

Mixing HDD and Flash Storage on Parallel File Systems

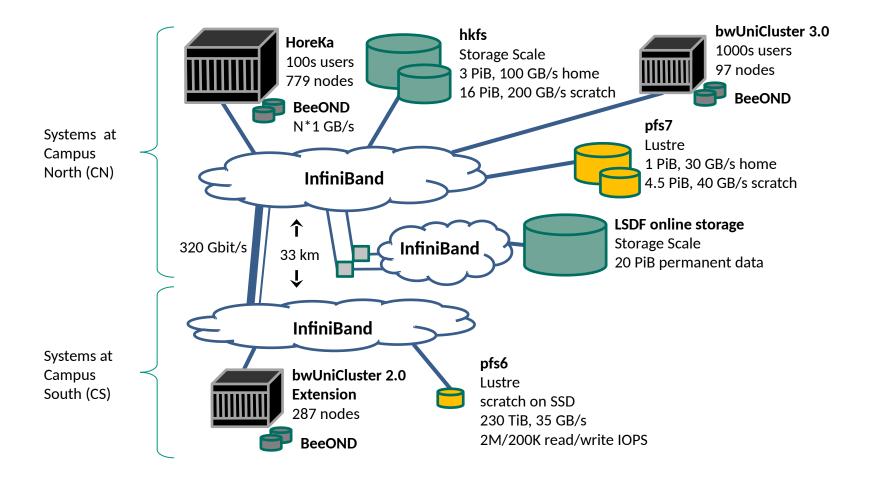
Roland Laifer

SCIENTIFIC COMPUTING CENTRE - SCC

Background

- Karlsruhe Institute of Technology (KIT)
 - Merger of University and Research Center Karlsruhe
 - More than 10000 employees and 22000 students
- Scientific Computing Center (SCC)
 - Computing center of KIT
- Scientific Computing und Simulation (SCS)
 - Department of SCC, operates HPC systems
 - Tier 3 system bwUniCluster 3.0, part of bwHPC
 - Tier 2 system HoreKa, part of NHR
- Roland Laifer
 - HPC file system administrator since 30+ years

About this talk



- Why not using different parallel file systems (PFS) for HDD and flash?
 - Actually, different PFS make sense in some cases
 - With different PFS users have to select the right file system
 - Typically this is not done
- Why mixing HDDs and flash (SSDs) makes sense
 - If high capacity is needed flash is still much more expensive than HDDs
 - SSDs are much faster for small files and random I/O
 - Even with the overhead of a PFS
 - Note: For AI workloads if possible use local file system on SSDs of nodes
- ★ This talk will present options for mixing HDDs and SSDs

HPC and parallel file systems at KIT

2025-05-07

Details of PFS hardware

- pfs6 Lustre full flash work
 - Used with HPC workspace tools on bwUniCluster 3.0 and HoreKa
 - DDN SFA400NV (4 servers) with 24 SSDs
- hkfs IBM Storage Scale home and work on SSDs and HDDs
 - Used as home/project and workspace on HoreKa
 - 10 servers with 20 Lenovo DE6000 RAID systems and 2260 HDDs
 - 4 IBM ESS3200 with 96 SSDs
- pfs7 Lustre home and work on SSDs and HDDs
 - Used as home and workspace on bwUniCluster 3.0
 - DDN SFA400NVX2 (4 servers) with 48 SSDs (QLC) for home
 - DDN SFA400NVX2 (4 servers) with 24 SSDs and 328 HDDs for work

Option 1: Placement rules

- Placement rules to determine if files are stored on SSDs or HDDs
 - Possible with policy engine of IBM Storage Scale
 - Examples
 - Place files with extension .txt or .sh on SSD pool
 - Place files with extension .iso or .jpg on HDD pool
 - Place all files below software directory on SSD pool
 - Note: Placement is decided at creation time
 - Placement depending on file size is not possible
- Problem: General rule for good placement of all files not possible

Option 2: Migrate data

- Migrate data between SSD and HDD pool
 - Used for our hkfs IBM Storage Scale file systems
 - No experience but would be possible for Lustre, too
 - Placement rules to initially store all files on SSDs
 - Policy rules for migration to HDDs
 - Use weight to select files based on access time and size
 - Start if SSD pool usage is above 70%, stop if below 50%
 - Currently no rule to migrate data back
- Problem: Data creation might be faster than migration
 - Mainly happened after small files were selected and migration was slow
 - Solution: Adapt placement rule, store on HDDs if usage is above 80%
- Disadvantage: Additional I/O for data migration

Experiences with data migration

- Experiences with policy runs
 - Scanning the whole file system is fast
 - 700 million files and directories in 15 minutes
 - Servers with appropriate role participate in scanning and migration
 - Policy runs might fail if another administrative command is running
- General observations
 - Much more data is actively used than expected
 - Policy might find no data on SSDs which was not accessed during last day
 - Still a lot of read activity from HDD pool
 - No way for users to check if data is located on HDD or SSD pool
 - Would be useful for performance validation

Option 3: Place small part of files on SSDs

- Place first KBs of all files on SSD pool and rest on HDD pool
 - Used with Progressive File Layout (PFL) on Lustre pfs7 work file system
 - Ifs setstripe -E 128K -c 1 -p <fs>.ddn_ssd -E 4G -c 1 -p <fs>.ddn_hdd -E 16G -c 4 -p <fs>.ddn_hdd -E -1 -c -1 -p <fs>.ddn_hdd </path/to/fs>
 - Files below 128 KB are completely located on SSD pool
 - User quota limits on SSD pool to prevent heavy SSD usage
 - Currently IBM Storage Scale can only store files on one pool
 - Request to extend capabilities (IBM RFE) has just been created
 - Note: Initially make sure to create enough inodes on SSD pool

Scientific Computing Center

Experiences with using PFL on SSD/HDD pool

- Why this configuration makes sense
 - Large files mostly located on HDD
 - HDD pool provides good streaming performance
 - All small files located on SSDs
 - Small file access creates random I/O which benefits from SSDs
 - Benchmarks confirmed our performance expectations
- General observations
 - Up to now no issues detected
 - Only one month of production experience on bwUniCluster 3.0

Summary

- Currently mixing SSDs and HDDs on PFS usually makes sense
 - For price and performance reasons
- Talk presented possible solutions
 - Using policy engine of IBM storage Scale
 - Using Progressive File Layout of Lustre
- My talks about parallel file systems
 - http://www.scc.kit.edu/produkte/lustre.php
 - roland.laifer@kit.edu

