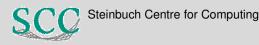


#### Lessons learned from parallel file system operation

#### **Roland Laifer**

STEINBUCH CENTRE FOR COMPUTING - SCC

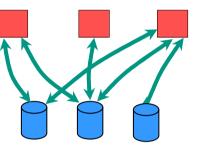



KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

www.kit.edu

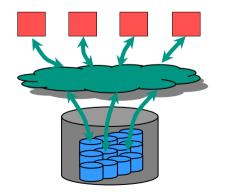
#### **Overview**




- General introduction to parallel file systems
  - Lustre, GPFS and pNFS compared
- Basic Lustre concepts
- Lustre systems at KIT
- Experiences
  - with Lustre
  - with underlying storage
- Options for sharing data
  - by coupling InfiniBand fabrics
  - by using Grid protocols



#### Parallel file system vs. distributed file system




- What is a distributed file system?
  - File system data is usable at the same time from different clients



With multiple servers applications see separate file systems **Examples: NFS, CIFS** 

- What is a parallel file system (PFS)?
  - Distributed file system with parallel data paths from clients to disks



Even with multiple servers applications typically see one file system **Examples: Lustre, GPFS** 



## When and why is a PFS required?



- Main PFS advantages
  - Throughput performance
  - Scalability: Usable by 1000s of clients
  - Lower management costs for huge capacity
- Main PFS disadvantages
  - Metadata performance low compared to many separate file servers
  - Complexity: Management requires skilled administrators
  - Most PFS require adaption of clients for new Linux kernel versions
- Which solution is better?
  - This depends on the applications and on the system environment
  - Price also depends on the quality and is hard to compare
    - e.g. huge price differences of NFS products
  - If PFS is not required, distributed file system is much easier



### **PFS products (1): Lustre**



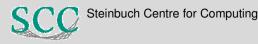
- Status
  - Huge user base: 70% of Top100 recently used Lustre
  - Lustre products available from many vendors
    - DDN, Cray, Xyratex, Bull, SGI, NEC, Dell
  - Most developers left Oracle and now work at Whamcloud
    - OpenSFS is mainly driving Lustre development
- Pros and Cons
  - + Nowadays runs very stable
  - + Open source, open bugzilla
  - + Scalable up to 10000s of clients
  - + High throughput with multiple network protocols and LNET routers
  - Client limitations:
    - Only supports Linux, NFS/CIFS gateways possible
    - Not in the kernel, i.e. adaptions required to be usable with new kernels
  - Limited in its features, e.g. no data replication or snapshots

