# **WORKSHOP PROBLEM 2**

# Linear Static Analysis of a Simply-Supported Truss



# **Objectives:**

- Define a set of material properties using the beam library.
- Perform a static analysis of a truss under 3 separate loading conditions.
- Review results.

### **Model Description:**

Below is a finite element representation of the truss structure shown on page 2-1. The nodal coordinates provided are defined in the Global Cartesian Coordinate System (MSC/NASTRAN Basic system).

The roof frame shown in the attached figure consists of eleven wood and steel members. The wood members, have uniform cross section properties and act only as tension and compression members. (See page 2-5 for location.) The steel members, are bars that are capable of withstanding tension, compression, shear, and loads in the plane of the frame. (See page 2-5 for location.) The section properties for the steel members are supplied as problem data. All the steel members are welded end to end, however, the wood members are pinned end to end. The frame is supported by pinned connections in the horizontal and vertical directions at Grid Point 1 and in the vertical direction at Grid Point 7. In addition, all Grid Points have fixed out of plane translations and have constrained out of plane rotations.

**Hint:** DOF 345 for grid 1 thru 7 can be constrained by using the permanent single point constraint option in the GRID entry.



Grid Coordinates and Element Connectivities



- Subcase One will be only the gravity load due to the weight of both the wood and steel members.
- Subcase Two will be the snow drift load and the concentrated load. The snow drift load is in the vertical direction and is given as a varying running load. The load increases linearly with distance along the beam, from 0 at Grid Point 4 to 100 lbs/in. at Grid Point 1.
- Subcase Three will be the temperature load which is calculated as the temperature averages and applied at the joints. The joint temperatures are supplied as problem data. The stress-free reference temperature is 72.0 degrees F.

#### Table 2.1

| <b>Description of Element Properties</b> |              |                               |  |
|------------------------------------------|--------------|-------------------------------|--|
|                                          | material     | element type and cross setion |  |
| Top members, elements 1, 2, 3, and 4     | Steel        | Beam, Cross Section B         |  |
| Bottom members 9, 10 and 11              | Steel        | Beam, Cross Section A         |  |
| Interior members 5, 6, 7, 8              | Southen Pine | <b>Rod, Area</b> = 5.2 in2    |  |

#### Table 2.2

| Material Properties                 |                    |                   |  |  |
|-------------------------------------|--------------------|-------------------|--|--|
| Matieral                            | Steel Southern Pin |                   |  |  |
| Elastic Modulus                     | 2.90E 7 psi        | 1.76E 6 psi       |  |  |
| Poisson's Ratio                     | 0.32               |                   |  |  |
| Mass Density                        | 7.349E -4 lbm/in4  | 5.435E -5 lbm/in4 |  |  |
| Coefficient of Thermal<br>Expansion | 6.78E-6 in/deg. F  | 3.00e-6 in/deg. F |  |  |
| Reference Temperature               | 72 deg. F          | 72 deg. F         |  |  |
| Allowable tension stress            | 24000 psi          | 1900 psi          |  |  |
| Allowable compression stress        | 24000 psi          | 1900 psi          |  |  |
| Allowable shear stress              | 24000 psi          |                   |  |  |
| Gravitational Acceleration          | 386.4 in/sec2      | 386.4 in/sec2     |  |  |



#### Table 2.3

| Beam Dimensions                 |         |                |  |  |
|---------------------------------|---------|----------------|--|--|
| Cross Section A Cross Section B |         |                |  |  |
| Н                               | 8.0 in. | 6.0 in.        |  |  |
| W1                              | 3.0 in. | <b>3.0</b> in. |  |  |
| W2                              | 3.0 in. | 3.0 in.        |  |  |
| t                               | 0.5 in. | 0.5 in.        |  |  |
| t1                              | 0.5 in. | 0.5 in.        |  |  |
| t2                              | 0.5 in. | 0.5 in.        |  |  |

Table 2.4

| Temperature Distribution |             |  |
|--------------------------|-------------|--|
| Joint                    | Values      |  |
| 1                        | 45 deg. F.  |  |
| 2                        | 32 deg. F.  |  |
| 3                        | 60 deg. F.  |  |
| 4                        | 66 deg. F.  |  |
| 5                        | 60 deg. F.  |  |
| 6                        | 100 deg. F. |  |
| 7                        | 80 deg. F.  |  |

