REAL S - Sine of X.
REAL C - Cosine of X.

Notes:
fastsincosf computes the Sine and Cosine functions of its argument x.

This function can provide a significant performance advantage for applications
that require both the sine and cosine of an angle, such as axis and matrix rotation.
This is a relaxed version of sincosf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
91-102 cycles for most valid inputs < 5e5.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 181

7.3 Fast Vector Math Functions

This section documents the interfaces to a set of vector mathematical functions.

vrd2 cos: Two-valued double precision Cosine

__m128d __vrd2_cos (m128d x)

C Prototype:
m128d vrd2 cos(m128d x);

Inputs:
m128d x - the double precision input value pair.

Outputs:
m128d y - the double precision Cosine result pair, returned in xmm0.

Notes:
vrd2 cos computes the Cosine function of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision Cosine of both values, returned as a

m128d value. This is a relaxed version of cos, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
120 cycles for most valid inputs < 5e5 (60 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 182

vrd4 cos: Four-valued double precision Cosine

__m128d,__m128d __vrd4_cos (m128d x1, m128d x2)

C Prototype:
m128d vrd2 cos(m128d x);

Note that this function uses a non-standard programming interface. The two
m128d inputs, which contain four double precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are
returned in xmm0 and xmm1. The use of xmm1 to return a m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

m128d x1 - the first double precision input value pair.
m128d x2 - the second double precision input value pair.

Outputs:
m128d y1 - the first double precision Cosine result pair, returned in xmm0.
m128d y2 - second double precision Cosine result pair, returned in xmm1.

Notes:
vrd4 cos computes the Cosine function of four input arguments.

This routine accepts four double precision input values passed as two m128d
values. The result is the double precision Cosine of the four values, returned as
two m128d values. This is a relaxed version of cos, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
172 cycles for most valid inputs < 5e5 (43 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 183

vrda cos: Array double precision Cosine

void vrda_cos (int n, double *x, double *y)

C Prototype:
void vrda cos (int n, double *x, double *y)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:
Cosine for each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRDA COS(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of Cosines of input values.

Notes:
vrda cos computes the Cosine function for each element of an array of input ar-
guments.

This routine accepts an array of double precision input values, computes cos(x)
for each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of cos, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
172 cycles for most valid inputs < 5e5 (43 cycles per value), n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 184

vrs4 cosf: Four-valued single precision Cosine

__m128 __vrs4_cosf (m128 x)

C Prototype:
m128 vrs4 cosf(m128 x);

Inputs:
m128 x - the four single precision input values.

Outputs:
m128 y - the four single precision Cosine results , returned in xmm0.

Notes:
vrs4 cosf computes the Cosine function of four input arguments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision Cosine of all four values, returned as a m128
value. This is a relaxed version of cosf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
176 cycles for most valid inputs < 5e5 (44 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 185

vrsa cosf: Array single precision Cosine

void vrsa_cosf (int n, float *x, float *y)

C Prototype:
void vrsa cosf (int n, float *x, float *y)

Inputs:

int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:
Cosine for each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRSA COSF(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL Y(N) - array of Cosines of input values.

Notes:
vrsa cosf computes the Cosine function for each element of an array of input
arguments.

This routine accepts an array of single precision input values, computes cosf(x) for
each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of cosf, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
43 cycles per value for most valid inputs < 5e5, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 186

vrd2 exp: Two-valued double precision exponential function

__m128d __vrd2_exp (m128d x)

C Prototype:
m128d vrd2 exp(m128d x);

Inputs:
m128d x - the double precision input value pair.

Outputs:
e raised to the power x (exponential of x).

m128d y - the double precision exponent result pair, returned in xmm0.
Notes:

vrd2 exp computes the exponential function of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision exponent of both values, returned as a

m128d value. This is a relaxed version of exp, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −708.5 0
> 709.8 +∞

Performance:
80 cycles for most valid inputs (40 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 187

vrd4 exp: Four-valued double precision exponential function

__m128d,__m128d __vrd4_exp (m128d x1, m128d x2)

Prototype:
m128d, m128d vrd4 exp(m128d x1, m128d x2);

Note that this function uses a non-standard programming interface. The two
m128d inputs, which contain four double precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are
returned in xmm0 and xmm1. The use of xmm1 to return a m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

m128d x1 - the first double precision input value pair.
m128d x2 - the second double precision input value pair.

Outputs:
m128d y1 - the first double precision exponent result pair, returned in xmm0.
m128d y2 - the second double precision exponent result pair, returned in

xmm1.
Notes:

vrd4 exp computes the double precision exponential function of four input ar-
guments.

This routine accepts four double precision input values passed as two m128d
values. The result is the double precision exponent of the four values, returned as
two m128d values. This is a relaxed version of exp, suitable for use with fast-
math compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −708.5 0
> 709.8 +∞

Performance:
132 cycles for most valid inputs (33 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 188

vrda exp: Array double precision exponential function

void vrda_exp (int n, double *x, double *y)

C Prototype:
void vrda exp (int n, double *x, double *y)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:
e raised to the power x (exponential of x) for each x value, filled into the y
array.

Fortran Subroutine Interface:
SUBROUTINE VRDA EXP(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of exponentials (e raised to the power
x) of input values.

Notes:
vrda exp computes the double precision exponential function for each element of
an array of input arguments.

This routine accepts an array of double precision input values, computes the ex

for each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of exp, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −708.5 0
> 709.8 +∞

Performance:
33 cycles per value for valid inputs, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 189

vrs4 expf: Four-valued single precision exponential function

__m128 __vrs4_expf (m128 x)

C Prototype:
m128 vrs4 expf(m128 x);

Inputs:
m128 x - the four single precision input values.

Outputs:
e raised to the power x (exponential of x) for each input value x.

m128 y - the four single precision exponent results, returned in xmm0.
Notes:

vrs4 expf computes the double precision exponential function of four input ar-
guments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision exponent of the four values, returned as a m128
value. This is a relaxed version of exp, suitable for use with fastmath compiler
flags or applications not requiring full error handling. Denormal inputs may pro-
duce unpredictable results. Special case inputs produce C99 return values. The
routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −87.5 0
> 88 +∞

Performance:
91 cycles for most valid inputs (23 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 190

vrs8 expf: Eight-valued single precision exponential function

__m128,__m128 __vrs8_expf (m128 x1, m128 x2)

Prototype:
m128, m128 vrs8 expf(m128 x1, m128 x2);

Note that this function uses a non-standard programming interface. The two
m128 inputs, which contain eight single precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are re-
turned in xmm0 and xmm1. The use of xmm1 to return a m128 is non-standard,
and this function can not be called directly from C. It can be called directly from
assembly language. It is intended for internal use by vectorizing compilers, that
may be able to take advantage of the non-standard calling interface.
Inputs:

m128 x1 - the first single precision vector of four input values.
m128 x2 - the second single precision vector of four input values.

Outputs:
m128 y1 - the first four single precision exponent results, returned in xmm0.
m128 y2 - the second four single precision exponent results, returned in

xmm1.
Notes:

vrs8 expf computes the single precision exponential function of eight input ar-
guments.

This routine accepts eight single precision input values passed as two m128 val-
ues. The result is the single precision exponent of the eight values, returned as
two m128 values. This is a relaxed version of exp, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −87.5 0
> 88 +∞

Performance:
155 cycles for most valid inputs (19 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 191

vrsa expf: Array single precision exponential function

void vrsa_expf (int n, float *x, float *y)

C Prototype:
void vrsa expf (int n, float *x, float *y)

Inputs:

int n - the number of single precision values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:
e raised to the power x (exponential of x) for each x value, filled into the y
array.