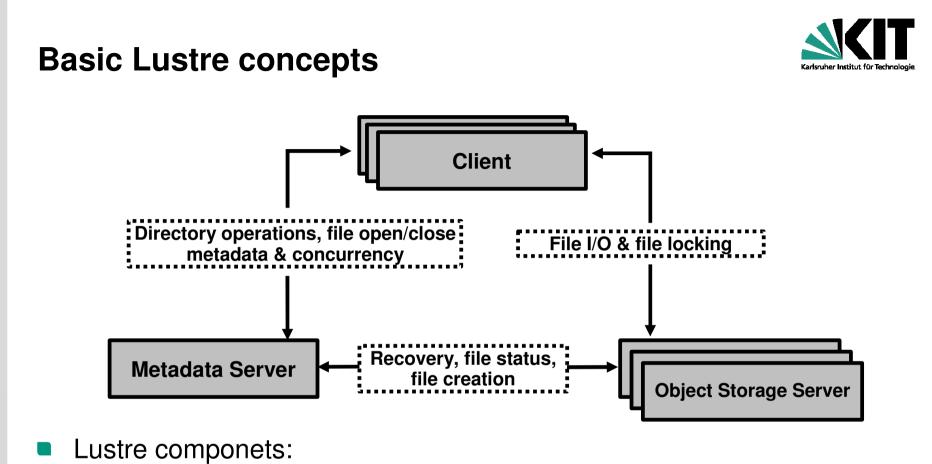


## **PFS products (2): IBM GPFS**



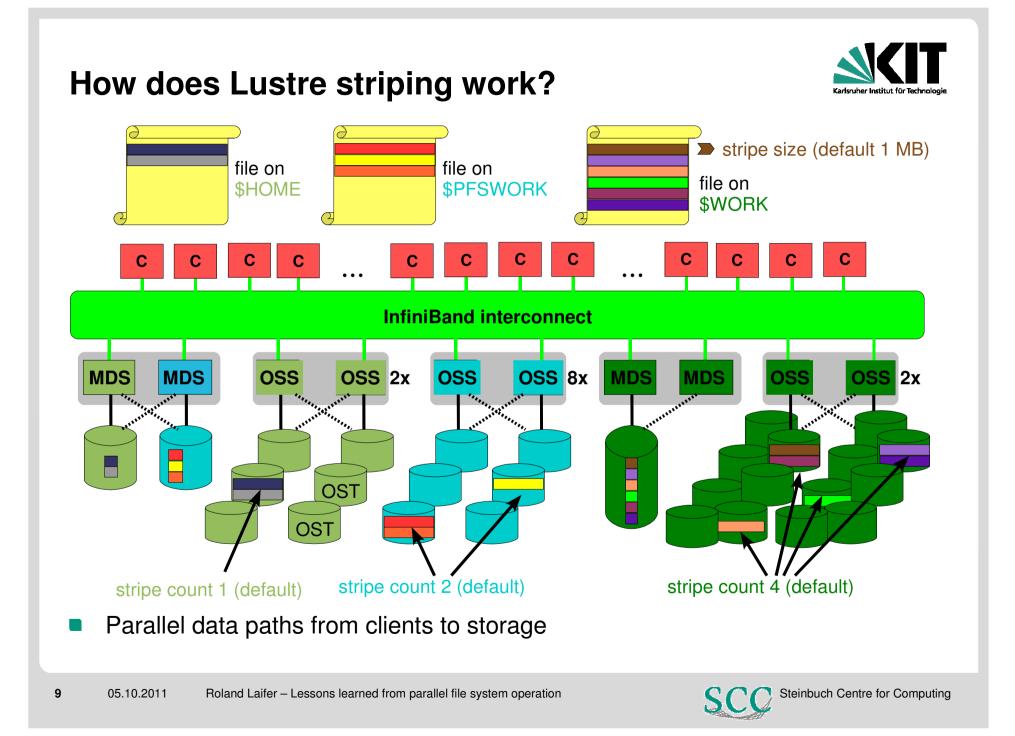
- Status
  - Large user base, also widely-used in industry
  - Underlying software for other products
    - e.g. IBM Scale Out File Services
- Pros and Cons
  - + Runs very stable
  - + Offers many useful features
    - Snapshots, data and metadata replication, online disk removal
    - Integrated Lifecycle Management (ILM), e.g. allows easy storage renewal
  - + Scalable up to 1000s of clients
  - + Natively supported on AIX, Linux and Windows Server 2008
  - Client limitations:
    - Not in the kernel, i.e. adaptions required to be usable with new kernels
  - Vendor lock-in
    - IBM is known to frequently change their license policy





# PFS products (3): Parallel NFS (pNFS)

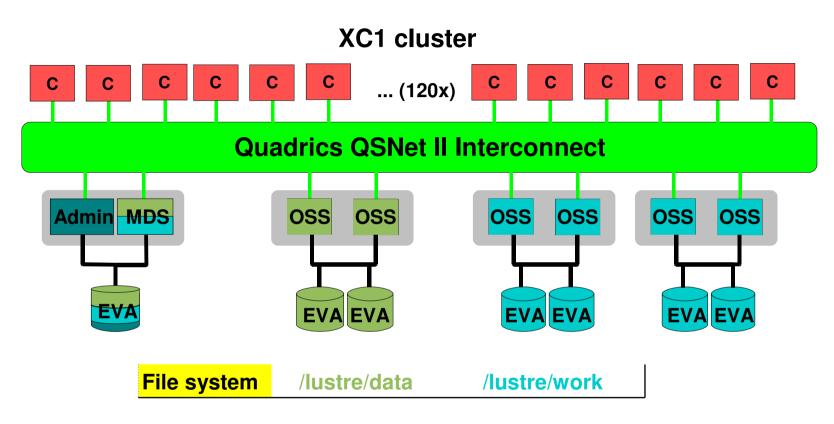


#### Status


- Standard is defined
  - NFS version 4.1, see RFCs 5661, 5663, 5664
  - 3 different implementations: files, blocks, objects
- Servers largely ready from different vendors
  - NetApp, EMC, Panasas, BlueArc
- Client for files implementation in Linux kernel 3.0 and RHEL 6.1
  - Windows client developed by University of Michigan (CITI)
- Pros and Cons
  - + Standard and open source
    - + Will be part of the Linux kernel
  - + Server solutions from multiple vendors
  - + Metadata and file data separation allows increased performance
    - + Fast migrating or cloning of virtual machine disk files with Vmware ESX
  - Stability:
    - Linux client still not completely ready
    - Complicated product, e.g. because of 3 different implementations
    - Lots of bugs expected when first production sites start