# Suggested Exercise Steps:

- Generate a finite element representation of the truss structure using (GRID), (CROD), and (CBAR) elements.
   (Hint: Remember to use permanent constraints for DOF 345.)
- Define material (MAT1) and element (PROD) and (PBARL) properties.
- Apply simply-supported boundary constraints (SPC1), inertial loads (GRAV), a temperature load (TEMP), and a distributed load (PLOAD1).
- Use the load and boundary condition sets to define loadcases (SUBCASE).
- Prepare the model for a linear static analysis (SOL 101).
- Submit it for a linear static analysis.
- Review results.

#### ID SEMINAR, PROB2

CEND

#### BEGIN BULK

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |

#### ENDDATA

## **Exercise Procedure:**

- 1. Users who are not utilitizing MSC/PATRAN for generating an input file should proceed to Step 20, otherwise, continue with step 2.
- 2. Create a new database called **prob2.db**.

| File/New        |      |
|-----------------|------|
| New Database No | ame: |

prob2

◆ Default

**Structural** 

**MSC/NASTRAN** 

OK

In the New Model Preferences form set the following:

Tolerance:

Analysis Code:

Analysis Type:

OK

3. Select a preset view by selecting the **Front View** icon on the toolbar.



4. Activate the entity labels by selecting the **Show Labels** icon on the toolbar.



5. Create the nodes by manually defining their respective coordinates:

#### ♦ Finite Elements

| Action: | Create |
|---------|--------|
| Object: | Node   |
| Method: | Edit   |

#### □ Associate with Geometry

Node Location List:

[0, 0, 0]

Apply

Repeat the previous operation to create the remaining nodes. Refer to the figure on page 2-3 for the nodal coordinates.

| Node Location List: | [144, 72, 0]  |
|---------------------|---------------|
| Apply               |               |
| Node Location List: | [192, 0, 0]   |
| Apply               |               |
| Node Location List: | [288, 144, 0] |
| Apply               |               |
| Node Location List: | [384, 0, 0]   |
| Apply               |               |
| Node Location List: | [432, 72, 0]  |
| Apply               |               |
| Node Location List: | [576, 0, 0]   |
| Apply               |               |

Next, manually define the truss segment connectivites with BAR2 elements using our newly created nodes. Again, refer to page 2-3 for connectivity information.

# ♦ Finite Elements Action: Create Object: Element Method: Edit Shape: Bar Topology: Bar2

| <i>Node 1</i> = | Node 1 |
|-----------------|--------|
| <i>Node</i> 2 = | Node 2 |
| Apply           |        |

Repeat the previous operation until all the truss segments have been created.



| Node 2 |  |
|--------|--|
| Node 4 |  |

| Node 4 |  |
|--------|--|
| Node 6 |  |

| Node 6 |  |
|--------|--|
| Node 7 |  |

| Node 2 |  |
|--------|--|
| Node 3 |  |

| Node 3 |  |
|--------|--|
| Node 4 |  |

| Node 4 |  |
|--------|--|
| Node 5 |  |

| Node 5 |  |
|--------|--|
| Node 6 |  |







6. Next, define a material using the specified modulus of elasticity and allowable stresses.

#### ♦ Materials

Action:

Object:

| Create    |
|-----------|
| Isotropic |

| Method:                        | Manual Input   |
|--------------------------------|----------------|
| Material Name:                 | southern_pine  |
| Input Properties               |                |
| Constitutive Model:            | Linear Elastic |
| Elastic Modulus =              | 1.76E6         |
| Density =                      | 5.435E-5       |
| Thermal Expan. Coeff =         | 3.00E-6        |
| <i>Reference Temperature =</i> | 72.0           |
| Apply                          |                |

Constitutive Model: ??? Tension Stress Limit = ??? Compression Stress Limit = (Enter material Limit)

Failure (Enter material limit)

Apply

In the *Current Constitutive Models* data box, you will see **Failure - [n/a,,,,]** - **[Active]** and **Linear Elastic - [,,,,] - [Active]** appear. Click on **Cancel** to close the form.