Fortran Subroutine Interface:
SUBROUTINE VRSA EXPF(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL Y(N) - array of exponentials (e raised to the power x) of input values.

Notes:
vrsa expf computes the single precision exponential function for each element of
an array of input arguments.

This routine accepts an array of single precision input values, computes the ex for
each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of exp, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< −87.5 0
> 88 +∞

Performance:
15 cycles per value for valid inputs, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 192

vrd2 log: Two-valued double precision natural logarithm

__m128d __vrd2_log (m128d x)

C Prototype:
m128d vrd2 log(m128d x);

Inputs:
m128d x - the double precision input value pair.

Outputs:
The natural (base e) logarithm of x.

m128d y - the double precision natural logarithm result pair, returned in
xmm0.

Notes:
vrd2 log computes the natural logarithm for each of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision natural logarithm of both values, returned
as a m128d value. This is a relaxed version of log, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
130 cycles for most valid inputs (65 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 193

vrd4 log: Four-valued double precision natural logarithm

__m128d,__m128d __vrd4_log (m128d x1, m128d x2)

Prototype:
m128d, m128d vrd4 log(m128d x1, m128d x2);

Note that this function uses a non-standard programming interface. The two
m128d inputs, which contain four double precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are
returned in xmm0 and xmm1. The use of xmm1 to return a m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

m128d x1 - the first double precision input value pair.
m128d x2 - the second double precision input value pair.

Outputs:
The natural (base e) logarithm of x.

m128d y1 - the first double precision natural logarithm result pair, returned
in xmm0.

m128d y2 - the second double precision natural logarithm result pair, re-
turned in xmm1.

Notes:
vrd4 log computes the natural logarithm for each of four input arguments.

This routine accepts four double precision input values passed as two m128d
values. The result is the double precision natural logarithm of the four values,
returned as two m128d values. This is a relaxed version of log, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
196 cycles for most valid inputs (49 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 194

vrda log: Array double precision natural logarithm

void vrda_log (int n, double *x, double *y)

C Prototype:
void vrda log (int n, double *x, double *y)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:
The natural (base e) logarithm of each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRDA LOG(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of natural (base e) logarithms of input
values.

Notes:
vrda log computes the double precision natural logarithm for each element of an
array of input arguments.

This routine accepts an array of double precision input values, computes the nat-
ural log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
51 cycles per value for valid inputs, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 195

vrs4 logf: Four-valued single precision natural logarithm

__m128 __vrs4_logf (m128 x)

C Prototype:
m128 vrs4 logf(m128 x);

Inputs:
m128 x - the single precision input values.

Outputs:
The natural (base e) logarithm of x.

m128 y - the single precision natural logarithm results, returned in xmm0.
Notes:

vrs4 logf computes the natural logarithm for each of four input arguments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision natural logarithm of all four values, returned as
a m128 value. This is a relaxed version of logf, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
124 cycles for most valid inputs (31 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 196

vrs8 logf: Eight-valued single precision natural logarithm

__m128,__m128 __vrs8_logf (m128 x1, m128 x2)

Prototype:
m128, m128 vrs8 logf(m128 x1, m128 x2);

Note that this function uses a non-standard programming interface. The two
m128 inputs, which contain eight single precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are re-
turned in xmm0 and xmm1. The use of xmm1 to return a m128 is non-standard,
and this function can not be called directly from C. It can be called directly from
assembly language. It is intended for internal use by vectorizing compilers, that
may be able to take advantage of the non-standard calling interface.
Inputs:

m128 x1 - the first single precision input value pair.
m128 x2 - the second single precision input value pair.

Outputs:
The natural (base e) logarithm of x.

m128 y1 - the first single precision natural logarithm result pair, returned
in xmm0.

m128 y2 - the second single precision natural logarithm result pair, returned
in xmm1.

Notes:
vrs8 logf computes the natural logarithm for each of eight input arguments.

This routine accepts eight single precision input values passed as two m128
values. The result is the single precision natural logarithm of the eight values,
returned as two m128 values. This is a relaxed version of logf, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
200 cycles for most valid inputs (25 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 197

vrsa logf: Array single precision natural logarithm

void vrsa_logf (int n, float *x, float *y)

C Prototype:
void vrsa logf (int n, float *x, float *y)

Inputs:

int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:
The natural (base e) logarithm of each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRSA LOGF(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL Y(N) - array of natural (base e) logarithms of input values.

Notes:
vrsa logf computes the single precision natural logarithm for each element of an
array of input arguments.

This routine accepts an array of single precision input values, computes the natural
log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of logf, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
26 cycles per value for valid inputs, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 198

vrd2 log10: Two-valued double precision base-10 logarithm

__m128d __vrd2_log10 (m128d x)

C Prototype:
m128d vrd2 log10(m128d x);

Inputs:
m128d x - the double precision input value pair.

Outputs:
The base-10 logarithm of x.

m128d y - the double precision base-10 logarithm result pair, returned in
xmm0.

Notes:
vrd2 log10 computes the base-10 logarithm for each of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision base-10 logarithm of both values, returned
as a m128d value. This is a relaxed version of log10, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
142 cycles for most valid inputs (71 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 199

vrd4 log10: Four-valued double precision base-10 logarithm

__m128d,__m128d __vrd4_log10 (m128d x1, m128d x2)

Prototype:
m128d, m128d vrd4 log10(m128d x1, m128d x2);

Note that this function uses a non-standard programming interface. The two
m128d inputs, which contain four double precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are
returned in xmm0 and xmm1. The use of xmm1 to return a m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

m128d x1 - the first double precision input value pair.
m128d x2 - the second double precision input value pair.

Outputs:
The base-10 logarithm of x.

m128d y1 - the first double precision base-10 logarithm result pair, returned
in xmm0.

m128d y2 - the second double precision base-10 logarithm result pair, re-
turned in xmm1.

Notes:
vrd4 log10 computes the base-10 logarithm for each of four input arguments.

This routine accepts four double precision input values passed as two m128d
values. The result is the double precision base-10 logarithm of the four values,
returned as two m128d values. This is a relaxed version of log10, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
235 cycles for most valid inputs (59 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 200

vrda log10: Array double precision base-10 logarithm

void vrda_log10 (int n, double *x, double *y)

C Prototype:
void vrda log10 (int n, double *x, double *y)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:
The base-10 logarithm of each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRDA LOG10(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of base-10 logarithms of input values.

Notes:
vrda log10 computes the double precision base-10 logarithm for each element of
an array of input arguments.

This routine accepts an array of double precision input values, computes the base-
10 log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log10, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
54 cycles per value for valid inputs, n = 24, longer for input values very close to
1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 201

vrs4 log10f: Four-valued single precision base-10 logarithm

__m128 __vrs4_log10f (m128 x)

Prototype:
m128 vrs4 log10f(m128 x);

Inputs:
m128 x - the four single precision inputs.

Outputs:
The base-10 logarithm of x.

m128 y - the four single precision base-10 logarithm results, returned in
xmm0.

Notes:
vrs4 log10f computes the base-10 logarithm for each of four input arguments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision base-10 logarithm of the four values, returned as
a m128 value. This is a relaxed version of log10, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
141 cycles for most valid inputs (35 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 202

vrs8 log10f: Eight-valued single precision base-10 logarithm

__m128,__m128 __vrs8_log10f (m128 x1, m128 x2)

Prototype:
m128, m128 vrs8 log10f(m128 x1, m128 x2);

Note that this function uses a non-standard programming interface. The two
m128 inputs, which contain eight single precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are re-
turned in xmm0 and xmm1. The use of xmm1 to return a m128 is non-standard,
and this function can not be called directly from C. It can be called directly from
assembly language. It is intended for internal use by vectorizing compilers, that
may be able to take advantage of the non-standard calling interface.
Inputs:

m128 x1 - the first set of four single precision input values.
m128 x2 - the second set of four single precision input values.