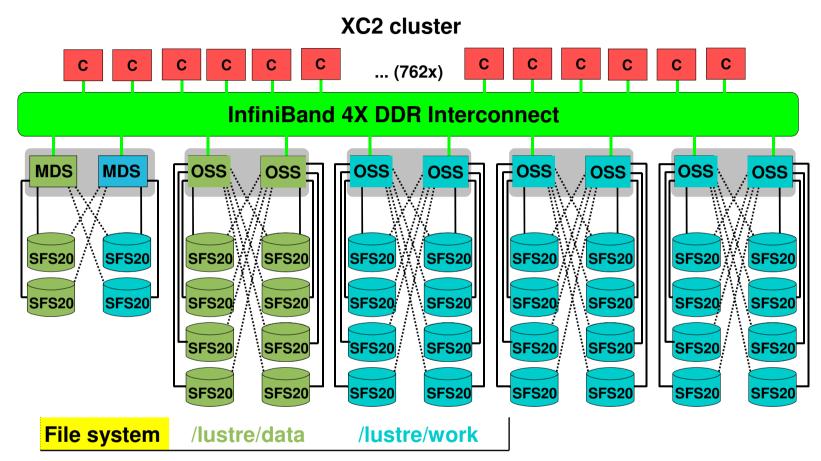

- Clients (C) offer standard file system API
- Metadata servers (MDS) hold metadata, e.g. directory data
- Object Storage Servers (OSS) hold file contents and store them on Object Storage Targets (OSTs)
- All communicate efficiently over interconnects, e.g. with RDMA



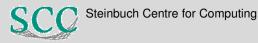


## Lustre file systems at XC1



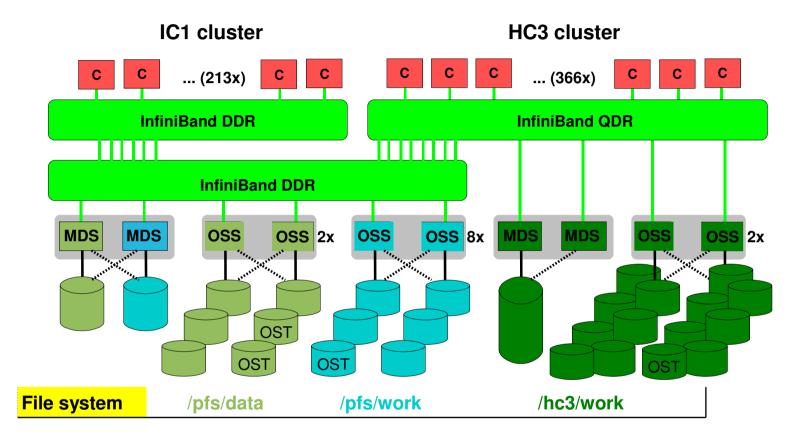



- HP SFS appliance with HP EVA5000 storage
- Production from Jan 2005 to March 2010