Cancel

7. Define another material for the model, steel.

| ♦ Materials |  |
|-------------|--|
| Action:     |  |
| Object:     |  |
| Method:     |  |

| Create       |
|--------------|
| Isotropic    |
| Manual Input |

| Linear Elastic |
|----------------|
| 2.90E7         |
| 0.32           |
| 7.349E-4       |
| 6.78E-6        |
| 72.0           |
|                |

| Constitutive Model:        | Failure                |
|----------------------------|------------------------|
| Tension Stress Limit =     | (Enter material limit) |
| Compression Stress Limit = | (Enter material Limit) |
| Shear Stress Limit =       | (Enter material Limit) |
| Apply                      |                        |

In the *Current Constitutive Models* data box, you will see **Failure - [n/a,,,,]** - **[Active]** and **Linear Elastic - [,,,,] - [Active]** appear. Click on **Cancel** to close the form.

Cancel

8. Next, reference the material that was created in the previous step. Define the properties of the truss segments using the specified cross-sectional data.



Action:

Create

#### Dimension:

Type:

Property Set Name:

#### Input Properties ...

Material Name:

Area:

OK

Add

Apply

# 17eu.

Select Members:

| 1 D |  |
|-----|--|
| Rod |  |

rod

| m:southern_pine |  |
|-----------------|--|
| ???             |  |

(Enter cross-sectional area)

Elm 5:8

9. Enter the properties for the steel members using bar elements with the beam library.

#### ♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties ...

Material Name

**Bar** Orientation

■ Associate Beam Section

| Create |  |
|--------|--|
| 1 D    |  |
| Beam   |  |

steel\_member\_a

| m:steel   |  |
|-----------|--|
| <0, 1, 0> |  |

Click the beam library icon:

| Create Sections |  |
|-----------------|--|
| ТГ              |  |
| Beam Library    |  |

| Action:           | Create         |
|-------------------|----------------|
| Type:             | Standard Shape |
| New Section Name: | section_a      |
| Н                 | 8              |
| W1                | 3              |
| W2                | 3              |
| t                 | 0.5            |
| tl                | 0.5            |
| <i>t</i> 2        | 0.5            |
| O.V.              |                |

Select Members:

Elm 9:11

| Add   |  |
|-------|--|
| Apply |  |

OK

OK

10. Repeat the procedure for the remaining sections of the truss.



| Create |
|--------|
| 1 D    |
| Beam   |

```
steel_member_b
```

#### Material Name

Bar Orientation

| m:steel   |  |
|-----------|--|
| <0, 1, 0> |  |

#### ■ Associate Beam Section

Click the beam library icon:



| Action:           | Create         |
|-------------------|----------------|
| Type:             | Standard Shape |
| New Section Name: | section_b      |
| Н                 | 6              |
| W1                | 3              |
| W2                | 3              |
| t                 | 0.5            |
| tl                | 0.5            |
| <i>t</i> 2        | 0.5            |
| ОК                |                |
| ОК                |                |
|                   |                |
| Select Members:   | Elm 1:4        |
| Add               |                |
| Apply             |                |

11. Shrink the elements by 10% for clarity; this allows us to easily assess the element connectivities. Use the **Display/Finite Elements...** option.

#### **Display/Finite Elements...**

Apply

FEM Shrink: 0.10

#### Cancel

- 12. Create three nodal constraints and apply them to the analysis model. These boundary conditions represent the simply-supported ends of the truss, the fixed out of plane translations, and the contrained rotations.
- 12a. The left-hand support is defined as follows:



12b. The right-hand support is located at the opposite end of the truss.

| Action:                   | Create       |
|---------------------------|--------------|
| Object:                   | Displacement |
| Type:                     | Nodal        |
| New Set Name:             | roller       |
| Input Data                |              |
| Translations < T1 T2 T3 > | < , 0, >     |



| Select Application Region                        |                                           |
|--------------------------------------------------|-------------------------------------------|
| Geometry Filter:                                 | ► FEM                                     |
| Select Nodes:                                    | Node 7                                    |
| Add                                              |                                           |
| ОК                                               |                                           |
| Apply                                            |                                           |
| c. The out of plane translations and as follows: | out of plane rotations can be constrained |
| ◆ Loads/BCs                                      |                                           |
| Action:                                          | Create                                    |