Outputs:
The base-10 logarithm of x.

m128 y1 - the first set of four single precision base-10 logarithm results,
returned in xmm0.

m128 y2 - the second set of four single precision base-10 logarithm results,
returned in xmm1.

Notes:
vrs8 log10f computes the base-10 logarithm for each of eight input arguments.

This routine accepts eight single precision input values passed as two m128
values. The result is the single precision base-10 logarithm of the eight values,
returned as two m128 values. This is a relaxed version of log10f, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
231 cycles for most valid inputs (29 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 203

vrsa log10f: Array single precision base-10 logarithm

void vrsa_log10f (int n, float *x, float *y)

C Prototype:
void vrsa log10f (int n, float *x, float *y)

Inputs:

int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:
The base-10 logarithm of each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRSA LOG10F(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL Y(N) - array of base-10 logarithms of input values.

Notes:
vrsa log10f computes the single precision base-10 logarithm for each element of an
array of input arguments.

This routine accepts an array of single precision input values, computes the base-
10 log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log10f, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
28 cycles per value for valid inputs, n = 24, longer for input values very close to
1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 204

vrd2 log2: Two-valued double precision base-2 logarithm

__m128d __vrd2_log2 (m128d x)

C Prototype:
m128d vrd2 log2(m128d x);

Inputs:
m128d x - the double precision input value pair.

Outputs:
The base-2 logarithm of x.

m128d y - the double precision base-2 logarithm result pair, returned in
xmm0.

Notes:
vrd2 log2 computes the base-2 logarithm for each of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision base-2 logarithm of both values, returned
as a m128d value. This is a relaxed version of log2, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
142 cycles for most valid inputs (71 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 205

vrd4 log2: Four-valued double precision base-2 logarithm

__m128d,__m128d __vrd4_log2 (m128d x1, m128d x2)

Prototype:
m128d, m128d vrd4 log2(m128d x1, m128d x2);

Note that this function uses a non-standard programming interface. The two
m128d inputs, which contain four double precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are
returned in xmm0 and xmm1. The use of xmm1 to return a m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

m128d x1 - the first double precision input value pair.
m128d x2 - the second double precision input value pair.

Outputs:
The base-2 logarithm of x.

m128d y1 - the first double precision base-2 logarithm result pair, returned
in xmm0.

m128d y2 - the second double precision base-2 logarithm result pair, re-
turned in xmm1.

Notes:
vrd4 log2 computes the base-2 logarithm for each of four input arguments.

This routine accepts four double precision input values passed as two m128d
values. The result is the double precision base-2 logarithm of the four values,
returned as two m128d values. This is a relaxed version of log2, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
235 cycles for most valid inputs (59 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 206

vrda log2: Array double precision base-2 logarithm

void vrda_log2 (int n, double *x, double *y)

C Prototype:
void vrda log2 (int n, double *x, double *y)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:
The base-2 logarithm of each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRDA LOG2(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of base-2 logarithms of input values.

Notes:
vrda log2 computes the double precision base-2 logarithm for each element of an
array of input arguments.

This routine accepts an array of double precision input values, computes the base-
2 log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log2, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
54 cycles per value for valid inputs, n = 24, longer for input values very close to
1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 207

vrs4 log2f: Four-valued single precision base-2 logarithm

__m128 __vrs4_log2f (m128 x)

Prototype:
m128 vrs4 log2f(m128 x);

Inputs:
m128 x - the four single precision inputs.

Outputs:
The base-2 logarithm of x.

m128 y - the four single precision base-2 logarithm results, returned in
xmm0.

Notes:
vrs4 log2f computes the base-2 logarithm for each of four input arguments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision base-2 logarithm of the four values, returned as
a m128 value. This is a relaxed version of log2, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
141 cycles for most valid inputs (35 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 208

vrs8 log2f: Eight-valued single precision base-2 logarithm

__m128,__m128 __vrs8_log2f (m128 x1, m128 x2)

Prototype:
m128, m128 vrs8 log2f(m128 x1, m128 x2);

Note that this function uses a non-standard programming interface. The two
m128 inputs, which contain eight single precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are re-
turned in xmm0 and xmm1. The use of xmm1 to return a m128 is non-standard,
and this function can not be called directly from C. It can be called directly from
assembly language. It is intended for internal use by vectorizing compilers, that
may be able to take advantage of the non-standard calling interface.
Inputs:

m128 x1 - the first set of four single precision input values.
m128 x2 - the second set of four single precision input values.

Outputs:
The base-2 logarithm of x.

m128 y1 - the first set of four single precision base-2 logarithm results,
returned in xmm0.

m128 y2 - the second set of four single precision base-2 logarithm results,
returned in xmm1.

Notes:
vrs8 log2f computes the base-2 logarithm for each of eight input arguments.

This routine accepts eight single precision input values passed as two m128
values. The result is the single precision base-2 logarithm of the eight values,
returned as two m128 values. This is a relaxed version of log2f, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
203 cycles for most valid inputs (25 cycles per value), longer for input values very
close to 1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 209

vrsa log2f: Array single precision base-2 logarithm

void vrsa_log2f (int n, float *x, float *y)

C Prototype:
void vrsa log2f (int n, float *x, float *y)

Inputs:

int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:
The base-2 logarithm of each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRSA LOG2F(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL Y(N) - array of base-2 logarithms of input values.

Notes:
vrsa log2f computes the single precision base-2 logarithm for each element of an
array of input arguments.

This routine accepts an array of single precision input values, computes the base-2
log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log2f, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
±0 −∞
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ +∞
−∞ QNaN

Performance:
29 cycles per value for valid inputs, n = 24, longer for input values very close to
1.0.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 210

vrs4 powf: Four-valued single precision power function

__m128 __vrs4_powf (m128 x, m128 y)

C Prototype:
m128 vrs4 powf(m128 x, m128 y);

Inputs:
m128 x - the single precision input base values.
m128 y - the single precision input exponent values.

Outputs:
m128 z - the single precision results of each x raised to the y power, returned

in xmm0.
Notes:

vrs4 powf() computes the single precision x raised to the y power for four pairs
of input arguments. This routine accepts four single precision input value pairs
passed as m128 values. The result is the x raised to the y power for all four
input pairs, returned as a m128 value.

This is a relaxed version of powf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input x Input y Output
±0 y < 0, odd integer ±∞
±0 y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0
−1 +∞ 1
+1 y (incl. NaN) 1
x (incl. Nan) ±0 1
x < 0 y, not integer QNaN
|x|<1 −∞ +∞
|x|>1 −∞ +0
|x|<1 +∞ +0
|x|>1 +∞ +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞
+∞ y < 0, +0
+∞ y > 0, +∞
NaN y nonzero, NaN
x<>1 NaN, NaN

Performance:
400 cycles for most valid inputs (100 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 211

vrsa powf: Array single precision power function

void vrsa_powf (int n, float *x, float *y, float *z)

C Prototype:
void vrsa powf(int n, float *x, float *y, float *z);
Inputs:

float *x - pointer to the array of single precision input x values.
float *y - pointer to the array of single precision input y values. float *z -
pointer to the array of single precision output values. int n - the number of
single precision values in both the input and output arrays.

Outputs:
x raised to the y value for each array pair, filled into the z array.

Fortran Subroutine Interface:
VRSA POWF(INTEGER*4 N, REAL*4 X(), REAL*4 Y(), REAL*4 Z())
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of real x input values.
REAL Y(N) - array of real y input values.

Outputs:
REAL Z(N) - array of real result values.

