

Assistance in Lustre administration

Roland Laifer

STEINBUCH CENTRE FOR COMPUTING - SCC

Basic Lustre concepts

- Lustre componets:
 - Clients (C) offer standard file system API
 - Metadata servers (MDS) hold metadata, e.g. directory data
 - Object Storage Servers (OSS) hold file contents and store them on Object Storage Targets (OSTs)
 - All communicate efficiently over interconnects, e.g. with RDMA

bwGRiD storage system (bwfs) concept

 Grid middleware for user access and data exchange

bwGRiD storage system building blocks

- Gbit Ethernet
- 10 Gbit Ethernet
- 4X DDR InfiniBand
- 4 Gbit Fibre Channel
- 3 Gbit SAS

Central file system backup

Central file system work: Same structure with 3 OSS pairs

Local file systems: Same structure with 4x2 instead of 4x4 enclosures per OSS pair

bwGRiD storage system hardware in detail

File system:	128 TB central (backup)	256 TB central (work)	32 TB local (each site)	64 TB local (each site)
Location:	KIT CS	KIT CS	KIT CN, Freiburg, Mannh., Heidelb.	Stuttgart, Ulm, Tübingen
Metadata Server (MDS):				
# of servers	2	2	2	2
# of MSA2212fc	1	1	1	1
# of MSA2000 disk encl.	1	1	1	1
# of disks	24 * 146 GB SAS	24 * 146 GB SAS	24 * 146 GB SAS	24 * 146 GB SAS
Object Storage Server :				
# of servers	2	6	2	2
# of MSA2212fc	4	12	4	4
# of MSA2000 disk encl.	12	36	4	4
# of disks	192 * 1 TB SATA	576 * 1 TB SATA	96 * 750 GB SATA	96 * 1 TB SATA
Capacity	128 TB	256 TB	32 TB	64 TB
Throughput	1500 MB/s	3500 MB/s	1500 MB/s	1500 MB/s

Lustre administration challenges (1)

- Very complicated hardware
 - For example see building blocks slide
 - For each component driver, firmware or subcomponent may fail
 - Subcomponents are cables, adapters, caches, memory, ...
 - With extreme performance new hardware bugs show up
 - Some are related to timing issues
- Complex Lustre software
 - Roughly 250,000 lines of code
 - Lustre error messages are still hard to understand
 - Focus on very high performance
 - e.g. requires low level Linux kernel interfaces
 - Distributed system at large scale
 - Not easy to find out which part is causing problems

Lustre administration challenges (2)

- Inefficient user applications can cause trouble
 - e.g. reading and writing to same file area from many nodes
 - Not easy to find out which user is causing the trouble
- Importance of the file system
 - Complete clusters are not usable if the file system hangs
 - Corrupted or deleted user data is very annoying
- This talk tries to help with most challenges

Best practices for MSA2000 storage systems

- Also see new documentation from HP
 - HP Scalable File Share G3 MSA2000fc How To
- Firmware upgrades and broken controller replacement
 - Either unmount clients and stop all servers
 - Requires full maintenance and waiting for jobs to complete
 - Or shutdown the affected server pairs which causes I/O to hang
 - Risk of some application I/O errors and follow-on problems
 - Might cause job aborts due to the batch system wall clock limit
 - Disable automatic partner firmware upgrade
 - i.e. upgrade each controller separately
- Multiple broken disks per enclosure
 - Up to 2 disks can be exchanged at the same time
 - Contact support with 3 or more broken disks per enclosure
- Enable email alerts

Check system status

- Lustre status
 - Check for LustreError messages in logs of servers and clients
 - pdsh -a grep LustreError: /var/log/messages
 - Without LustreError messages Lustre usually works fine
 - LustreError messages require further investigation, see next slides
 - Check if connections on all clients show status FULL
 - pdsh -a 'cat /proc/fs/lustre/*/*/_server_uuid' | dshbak -c
- Overall system health
 - Use our script z20-hpsfs-check-health
 - Requires clean system status to create proper reference files
 - Understanding the output needs some experience
- Performance checks
 - e.g. with dd on each OST lun, see our upgrade documentation
 - Should be done before and after each maintenance