### Lustre file systems at XC2






- HP SFS appliance (initially) with HP SFS20 storage
- Production since Jan 2007

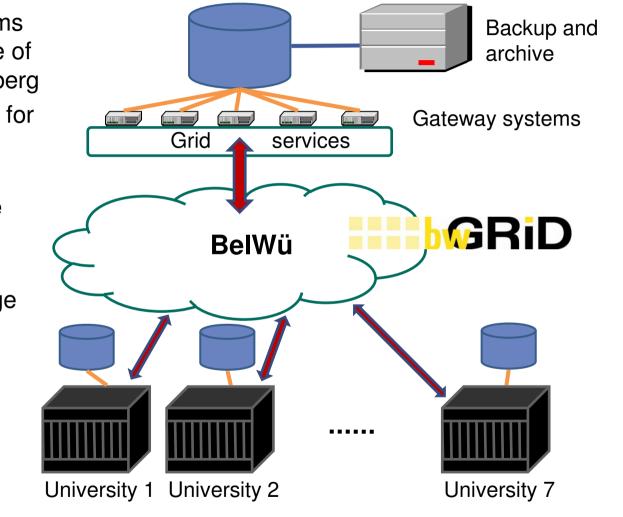


#### Lustre file systems at HC3 and IC1





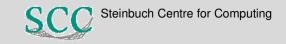
- Production on IC1 since June 2008 and on HC3 since Feb 2010
- pfs is transtec/Q-Leap solution with transtec provigo (Infortrend) storage
- hc3work is DDN (HP OEM) solution with DDN S2A9900 storage




#### bwGRiD storage system (bwfs) concept



Steinbuch Centre for Computing


- Lustre file systems at 7 sites in state of Baden Württemberg
- Grid middleware for user access and data exchange
- Production since Feb 2009
- HP SFS G3 with MSA2000 storage



#### Summary of current Lustre systems



| System name       | hc3work               | xc2                       | pfs                               | bwfs                              |
|-------------------|-----------------------|---------------------------|-----------------------------------|-----------------------------------|
| Users             | KIT                   | universities,<br>industry | departments,<br>multiple clusters | universities, grid<br>communities |
| Lustre version    | DDN<br>Lustre 1.6.7.2 | HP<br>SFS G3.2-3          | Transtec/Q-Leap<br>Lustre 1.6.7.2 | HP<br>SFS G3.2-[1-3]              |
| # of clients      | 366                   | 762                       | 583                               | >1400                             |
| # of servers      | 6                     | 10                        | 22                                | 36                                |
| # of file systems | 1                     | 2                         | 2                                 | 9                                 |
| # of OSTs         | 28                    | 8 + 24                    | 12 + 48                           | 7*8 + 16 + 48                     |
| Capacity (TB)     | 203                   | 16 + 48                   | 76 + 301                          | 4*32 + 3*64 +<br>128 + 256        |
| Throughput (GB/s) | 4.5                   | 0.7 + 2.1                 | 1.8 + 6.0                         | 8*1.5 + 3.5                       |
| Storage hardware  | DDN S2A9900           | HP SFS20                  | transtec provigo                  | HP MSA2000                        |
| # of enclosures   | 5                     | 36                        | 62                                | 138                               |
| # of disks        | 290                   | 432                       | 992                               | 1656                              |



#### **General Lustre experiences (1)**

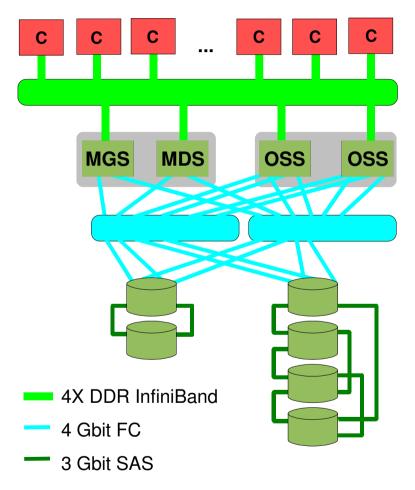


- Using Lustre as home directories works
  - Problems with users creating 10000s of files per small job
    - Convinced them to use local disks (we have at least one per node)
  - Problems with unexperienced users using home for scratch data
    - Also puts high load on backup system
  - Enabling quotas helps to quickly identify bad users
    - Enforcing quotas for inodes and capacity is planned
  - Restore of home directories would last for weeks
    - Idea is to restore important user groups first
    - Luckily until 2 weeks ago complete restore was never required



## **General Lustre experiences (2)**




- Monitoring performance is important
  - Check performance of each OST during maintenance
    - We use dd and parallel\_dd (own perl script)
  - Check which users are heavily stressing the system
    - We use collectl and and script attached to bugzilla 22469
    - Then discuss more efficient system usage, e.g. striping parameters
- Nowadays Lustre is running very stable
  - After months MDS might stall
    - Usually server is shot by heartbeat and failover works
  - Most problems are related to storage subsystems