Notes:
vrsa powf() computes x to the y power in single precision for each pair of elements
in the x and y input arrays.

This routine accepts an array of single precision input x values and an arrayi of
single precision input y values, computes x^y for each input value pair, and stores
the result in the array pointed to by the z input.

This is a relaxed version of powf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input x Input y Output
±0 y < 0, odd integer ±∞
±0 y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0
−1 +∞ 1
+1 y (incl. NaN) 1
x (incl. Nan) ±0 1
x < 0 y, not integer QNaN
|x|<1 −∞ +∞

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 212

|x|>1 −∞ +0
|x|<1 +∞ +0
|x|>1 +∞ +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞
+∞ y < 0, +0
+∞ y > 0, +∞
NaN y nonzero, NaN
x<>1 NaN, NaN

Performance:
107 cycles per value for valid inputs, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 213

vrs4 powxf: Four-valued single precision power function with
constant y

__m128 __vrs4_powxf (m128 x,float y)

C Prototype:
m128 vrs4 powxf(m128 x,float y);

Inputs:
m128 x - the single precision input base values.

float y - the common single precision input exponent value.
Outputs:

m128 z - the single precision results of each x raised to the y power, returned
in xmm0.

Notes:
vrs4 powxf() computes the single precision x raised to the y power for four

input x arguments and a constant y input value. This routine accepts four single
precision input values passed as an m128 value. The y value is passed as one
single precision value. The result is the x raised to the y power for all four input
values, returned as a m128 value.

This is a relaxed version of powxf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input x Input y Output
±0 y < 0, odd integer ±∞
±0 y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0
−1 +∞ 1
+1 y (incl. NaN) 1
x (incl. Nan) ±0 1
x < 0 y, not integer QNaN
|x|<1 −∞ +∞
|x|>1 −∞ +0
|x|<1 +∞ +0
|x|>1 +∞ +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞
+∞ y < 0, +0
+∞ y > 0, +∞
NaN y nonzero, NaN
x<>1 NaN, NaN

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 214

Performance:
372 cycles for most valid inputs (93 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 215

vrsa powxf: Array single precision power function, constant y

void vrsa_powf (int n, float *x, float y, float *z)

C Prototype:
void vrsa powxf(int n, float *x, float y, float *z);
Inputs:

int n - the number of single precision values in both the x input and output
arrays.
float *x - pointer to the array of single precision input x values.

float *z - pointer to the array of single precision output values.
float y - the constant single precision input y value.

Outputs:
x raised to the y value for each x array value, filled into the z array

Fortran Subroutine Interface:
VRSA POWF(INTEGER*4 N, REAL*4 X(), REAL*4 Y, REAL*4 Z())
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of real x input values.
REAL Y - the constant single precision input y value.

Outputs:
REAL Z(N) - array of real result values.

Notes:
vrsa powxf() computes x to the y power in single precision for each element in the
x input arrays, using a constant y.

This routine accepts an array of single precision input x values and one single
precision input y value, computes x^y for each x input value, and stores the result
in the array pointed to by the z pointer input. It is the responsibility of the calling
program to allocate/deallocate enough storage for the output array.

This is a relaxed version of powf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input x Input y Output
±0 y < 0, odd integer ±∞
±0 y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0
−1 +∞ 1

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 216

+1 y (incl. NaN) 1
x (incl. Nan) ±0 1
x < 0 y, not integer QNaN
|x|<1 −∞ +∞
|x|>1 −∞ +0
|x|<1 +∞ +0
|x|>1 +∞ +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞
+∞ y < 0, +0
+∞ y > 0, +∞
NaN y nonzero, NaN
x<>1 NaN, NaN

Performance:
115 cycles per value for valid inputs, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 217

vrd2 sin: Two-valued double precision Sine

__m128d __vrd2_sin (m128d x)

C Prototype:
m128d vrd2 sin(m128d x);

Inputs:
m128d x - the double precision input value pair.

Outputs:
m128d y - the double precision Sine result pair, returned in xmm0.

Notes:
vrd2 sin computes the Sine function of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision Sine of both values, returned as a m128d
value. This is a relaxed version of sin, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
120 cycles for most valid inputs < 5e5 (60 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 218

vrd4 sin: Four-valued double precision Sine

__m128d,__m128d __vrd4_sin (m128d x1, m128d x2)

C Prototype:
m128d vrd4 sin(m128d x);

Note that this function uses a non-standard programming interface. The two
m128d inputs, which contain four double precision values, are passed by the

AMD64 C ABI in registers xmm0, and xmm1. The corresponding results are
returned in xmm0 and xmm1. The use of xmm1 to return a m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

m128d x1 - the first double precision input value pair.
m128d x2 - the second double precision input value pair.

Outputs:
m128d y1 - the first double precision Sine result pair, returned in xmm0.
m128d y2 - second double precision Sine result pair, returned in xmm1.

Notes:
vrd4 sin computes the Sine function of four input arguments.

This routine accepts four double precision input values passed as two m128d
values. The result is the double precision Sine of the four values, returned as two

m128d values. This is a relaxed version of sin, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range. This routine
may return slightly worse than 1 ulp for very large values between 4e5 and 5e5.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
172 cycles for most valid inputs < 5e5 (43 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 219

vrda sin: Array double precision Sine

void vrda_sin (int n, double *x, double *y)

C Prototype:
void vrda sin (int n, double *x, double *y)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:
Sine for each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRDA SIN(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of Sines of input values.

Notes:
vrda sin computes the Sine function for each element of an array of input argu-
ments.

This routine accepts an array of double precision input values, computes sin(x)
for each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of sin, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.
This routine may return slightly worse than 1 ulp for very large values between
4e5 and 5e5.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
172 cycles for most valid inputs < 5e5 (43 cycles per value), n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 220

vrs4 sinf: Four-valued single precision Sine

__m128 __vrs4_sinf (m128 x)

C Prototype:
m128 vrs4 sinf(m128 x);

Inputs:
m128 x - the four single precision inputs.

Outputs:
m128 y - the four single precision Sine results, returned in xmm0.

Notes:
vrs4 sinf computes the Sine function of four input arguments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision Sine of the four values, returned as a m128
value. This is a relaxed version of sinf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 1 ulp over the valid input range. This routine may
return slightly worse than 1 ulp for very large values between 4e5 and 5e5.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
176 cycles for most valid inputs < 5e5 (44 cycles per value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 221

vrsa sinf: Array single precision Sine

void vrsa_sinf (int n, float *x, float *y)

C Prototype:
void vrsa sinf (int n, float *x, float *y)

Inputs:

int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:
Sine for each x value, filled into the y array.

Fortran Subroutine Interface:
SUBROUTINE VRSA SINF(N,X,Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL Y(N) - array of Sines of input values.

Notes:
vrsa sinf computes the Sine function for each element of an array of input argu-
ments.

This routine accepts an array of single precision input values, computes sin(x) for
each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of sinf, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
43 cycles per value for most valid inputs < 5e5, n = 24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 222

vrd2 sincos: Two-valued double precision Sine and Cosine

void __vrd2_sincos (m128d x, m128d* S, m128d* C)

C Prototype:
void vrd2 sincos(m128d x, m128d* S, m128d* C));
Inputs:

m128d x - the double precision input value pair.
Outputs:

(Sine of x and Cosine of x.)
m128d *S - Pointer to the double precision Sine result pair.
m128d *C - Pointer to the double precision Cosine result pair.

Notes:
vrd2 sincos computes the Sine and Cosine functions of two input arguments.

