Performance Monitoring in an HP SFS Environment

Roland Laifer

Computing Centre (SSCK)
University of Karlsruhe

Laifer@rz.uni-karlsruhe.de
Outline

» Motivation

» Performance monitoring on different layers

» Examples
Why performance monitoring?

» Identify bottlenecks

» Investigate possible throughput
 ➢ Is unused bandwidth left for additional applications?

» Identify applications with high IO usage
 ➢ Try to optimize the IO behaviour of these applications

» Identify possible software or hardware problems
Typical IO on an OSS in production:
- See picture on right
- Created by hpls_plot.sh

But: Which applications are producing most IO?
- About 20 apps are running concurrently

Use collectl to find nodes with high IO usage
- pdsh -a collectl -s1 -odHx
 -l LusKBS:1000 -i1 -c100
 • This shows clients with throughput > 1 MB/s

Use batch system to identify users on these nodes
Performance monitoring on different layers

Possible tools:
1. bonnie++, dd, or ost_perf_check.bash
2. collectl
3. collectl, or qselantest
4. collectl
5. PortPerfShow
6. EVAPerf
Performance monitoring on the application layer

» Applications for performance measurement

➢ bonnie++ -d /lustre/work

```
-----Sequential Output----- --Sequential Input-- --Random--
-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP
8G 13473   99   116666  27 95041   40 12930   99   178616  43 944.6
```

➢ /usr/opt/hpls/diags/bin/ost_perf_check.bash --parallel --mount-point /lustre/work --remote-shell ssh --clients "xc0n8 xc0n9"

Max Write: 115.44 MiB/sec (121.05 MB/sec)
Max Read: 181.08 MiB/sec (189.87 MB/sec)

• Displayed units are wrong and should be exchanged

➢ time dd if=/dev/zero of=test1 bs=1M count=10000

```
real    1m26.824s   (i.e. 115 MB/s)
```
Performance monitoring on the client OS layer

» Monitoring Lustre client performance on command line

- /usr/sbin/collectl -sl -oh

 # Reads ReadKB Writes WriteKB Open Close GAttr SAttr Seek ...
 0 0 310 318156 0 0 2 0 0 ...
 16 1845 316 323993 10 10 103 0 0 ...

 • Peaks might be lost because of 10 sec default time interval

» Long term monitoring with collectl as daemon

- Example for collectl.conf file:
 DaemonCommands = -f /tmp/ -r00:01,7 -m -F60 -scdmxl -oz

- Start collectl as daemon
 • service collectl start

- Process collected raw file
 • collectl -p xc0n3-20050907-152640.raw -sd -odh
Performance monitoring on the MDS or OSS

» Quadrics performance

- qselantest | grep bytes | grep MB
 0: 1048576 bytes 1325.26 uSec 791.23 MB/s
 • This shows possible Quadrics throughput
 • Unit is wrong and should be MiB/s

- collectl -sx –oh
 • This shows current Quadrics throughput
 • MB-Out shows always „0“ because Lustre uses DMA for writes

» Lustre performance on MDS or OSS

- ssh xc1-1s4 collectl -sl -oh -c2 -i1

<table>
<thead>
<tr>
<th></th>
<th>READ OPS</th>
<th>READ KB</th>
<th>WRITE OPS</th>
<th>WRITE KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>82473</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>169</td>
<td>84517</td>
</tr>
</tbody>
</table>
Performance monitoring on fibre channel

» FC switch performance

- `xc1san1:admin> PortPerfShow`

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>86</td>
<td>85</td>
<td>43</td>
<td>43</td>
<td>42</td>
<td>42</td>
<td>504</td>
<td>0</td>
<td>3.0k</td>
<td>1.8k</td>
<td>343m</td>
</tr>
<tr>
<td></td>
<td>22k</td>
<td>84</td>
<td>85</td>
<td>43</td>
<td>40</td>
<td>43</td>
<td>41</td>
<td>22k</td>
<td>0</td>
<td>136</td>
<td>136</td>
<td>339m</td>
</tr>
</tbody>
</table>

- Identify ports of OSS and EVA controllers
Performance monitoring on EVA storage systems (1)

» What is EVAPerf?
 - Allows monitoring of all EVA components
 • Storage arrays, virtual and physical disks, and FC ports
 - Automatically installed with command view EVA 4.x
 • Runs on the Storage Management Appliance
 - For initial documentation see command view EVA user guide
 • For detailed description of displayed data see white paper
 - Command evaperf for command line monitoring
 • Below C:\Program Files\Hewlett-Packard\EVA Performance Monitor
 - Windows Perfmon for graphical monitoring

» Save all current component statistics to a file
 - evaperf all -KB -fo E:\evaperf_all.log
 • MB/s values are based on 1 MB = 1,000,000 bytes
Performance monitoring on EVA storage systems (2)

» Display current performance on storage arrays
 ➢ evaperf as
 Req/s MB/s
 991 121.56 5000-1FE1-5002-74D0

» Display physical disk activity
 ➢ evaperf pda
 Enc. Bay__1 Bay__2 Bay__3 Bay__4 Bay__5 ... Node
 5 12.56 13.60 11.64 14.39 11.27 ... 5000-1FE1-5002-74D0
 4 10.59 10.86 11.90 9.94 12.98 ... 5000-1FE1-5002-74D0

» Display virtual disk statistics
 ➢ evaperf vd
 ... Write Write Write Flush Mirror Prefetch ... Ctlr ...
 ... Req/s MB/s Latency MB/s MB/s MB/s ...
 ... 467 59.33 19.1 60.15 66.84 0.00 ... Y09P ...
 ... 502 60.68 17.5 59.23 67.90 0.00 ... Y07M ...
Second example: Identify hardware problems

» EVA controller had rebooted
 - WSEA reported this via email

» Performance monitoring actions
 - `dd` showed a small performance degradation
 - `collectl` showed that one OSS had only half throughput
 - `PortPerfShow` showed that rebooted controller was unused

» Further troubleshooting
 - `lfs getstripe` showed that only 7 of 8 OSTs were used
 - Also users complained that they could not read some files
 - Reboot of the corresponding OSS solved the problem
 - Underlying reason: EVA controller failover did not work
 - A new FC driver repaired this bug