Object:

Type:

New Set Name:

| Input Data                |          |
|---------------------------|----------|
| Translations < T1 T2 T3 > | < , ,0>  |
| Rotations < R1 R2 R3 >    | <0, 0, > |
| ОК                        |          |
|                           |          |
| Select Application Region |          |
| Geometry Filter:          | ◆ FEM    |

Displacement

Nodal

out\_of\_plane

Geometry Filter:

Select Nodes:



Node 1:7

Apply

#### Figure 2.2 - Displacement Constraints



12d.Reset the display by selecting the **Reset Graphics** icon on the **Top Menu Bar**.



13. Deactivate the entity labels by selecting the **Hide Labels** icon on the toolbar.



14. Create the gravity load..

♦ Loads/BCs

Action:

Object:

Type:

| Create          |
|-----------------|
| Inertial Load   |
| Element Uniform |
| Element Uniform |

gravity\_load

Input Data...

*New Set Name:* 

Load/BC Set Scale Factor: Trans Accel < A1 A2 A3 >

| 386.4      |  |
|------------|--|
| <0, -1, 0> |  |

#### OK

Since the gravity load acts uniformly on the body, the application region is automatically set as the entire model.

Apply

15. Next, define the temperature load using fields.

| • | Fields |
|---|--------|
|---|--------|

Action:

Object:

Method:

| Create  |  |
|---------|--|
| Spatial |  |
| FEM     |  |

Field Name:

temp\_profile

Input Data ...

Enter the data into the table as shown below.

|   | Entity | Values |
|---|--------|--------|
| 1 | Node 1 | 45     |
| 2 | Node 2 | 32     |
| 3 | Node 3 | 60     |
| 4 | Node 4 | 66     |
| 5 | Node 5 | 60     |
| 6 | Node 6 | 100    |
| 7 | Node 7 | 80     |



Action:CreateObject:Temperature



Figure 2.3 - Temperature Loads



15a. Reset the display by selecting the **Reset Graphics** icon on the **Top Menu Bar**.



**Reset Graphics** 

16. Create a load case that references the inertial load and the boundary conditions that have already been defined.

#### ♦ Load Cases

Action:

Load Case Name:

Load Case Type:

Assign/Prioritize Loads/BCs

Create

gravity\_load

Static

Select all the Load/BC sets in the *Select Loads/BCs to Add to Spreadsheet* box by clicking on all of them.

Highlight Loads/BCs to Add to Spreadsheet Displ\_out\_of\_plane Displ\_pin Displ\_roller Inert\_gravity\_load

\* **<u>REMINDER</u>**: Make sure that the LBC Scale Factor column shows the proper value for each entry.

| OK    |  |
|-------|--|
| Apply |  |

17. Create a second load case that references the temperature load, and the boundary conditions that have already been defined.

| ◆ Load Cases    |                  |
|-----------------|------------------|
| Action:         | Create           |
| Load Case Name: | temperature_load |
| Load Case Type: | Static           |

#### Assign/Prioritize Loads/BCs

Select all the Load/BC sets in the Select Loads/BCs to Add to Spreadsheet box by clicking on all of them.

Highlight Loads/BCs to Add to Spreadsheet

Displ\_out\_of\_plane Displ\_pin Displ\_roller Tempe\_temperature\_load

If the inertial gravity load is in the spreadsheet, it can be removed as follows:

*Click the inertial gravity load in the spreadsheet.* 

**Remove Selected Rows** 

17a. Close the form.



18. Now you are ready to generate an input file for analysis.

Click on the Analysis radio button on the Top Menu Bar and complete the entries as shown here.

♦ Analysis

Action:

**Object:** 

Method:

Job Name:

**Translation Parameters...** 

**Analysis Deck** prob2

**Entire Model** 

Analyze

**OUTPUT2** Format:

MSC/NASTRAN Version:

OK

**Binary** ???

Set accordingly, here it is 70.