This routine accepts a pair of double precision input values passed as a m128d
value. The result is the double precision Sin and Cosine of both values, returned as
a m128d value. This is a relaxed version of sincos, suitable for use with fastmath
compiler flags or application
not requiring full error handling. Denormal inputs may produce unpredictable
results. Special case inputs produce C99 return values. The routine is accurate to
better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
154 cycles for most valid inputs < 5e5 (77 cycles per Sine and Cosine of a value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 223

vrda sincos: Array double precision Sine and Cosine

void vrda_sincos (int n, double *x, double *ys, double *yc)

C Prototype:
void vrda sincos (int n, double *x, double *ys, double *yc)

Inputs:

int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *ys - pointer to the array of sin output values.
double *yc - pointer to the array of cos output values.

Outputs:
Sine for each x value, filled into the ys array.
Cosine for each x value, filled into the yc array.

Fortran Subroutine Interface:
SUBROUTINE VRDA SINCOS(N,X,YS,YC)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION YS(N) - array of Sines of input values.
DOUBLE PRECISION YC(N) - array of Cosines of input values.

Notes:
vrda sincos computes the Sine and Cosine functions for each element of an array
of input arguments.

This routine accepts an array of double precision input values, computes sincos(x)
for each input value, and stores the results in the arrays pointed to by the ys and yc
pointer inputs. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of sincos, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 2 ulp over the valid
input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 224

180 cycles for most valid inputs < 5e5 (43 cycles per Sin and Cos of a value), n =
24.

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 225

vrs4 sincosf: Four-valued single precision Sine and Cosine

void __vrs4_sincosf (m128 x, m128* S, m128* C)

C Prototype:
void vrs4 sincosf(m128 x, m128* S, m128* C));
Inputs:

m128 x - the single precision input value pair.
Outputs:

(Sine of x and Cosine of x.)
m128 *S - Pointer to the single precision Sine result pair.
m128 *C - Pointer to the single precision Cosine result pair.

Notes:
vrs4 sincosf computes the Sine and Cosine functions of four input arguments.

This routine accepts four single precision input values passed as a m128 value.
The result is the single precision Sin and Cosine of all four values, returned as a

m128 value. This is a relaxed version of sincosf, suitable for use with fastmath
compiler flags or application
not requiring full error handling. Denormal inputs may produce unpredictable
results. Special case inputs produce C99 return values. The routine is accurate to
better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
220 cycles for most valid inputs < 5e5 (55 cycles per Sine and Cosine of a value).

Chapter 7: ACML MV: Fast Math and Fast Vector Math Library 226

vrsa sincosf: Array single precision Sine and Cosine

void vrsa_sincosf (int n, float *x, float *ys, float *yc)

C Prototype:
void vrsa sincosf (int n, float *x, float *ys, float *yc)

Inputs:

int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *ys - pointer to the array of sin output values.
float *yc - pointer to the array of cos output values.

Outputs:
Sine for each x value, filled into the ys array.
Cosine for each x value, filled into the yc array.

Fortran Subroutine Interface:
SUBROUTINE VRSA SINCOSF(N,X,YS,YC)
Inputs:

INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.

Outputs:
REAL YS(N) - array of Sines of input values.
REAL YC(N) - array of Cosines of input values.

Notes:
vrsa sincosf computes the Sine and Cosine functions for each element of an array
of input arguments.

This routine accepts an array of single precision input values, computes sincos(x)
for each input value, and stores the results in the arrays pointed to by the ys and yc
pointer inputs. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of sincos, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
+∞ QNaN
−∞ QNaN

Performance:
53 cycles per value for most valid inputs < 5e5, n = 24.

Chapter 8: References 227

8 References

• [1] C.L. Lawson, R.J. Hanson, D. Kincaid, and F.T. Krogh, Basic linear algebra sub-
programs for Fortran usage, ACM Trans. Maths. Soft., 5 (1979), pp. 308–323.

• [2] J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson, An extended set of
FORTRAN basic linear algebra subroutines, ACM Trans. Math. Soft., 14 (1988), pp.
1–17.

• [3] J.J. Dongarra, J. Du Croz, I.S. Duff, and S. Hammarling, A set of level 3 basic
linear algebra subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1–17.

• [4] David S. Dodson, Roger G. Grimes, John G. Lewis, Sparse Extensions to the FOR-
TRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 17 (1991), pp.
253–263.

• [5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s
Guide, SIAM, Philidelphia, (1999).

• [6] D. E. Knuth, The Art of Computer Programming Addison-Wesley, 1997.
• [7] J. Banks, Handbook on Simulation, Wiley, 1998.
• [8] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,

Chapter 5, CRC Press, 1996.
• [9] Chapter Introduction G05 - Random Number Generators The NAG Fortran Library

Manual, Mark 21 Numerical Algorithms Group, 2005.
• [10] N. M. Maclaren, The generation of multiple independent sequences of pseudoran-

dom numbers, Appl. Statist., 1989, 38, 351-359.
• [11] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudorandom number generator, ACM Transactions on Modelling
and Computer Simulations, 1998.

• [12] P. L’Ecuyer, Good parameter sets for combined multiple recursive random number
generators, Operations Research, 1999, 47, 159-164.

• [13] Programming languages - C - ISO/IEC 9899:1999
• [14] IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
• [15] P. L’Ecuyer and R. Simard, TestU01: A Software Library in ANSI C for Empirical

Testing of Random Number Generators, Departement d’Informatique et de Recherche
Operationnelle, Universite de Montreal, 2002. Software and user’s guide available at
http://www.iro.umontreal.ca/~lecuyer

Subject Index 228

Subject Index

2
2D FFT. 43

3
3D FFT. 52

A
accessing ACML (Compaq Visual Fortran under

32-bit Windows) . 11
accessing ACML (GNU g77/gcc under 32-bit

Windows) . 8
accessing ACML (GNU g77/gcc under Linux) . . . 4
accessing ACML (GNU gfortran/gcc under Linux)

. 5
accessing ACML (Intel Fortran/Microsoft C under

32-bit Windows) . 10
accessing ACML (Intel Fortran/Microsoft C under

64-bit Windows) . 12
accessing ACML (Intel ifort under Linux) 7
accessing ACML (Linux) . 4
accessing ACML (NAGware f95 compiler under

Linux) . 7
accessing ACML (other compilers under Linux) . . 8
accessing ACML (PathScale pathf90/pathcc under

Linux) . 6
accessing ACML (PGI pgf77/pgf90/Microsoft C

under 32-bit Windows) . 9
accessing ACML (PGI pgf77/pgf90/pgcc or

Microsoft C under 64-bit Windows) 11
accessing ACML (PGI pgf77/pgf90/pgcc under

Linux) . 6
accessing ACML (Salford ftn95 under 32-bit

Windows) . 11
accessing ACML (Solaris) . 13
accessing ACML (Sun f95/cc under Solaris) 13
accessing ACML under Windows 8
accessing the base generators 80
ACML C Interfaces . 14
ACML FORTRAN interfaces 14
ACML installation test . 17
ACML performance examples 17
ACML version information 16
ACML MV (ACML vector math functions) . . . 161
ACML MV types . 162

B
base generator . 74
base generator, basic NAG generator 81
base generator, blum-blum-shub 83
base generator, calling . 80
base generator, definition . 74
base generator, initialization 75

base generator, L’Ecuyer’s combined recursive
generator . 83

base generator, Mersenne twister 82
base generator, recommendation 74
base generator, user supplied 84
base generator, Wichmann-Hill 82
basic NAG base generator . 81
beta distribution . 95
binomial distribution . 123
binomial distribution, using reference vector . . 137
BLAS . 19
blum-blum-shub generator . 83
BRNG, definition . 74

C
C interfaces in ACML . 14
calling the base generators . 80
cauchy distribution . 97
chi-squared distribution . 99
complex FFT . 24
continuous multivariate distribution, gaussian