#### **Complexity of parallel file system solutions (1)**



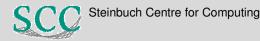
- Complexity of underlying storage
  - Lots of hardware components
    - Cables, adapters, memory, caches, controllers, batteries, switches, disks
    - All can break
  - Firmware or drivers might fail
  - Extreme performance causes problems not seen elsewhere
    - Disks fail frequently
    - Timing issues cause failures





## **Complexity of parallel file system solutions (2)**

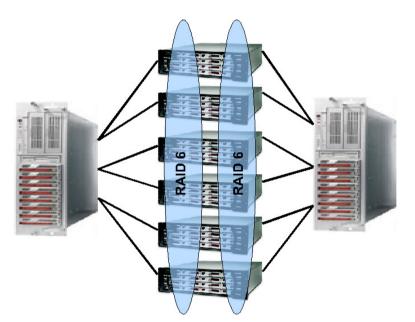



- Complexity of parallel file system (PFS) software
  - Complex operating system interface
  - Complex communication layer
  - Distributed system: components on different systems involved
    - Recovery after failures is complicated
    - Not easy to find out which one is causing trouble
  - Scalability: 1000s of clients use it concurrently
  - Performance: low level implementation required
    - Higher level solutions loose performance
- Expect bugs in any PFS software
- Vendor tests at scale are very important
- Lots of similar installations are benefical



#### **Experiences with storage hardware**




- HP SFS20 arrays hang after disk failure under high load
  - Happened at different sites for years
  - System stalls, i.e. no file system check required
- Data corruption at bwGRiD sites with HP MSA2000
  - Firmware of FC switch and of MSA2000 most likely reason
  - Largely fixed by HP action plan with firmware / software upgrades
- Data corruption with transtec provigo 610 RAID systems
  - File system stress test on XFS causes RAID system to hang
  - Problem is still under investigation by Infortrend
- SCSI errors and OST failures with DDN S2A9900
  - Caused by single disk with media errors
  - Happened twice, new firmware provides better bad disk removal
- Expect severe problems with midrange storage systems



#### **Interesting OSS storage option**

Karlsruher Institut für Technologie

- OSS configuration details
  - Linux software RAID6 over RAID systems
    - RAID systems have hardware RAID6 over disks
    - RAID systems have one partition for each OSS
- No single point of failure
  - Survives 2 broken RAID systems
  - Survives 8 broken disks
- Good solution with single RAID controllers
  - Mirrored write cache of dual controllers often is bottleneck





## Future requirements for PFS / Lustre



- Need better storage subsystems
- Fight against silent data corruption
  - It really happens
    - Finding responsible component is a challenge
  - Checksums quickly show data corruption
    - Provide increased probability to avoid huge data corruptions
  - Storage subsystems should also check data integrity
    - E.g. by checking the RAID parity during read operations
    - T10 DIF and T10 DIX might help for future systems
- Support efficient backup and restore
  - Need point in time copies of the data at different location
  - Fast data paths for backup and restore required
  - Checkpoints and differential backups might help



# Sharing data (1): Extended InfiniBand fabric



- Examples:
  - IC1 and HC3
  - bwGRiD clusters in Heidelberg and Mannheim (28 km distance)
    - InfiniBand coupled with Obsidian Longbow over DWDM
- Requirements:
  - Select appropriate InfiniBand routing mechanism and cabling
  - Host based subnet managers might be required
- Advantages:
  - Same file system visible and usable on multiple clusters
  - Normal Lustre setup without LNET routers
  - Low performance impact
- Disadvantages:
  - InfiniBand possibly less stable
  - More clients possibly cause additional problems



## Sharing data (2): Grid protocols



- Example:
  - bwGRiD
    - gridFTP and rsync over gsiSSH to copy data between clusters

## Requirements:

- Grid middleware installation
- Advantages:
  - Clusters usable during external network or file system problems
  - Metadata performance not shared between clusters
  - User ID unification not required
  - No full data access for remote root users
- Disadvantages:
  - Users have to synchronize multiple copies of data
  - Some users do not cope with Grid certificates



#### **Further information**



- SCC talks
  - Lustre administration, performance monitoring, best practices: http://www.scc.kit.edu/produkte/lustre.php
- Parallel file systems
  - Lustre
    - http://www.lustre.org/
    - http://www.whamcloud.com/
    - http://www.opensfs.org/
  - IBM GPFS
    - http://www.ibm.com/systems/software/gpfs/
  - pNFS
    - http://www.pnfs.com/