Understanding Lustre messages (1)

- LBUG means Lustre bug and indicates a software bug
 - Should be reported, could be searched on bugzilla.lustre.org
- String evict means aborted communication after timeout
 - Message on server shows client IP address and timestamp
 - Use batch system history to identify user job(s)
 - One possible reason is hardware failure, e.g. of InfiniBand adapter
 - Other possible reason are inefficient applications
 - timeout due to lots of conflicting requests from many clients
 - e.g. caused by many tasks writing to the same file area
- Remounting filesystem read-only could indicate fatal failure
 - Usually due to a storage subsystem problem
 - Also check for SCSI error messages

10

Understanding Lustre messages (2)

- Displayed error codes are standard Linux codes
 - Show explanation of their meaning
 - grep -hw <error number> /usr/include/*asm*/errno*.h
 - e.g. return code -122 means Quota exceeded
- Identify clients by UUID shown in logs
 - Example of such a log entry
 - Feb 21 14:35:08 pfs1n10 ... LustreError: ... timeout on bulk PUT ... o3->7fc2aa1f-6d70-21c3-4df3-fee6cf6676d1 ...
 - Find out client IP address on corresponding server
 - pfs1n10# /usr/sbin/lctl get_param "*.*.exports.*.uuid" | \ grep 7fc2aa1f-6d70-21c3-4df3-fee6cf6676d1

Monitoring user activity

- Use collectl to monitor I/O usage
 - Installed on servers, installation on clients required
 - http://collectl.sourceforge.net/
 - Show read/write rates on clients or servers
 - pdsh -a collectl -s I -i1 -c5
 - Show metadata rates on client
 - collectl -sl --lustopts M
- Use Lustre statistics to find clients with high I/O usage
 - Useful script to execute on each server (Lustre >= 1.8.2 only!)
 - https://bugzilla.lustre.org/attachment.cgi?id=29248
- No easy way to check which user on client is doing I/O
 - Sorting open files by update time might give hints
 - Is -Irht `lsof | grep /bwfs/ | perl -e'while(<STDIN>) \
 {if (\$_ =~ m|.*(/bwfs/\S*)|) {if (-f \$1) {\$all .= " \$1";}}}; print "\$all\n";'`

Investigate reason for hanging file system (1)

- Check if client shows all services (OSTs and MDT)
 - Ifs df
- Check if logs report frequent problems for a service
 - pdsh -a grep LustreError: /var/log/messages
- Check if servers are unhealthy or recovering and uptime
 - pdsh -a cat /proc/fs/lustre/health_check
 - pdsh -a 'lctl get param "*.*.recovery status" | grep status:
 - pdsh -a uptime
- Check if all Lustre services are still mounted normally
 - pdsh -a 'mount | grep lustre | wc -l' | dshbak -c
 - pdsh -a grep read-only /var/log/messages

13

Investigate reason for hanging file system (2)

- Identify server and mount point for affected service
 - pdsh -a 'lctl get_param *.*.mntdev'
 - Also compare /opt/hp/sfs/scripts/filesystem.csv
- Find out affected storage device
 - VOLID=`pdsh -w server grep mpathnum /var/lib/multipath/bindings \ perl -ne 'if (/(\w{16})\s*\$/) {print "\$1\n"}'`
 - forallmsas show volumes; done | grep -B1 \$VOLID
- Show critical and warning events on affected MSA2000
 - msa2000cmd.pl msa show events last 30 error
- Check LEDs on the storage system
- Do not forget to contact support at an early stage
- Carefully plan each step to repair the problem

Further information

- Detailed step by step information for upgrades
 - bwrepo.bfg.uni-freiburg.de below ~unikarlsruhe/repo/G3.2_upgrade
- More talks like this
 - http://www.scc.kit.edu/produkte/lustre
 - e.g. *Using file systems at HC3* for hints to use Lustre efficiently
- HP SFS documentation
 - http://www.hp.com/go/sfs-docs
- Lustre in general
 - http://www.lustre.org/
- Lustre future
 - http://www.opensfs.org/
 - http://www.whamcloud.com/

15