. 147
continuous multivariate distribution, gaussian,

using reference vector 151
continuous multivariate distribution, normal . . 147
continuous multivariate distribution, normal, using

reference vector . 151
continuous multivariate distribution, students t

. 149
continuous multivariate distribution, students t,

using reference vector 153
continuous univariate distribution, beta 95
continuous univariate distribution, cauchy 97
continuous univariate distribution, chi-squared

. 99
continuous univariate distribution, exponential

. 101
continuous univariate distribution, f 103
continuous univariate distribution, fisher’s variance

ratio distribution . 103
continuous univariate distribution, gamma 105
continuous univariate distribution, gaussian . . . 107
continuous univariate distribution, logistic 109
continuous univariate distribution, lognormal . . 111
continuous univariate distribution, normal 107
continuous univariate distribution, students t . . 113
continuous univariate distribution, t 113
continuous univariate distribution, triangular . . 115
continuous univariate distribution, uniform . . . 117
continuous univariate distribution, von mises . . 119
continuous univariate distribution, weibull 121
copying a generator . 75
cryptologically secure, definition 74
cryptologically secure, generator 83

Subject Index 229

D
determining the best ACML version for your

system . 2
discrete multivariate distribution, multinomial

. 159
discrete univariate distribution, binomial 123
discrete univariate distribution, binomial, using

reference vector . 137
discrete univariate distribution, geometric 125
discrete univariate distribution, geometric, using

reference vector . 139
discrete univariate distribution, hypergeometric

. 127
discrete univariate distribution, hypergeometric,

using reference vector 141
discrete univariate distribution, negative binomial

. 129
discrete univariate distribution, negative binomial,

using reference vector 143
discrete univariate distribution, poisson. 131
discrete univariate distribution, poisson, using

reference vector . 145
discrete univariate distribution, uniform 133
distribution generator, definition 74

E
example programs . 17
exponential distribution . 101

F
f distribution . 103
fast basic math functions . 163
Fast Fourier Transforms . 24
feedback shift generator . 82
FFT . 24
FFT efficiency . 25
FFT of multiple complex sequences 34
FFT of multiple Hermitian sequences 72
FFT of multiple real sequences 68
FFT of single complex sequence 27
FFT of single Hermitian sequence 70
FFT of single real sequence 66
FFT plan . 26
fisher’s variance ratio distribution 103
FORTRAN interfaces in ACML 14

G
gamma distribution . 105
gaussian distribution (multivariate) 147
gaussian distribution (univariate) 107
gaussian distribution, multivariate, using reference

vector . 151
general information . 2
generalized feedback shift generator 82
generating discrete variates from a reference vector

. 135
geometric distribution . 125

geometric distribution, using reference vector . . 139

H
Hermitian data sequences (FFT) 65
hypergeometric distribution 127
hypergeometric distribution, using reference vector

. 141

I
IEEE exceptions and LAPACK 23
initialization of a generator 75
installation test . 17
INTEGER*8 arguments . 15
introduction . 1

L
L’Ecuyer’s combined recursive generator 83
language interfaces . 14
LAPACK . 20
LAPACK blocking factors . 21
LAPACK reference sources 20
libm names . 162
library manual . 16
library version information 16
linear congruential generator, basic NAG generator

. 81
linear congruential generator, Wichmann-Hill . . 82
linking with ACML . 2
linking with Linux ACML . 4
linking with Solaris ACML 13
linking with Windows ACML 8
logistic distribution . 109
lognormal distribution . 111

M
Mersenne twister . 82
Mersenne twister, multiple streams 89
multinomial distribution . 159
multiple recursive generator, L’Ecuyer’s combined

recursive generator . 83
multiple streams . 88
multiple streams, block splitting 89
multiple streams, L’Ecuyer’s combined recursive

generator . 89, 92
multiple streams, leap frogging 92
multiple streams, Mersenne twister 89
multiple streams, NAG basic generator 89, 92
multiple streams, skip ahead 89
multiple streams, using different generators 89
multiple streams, using different seeds 89
multiple streams, Wichmann-Hill generator . . . 89,

92
multivariate distribution, gaussian 147
multivariate distribution, gaussian, using reference

vector . 151
multivariate distribution, multinomial 159

Subject Index 230

multivariate distribution, normal 147
multivariate distribution, normal, using reference

vector . 151
multivariate distribution, students t 149
multivariate distribution, students t, using

reference vector . 153

N
negative binomial distribution 129
negative binomial distribution, using reference

vector . 143
normal distribution (multivariate) 147
normal distribution (univariate) 107
normal distribution, multivariate, using reference

vector . 151

P
performance example programs 17
period of a random number generator, definition

. 74
plan, default, FFTs . 26
plan, generated, FFTs . 26
poisson distribution . 131
poisson distribution, using reference vector . . . 145
PRNG, definition . 74
pseudo-random number, definition 74

Q
QRNG, definition . 74
quasi-random number, definition 74

R
random bit stream . 80
real data sequences (FFT) . 65
real FFT . 65
reference vector, binomial distribution 137
reference vector, gaussian (multivariate) 155
reference vector, generating discrete variates from

. 135
reference vector, geometric distribution 139
reference vector, hypergeometric distribution . . 141
reference vector, negative binomial distribution

. 143
reference vector, normal (multivariate) 155
reference vector, poisson distribution 145
reference vector, students t (multivariate) 157
retrieving the state of a generator 75

S
saving the state of a generator 75
seed, definition . 74
size of integer arguments . 15
sparse BLAS . 19

students t distribution . 113
students t distribution (multivariate) 149
students t distribution, multivariate, using

reference vector . 153

T
t distribution . 113
triangular distribution . 115

U
uniform distribution (continuous) 117
uniform distribution (discrete) 133
univariate distribution, beta 95
univariate distribution, binomial 123
univariate distribution, binomial, using reference

vector . 137
univariate distribution, cauchy 97
univariate distribution, chi-squared 99
univariate distribution, exponential 101
univariate distribution, f . 103
univariate distribution, fisher’s variance ratio . . 103
univariate distribution, gamma 105, 107
univariate distribution, geometric 125
univariate distribution, geometric, using reference

vector . 139
univariate distribution, hypergeometric 127
univariate distribution, hypergeometric, using

reference vector . 141
univariate distribution, logistic 109
univariate distribution, lognormal 111
univariate distribution, negative binomial 129
univariate distribution, negative binomial, using

reference vector . 143
univariate distribution, normal 107
univariate distribution, poisson 131
univariate distribution, poisson, using reference

vector . 145
univariate distribution, students t 113
univariate distribution, t . 113
univariate distribution, triangular 115
univariate distribution, uniform (continuous) . . 117
univariate distribution, uniform (discrete) 133
univariate distribution, von mises 119
univariate distribution, weibull 121
user supplied generators . 84

V
vector math functions . 181
von mises distribution . 119

W
weak aliases . 162
weibull distribution . 121
Wichmann-Hill base generator 82
Wichmann-Hill, multiple streams 89

Routine Index 231

Routine Index

__vrd2_cos . 181
__vrd2_exp . 186
__vrd2_log . 192
__vrd2_log10 . 198
__vrd2_log2 . 204
__vrd2_sin . 217
__vrd2_sincos . 222
__vrd4_cos . 182
__vrd4_exp . 187
__vrd4_log . 193
__vrd4_log10 . 199
__vrd4_log2 . 205
__vrd4_sin . 218
__vrs4_cosf . 184
__vrs4_expf . 189
__vrs4_log10f . 201
__vrs4_log2f . 207
__vrs4_logf . 195
__vrs4_powf . 210
__vrs4_powxf . 213
__vrs4_sincosf . 225
__vrs4_sinf . 220
__vrs8_expf . 190
__vrs8_log10f . 202
__vrs8_log2f . 208
__vrs8_logf . 196

A
acmlinfo . 16
ACMLINFO . 16
acmlversion . 16
ACMLVERSION . 16

C
CFFT1D . 29
CFFT1DX . 32
CFFT1M . 37
CFFT1MX . 41
CFFT2D . 45
CFFT2DX . 49
CFFT3D . 54
CFFT3DX . 57
CFFT3DY . 62
CSFFT . 71
CSFFTM . 73

D
DRANDBETA . 95
DRANDBINOMIAL . 123
DRANDBINOMIALREFERENCE 137
DRANDBLUMBLUMSHUB . 81
DRANDCAUCHY . 97

DRANDCHISQUARED . 99
DRANDDISCRETEUNIFORM. 133
DRANDEXPONENTIAL . 101
DRANDF . 103
DRANDGAMMA . 105
DRANDGAUSSIAN . 107
DRANDGENERALDISCRETE. 135
DRANDGEOMETRIC . 125
DRANDGEOMETRICREFERENCE 139
DRANDHYPERGEOMETRIC . 127
DRANDHYPERGEOMETRICREFERENCE 141
DRANDINITIALIZE . 76
DRANDINITIALIZEBBS . 79
DRANDINITIALIZEUSER . 85
DRANDLEAPFROG . 93
DRANDLOGISTIC . 109
DRANDLOGNORMAL . 111
DRANDMULTINOMIAL . 159
DRANDMULTINORMAL . 147
DRANDMULTINORMALR . 151
DRANDMULTINORMALREFERENCE 155
DRANDMULTISTUDENTSREFERENCE 157
DRANDMULTISTUDENTST . 149
DRANDMULTISTUDENTSTR. 153
DRANDNEGATIVEBINOMIAL . 129
DRANDNEGATIVEBINOMIALREFERENCE 143
DRANDPOISSON . 131
DRANDPOISSONREFERENCE . 145
DRANDSKIPAHEAD . 90
DRANDSTUDENTST . 113
DRANDTRIANGULAR . 115
DRANDUNIFORM . 117
DRANDVONMISES . 119
DRANDWEIBULL . 121
DZFFT . 66
DZFFTM . 68

F
fastcos . 163
fastcosf . 164
fastexp . 165
fastexpf . 166
fastlog . 167
fastlog10 . 169
fastlog10f . 170
fastlog2 . 171
fastlog2f . 172
fastlogf . 168
fastpow . 173
fastpowf . 175
fastsin . 177
fastsincos . 179
fastsincosf . 180
fastsinf . 178

Routine Index 232

I
ILAENVSET . 21

S
SCFFT . 67
SCFFTM . 69
SRANDBINOMIALREFERENCE 137
SRANDCHISQUARED . 99
SRANDGEOMETRICREFERENCE 139
SRANDBETA . 95
SRANDBINOMIAL . 123
SRANDBLUMBLUMSHUB . 81
SRANDCAUCHY . 97
SRANDDISCRETEUNIFORM. 133
SRANDEXPONENTIAL . 101
SRANDF . 103
SRANDGAMMA . 105
SRANDGAUSSIAN . 107
SRANDGENERALDISCRETE. 135
SRANDGEOMETRIC . 125
SRANDHYPERGEOMETRIC . 127
SRANDHYPERGEOMETRICREFERENCE 141
SRANDINITIALIZE . 76
SRANDINITIALIZEBBS . 79
SRANDINITIALIZEUSER . 85
SRANDLEAPFROG . 93
SRANDLOGISTIC . 109
SRANDLOGNORMAL . 111
SRANDMULTINOMIAL . 159
SRANDMULTINORMAL . 147
SRANDMULTINORMALR . 151
SRANDMULTINORMALREFERENCE 155
SRANDMULTISTUDENTST . 149
SRANDMULTISTUDENTSTR. 153
SRANDMULTISTUDENTSTREFERENCE 157
SRANDNEGATIVEBINOMIAL . 129
SRANDNEGATIVEBINOMIALREFERENCE 143
SRANDPOISSON . 131
SRANDPOISSONREFERENCE . 145
SRANDSKIPAHEAD . 90

SRANDSTUDENTST . 113
SRANDTRIANGULAR . 115
SRANDUNIFORM . 117
SRANDVONMISES . 119
SRANDWEIBULL . 121

U
UGEN . 88
UINI . 87

V
vrda_cos . 183
vrda_exp . 188
vrda_log . 194
vrda_log10 . 200
vrda_log2 . 206
vrda_sin . 219
vrda_sincos . 223
vrsa_cosf . 185
vrsa_expf . 191
vrsa_log10f . 203
vrsa_log2f . 209
vrsa_logf . 197
vrsa_powf . 211, 215
vrsa_sincosf . 226
vrsa_sinf . 221

Z
ZDFFT . 70
ZDFFTM . 72
ZFFT1D . 28
ZFFT1DX . 30
ZFFT1M . 35
ZFFT1MX . 39
ZFFT2D . 44
ZFFT2DX . 46
ZFFT3D . 53
ZFFT3DX . 55
ZFFT3DY . 59

	Introduction
	General Information
	Determining the best ACML version for your system
	Accessing the Library (Linux)
	Accessing the Library under Linux using GNU g77/gcc
	Accessing the Library under Linux using GNU gfortran/gcc
	Accessing the Library under Linux using PGI compilers pgf77/pgf90/pgcc
	Accessing the Library under Linux using PathScale compilers pathf90/pathcc
	Accessing the Library under Linux using the NAGWare f95 compiler
	Accessing the Library under Linux using the Intel ifort compiler
	Accessing the Library under Linux using compilers other than GNU, PGI, PathScale, NAGWare or Intel

	Accessing the Library (Microsoft Windows)
	Accessing the Library under 32-bit Windows using GNU g77/gcc
	Accessing the Library under 32-bit Windows using PGI compilers pgf77/pgf90/Microsoft C
	Accessing the Library under 32-bit Windows using Microsoft C or Intel Fortran
	Accessing the Library under 32-bit Windows using the Compaq Visual Fortran compiler
	Accessing the Library under 32-bit Windows using the Salford FTN95 compiler
	Accessing the Library under 64-bit Windows using PGI compilers pgf77/pgf90/pgcc
	Accessing the Library under 64-bit Windows using Microsoft C or Intel Fortran

	Accessing the Library (Solaris)
	Accessing the Library under Solaris

	ACML FORTRAN and C interfaces
	ACML variants using 64-bit integer (INTEGER*8) arguments
	Library Version and Build Information
	Library Documentation
	Example programs calling ACML
	Example ACML programs demonstrating performance

	BLAS: Basic Linear Algebra Subprograms
	LAPACK: Package of Linear Algebra Subroutines
	Introduction to LAPACK
	Reference sources for LAPACK
	LAPACK block sizes, ILAENV and ILAENVSET
	IEEE exceptions and LAPACK

	Fast Fourier Transforms (FFTs)
	Introduction to FFTs
	Transform definitions and Storage for Complex Data
	Transform definitions and Storage for Real Data
	Efficiency
	Default and Generated Plans

	FFTs on Complex Sequences
	FFT of a single sequence
	ZFFT1D Routine Documentation
	CFFT1D Routine Documentation
	ZFFT1DX Routine Documentation
	CFFT1DX Routine Documentation

	FFT of multiple complex sequences
	ZFFT1M Routine Documentation
	CFFT1M Routine Documentation
	ZFFT1MX Routine Documentation
	CFFT1MX Routine Documentation

	2D FFT of two-dimensional arrays of data
	ZFFT2D Routine Documentation
	CFFT2D Routine Documentation
	ZFFT2DX Routine Documentation
	CFFT2DX Routine Documentation

	3D FFT of three-dimensional arrays of data
	ZFFT3D Routine Documentation
	CFFT3D Routine Documentation
	ZFFT3DX Routine Documentation
	CFFT3DX Routine Documentation
	ZFFT3DY Routine Documentation
	CFFT3DY Routine Documentation

	FFTs on real and Hermitian data sequences
	FFT of single sequences of real data
	DZFFT Routine Documentation
	SCFFT Routine Documentation

	FFT of multiple sequences of real data
	DZFFTM Routine Documentation
	SCFFTM Routine Documentation

	FFT of single Hermitian sequences
	ZDFFT Routine Documentation
	CSFFT Routine Documentation

	FFT of multiple Hermitian sequences
	ZDFFTM Routine Documentation
	CSFFTM Routine Documentation

	Random Number Generators
	Base Generators
	Initialization of the Base Generators
	DRANDINITIALIZE / SRANDINITIALIZE
	DRANDINITIALIZEBBS / SRANDINITIALIZEBBS

	Calling the Base Generators
	DRANDBLUMBLUMSHUB / SRANDBLUMBLUMSHUB

	Basic NAG Generator
	Wichmann-Hill Generator
	Mersenne Twister
	L'Ecuyer's Combined Recursive Generator
	Blum-Blum-Shub Generator
	User Supplied Generators
	DRANDINITIALIZEUSER / SRANDINITIALIZEUSER
	UINI
	UGEN

	Multiple Streams
	Using Different Seeds
	Using Different Generators
	Skip Ahead
	DRANDSKIPAHEAD / SRANDSKIPAHEAD

	Leap Frogging
	DRANDLEAPFROG / SRANDLEAPFROG

	Distribution Generators
	Continuous Univariate Distributions
	DRANDBETA / SRANDBETA
	DRANDCAUCHY / SRANDCAUCHY
	DRANDCHISQUARED / SRANDCHISQUARED
	DRANDEXPONENTIAL / SRANDEXPONENTIAL
	DRANDF / SRANDF
	DRANDGAMMA / SRANDGAMMA
	DRANDGAUSSIAN / DRANDGAUSSIAN
	DRANDLOGISTIC / SRANDLOGISTIC
	DRANDLOGNORMAL / SRANDLOGNORMAL
	DRANDSTUDENTST / SRANDSTUDENTST
	DRANDTRIANGULAR / SRANDTRIANGULAR
	DRANDUNIFORM / SRANDUNIFORM
	DRANDVONMISES / SRANDVONMISES
	DRANDWEIBULL / SRANDWEIBULL

	Discrete Univariate Distributions
	DRANDBINOMIAL / SRANDBINOMIAL
	DRANDGEOMETRIC / SRANDGEOMETRIC
	DRANDHYPERGEOMETRIC / SRANDHYPERGEOMETRIC
	DRANDNEGATIVEBINOMIAL / SRANDNEGATIVEBINOMIAL
	DRANDPOISSON / SRANDPOISSON
	DRANDDISCRETEUNIFORM / SRANDDISCRETEUNIFORM
	DRANDGENERALDISCRETE / SRANDGENERALDISCRETE
	DRANDBINOMIALREFERENCE / SRANDBINOMIALREFERENCE
	DRANDGEOMETRICREFERENCE / SRANDGEOMETRICREFERENCE
	DRANDHYPERGEOMETRICREFERENCE / SRANDHYPERGEOMETRICREFERENCE
	DRANDNEGATIVEBINOMIALREFERENCE / SRANDNEGATIVEBINOMIALREFERENCE
	DRANDPOISSONREFERENCE / SRANDPOISSONREFERENCE

	Continuous Multivariate Distributions
	DRANDMULTINORMAL / SRANDMULTINORMAL
	DRANDMULTISTUDENTST / SRANDMULTISTUDENTST
	DRANDMULTINORMALR / SRANDMULTINORMALR
	DRANDMULTISTUDENTSTR / SRANDMULTISTUDENTSTR
	DRANDMULTINORMALREFERENCE / SRANDMULTINORMALREFERENCE
	DRANDMULTISTUDENTSTREFERENCE / SRANDMULTISTUDENTSTREFERENCE

	Discrete Multivariate Distributions
	DRANDMULTINOMIAL / SRANDMULTINOMIAL

	ACML_MV: Fast Math and Fast Vector Math Library
	Introduction to ACML_MV
	Terminology
	Weak Aliases
	Defined Types

	Fast Basic Math Functions
	fastcos: fast double precision Cosine
	fastcosf: fast single precision Cosine
	fastexp: fast double precision exponential function
	fastexpf: fast single precision exponential function
	fastlog: fast double precision natural logarithm function
	fastlogf: fast single precision natural logarithm function
	fastlog10: fast double precision base-10 logarithm function
	fastlog10f: fast single precision base-10 logarithm function
	fastlog2: fast double precision base-2 logarithm function
	fastlog2f: fast single precision base-2 logarithm function
	fastpow: fast double precision power function
	fastpowf: fast single precision power function
	fastsin: fast double precision Sine
	fastsinf: fast single precision Sine
	fastsincos: fast double precision Sine and Cosine
	fastsincosf: fast single precision Sine and Cosine

	Fast Vector Math Functions
	vrd2_cos: Two-valued double precision Cosine
	vrd4_cos: Four-valued double precision Cosine
	vrda_cos: Array double precision Cosine
	vrs4_cosf: Four-valued single precision Cosine
	vrsa_cosf: Array single precision Cosine
	vrd2_exp: Two-valued double precision exponential function
	vrd4_exp: Four-valued double precision exponential function
	vrda_exp: Array double precision exponential function
	vrs4_expf: Four-valued single precision exponential function
	vrs8_expf: Eight-valued single precision exponential function
	vrsa_expf: Array single precision exponential function
	vrd2_log: Two-valued double precision natural logarithm
	vrd4_log: Four-valued double precision natural logarithm
	vrda_log: Array double precision natural logarithm
	vrs4_logf: Four-valued single precision natural logarithm
	vrs8_logf: Eight-valued single precision natural logarithm
	vrsa_logf: Array single precision natural logarithm
	vrd2_log10: Two-valued double precision base-10 logarithm
	vrd4_log10: Four-valued double precision base-10 logarithm
	vrda_log10: Array double precision base-10 logarithm
	vrs4_log10f: Four-valued single precision base-10 logarithm
	vrs8_log10f: Eight-valued single precision base-10 logarithm
	vrsa_log10f: Array single precision base-10 logarithm
	vrd2_log2: Two-valued double precision base-2 logarithm
	vrd4_log2: Four-valued double precision base-2 logarithm
	vrda_log2: Array double precision base-2 logarithm
	vrs4_log2f: Four-valued single precision base-2 logarithm
	vrs8_log2f: Eight-valued single precision base-2 logarithm
	vrsa_log2f: Array single precision base-2 logarithm
	vrs4_powf: Four-valued single precision power function
	vrsa_powf: Array single precision power function
	vrs4_powxf: Four-valued single precision power function with constant y
	vrsa_powxf: Array single precision power function, constant y
	vrd2_sin: Two-valued double precision Sine
	vrd4_sin: Four-valued double precision Sine
	vrda_sin: Array double precision Sine
	vrs4_sinf: Four-valued single precision Sine
	vrsa_sinf: Array single precision Sine
	vrd2_sincos: Two-valued double precision Sine and Cosine
	vrda_sincos: Array double precision Sine and Cosine
	vrs4_sincosf: Four-valued single precision Sine and Cosine
	vrsa_sincosf: Array single precision Sine and Cosine

	References
	Subject Index
	Routine Index