Apply

| Solution Type                   |                              |
|---------------------------------|------------------------------|
| Solution Type:                  | ◆ Linear Static              |
| Solution Parameters             |                              |
| Database Run                    |                              |
| Automatic Constraints           |                              |
| Data Deck Echo:                 | Sorted                       |
| ОК                              |                              |
| ОК                              |                              |
| Subcase Select                  |                              |
| Subcases For Solution Sequence: | gravity_load                 |
|                                 | temperature_load             |
|                                 | Default                      |
| Subcases Selected:              | (Click on this to deselect.) |
| ОК                              |                              |
|                                 |                              |

An MSC/NASTRAN input file called **prob2.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green.

19. Modify prob2a.bdf to include a third subcase for the snow-drift load.

Open the file **prob2.bdf** with a text editor. The text below defines a third subcase. Enter this text on the line before **BEGIN BULK**.

```
SUBCASE 3
$ Subcase name : snow_&_concentrated_load
SUBTITLE=snow & concentrated load
spc = 2
load = 5
disp = all
spcforce = all
force = all
```

This text describes the snow drift load for the third subcase, entire this text on the line before **ENDDATA**, which is at the very end of the file.

PLOAD1,5,1,FY,FRPR,0.0,-100.,1.0,-50. PLOAD1,5,2,FY,FRPR,0.0,-50.,1.0,0.0 PLOAD1,5,10,FY,LE,36.,-2000.

#### MSC/PATRAN Users should proceed to step 21.

## Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data from the **Model Description** section at the beginning of the exercise. The result should be similar to the output below.

20. MSC/NASTRAN Input File: prob2a.dat

```
ID SEMINAR, PROB2
TIME 5
SOL 101
CEND
TITLE = GARAGE ROOF FRAME
SUBTITLE = WOOD AND STEEL MEMBERS
   SPC = 20
   DISP = ALL
   FORCE = ALL
   STRESS = ALL
   SPCFORCE = ALL
SUBCASE 1
   LABEL = GRAVITY LOAD
   LOAD = 1
SUBCASE 2
   LABEL = TEMPERATURE LOAD
   \text{TEMP}(\text{LOAD}) = 2
SUBCASE 3
   LABEL = SNOW AND CONCENTRATED LOAD
   LOAD = 3
BEGIN BULK
GRID,1,,0.0,0.0,0.0,,345
GRID,2,,144.0,72.0,0.0,,345
GRID,3,,192.0,0.0,0.0,,345
GRID,4,,288.0,144.0,0.0,,345
GRID, 5,, 384.0, 0.0, 0.0,, 345
GRID, 6,,432.0,72.0,0.0,,345
GRID,7,,576.0,0.0,0.0,,345
CBAR,1,200,1,2,0.,1.,0.
CBAR, 2, 200, 2, 4, 0., 1., 0.
CBAR, 3, 200, 4, 6, 0., 1., 0.
CBAR, 4, 200, 6, 7, 0., 1., 0.
CBAR,9,300,1,3,0.,1.,0.
CBAR,10,300,3,5,0.,1.,0.
CBAR,11,300,5,7,0.,1.,0.
CROD, 5, 100, 2, 3
CROD, 6, 100, 3, 4
CROD, 7, 100, 4, 5
CROD, 8, 100, 5, 6
PROD, 100, 10, 5.2
PBARL
          200
                  20
                                    Т
                                    .5
          6.
                   3.
                           3.
                                             .5
PBARL
          300
                  20
                                    Ι
          8.
                  3.
                            3.
                                    .5
                                             .5
MAT1,10,1.76+6,,,5.435-5,3.0-6,72.
 ,1900.,1900.
MAT1,20,2.9+7,,.32,7.349-4,6.78-6,72.
 ,24000.,24000.,24000.
GRAV,1,,386.4,0.0,-1.0,0.0
PLOAD1,3,1,FY,FRPR,0.0,-100.,1.0,-50.
```

.5

.5

PLOAD1,3,2,FY,FRPR,0.0,-50.,1.0,0.0 PLOAD1,3,10,FY,LE,36.,-2000. TEMP,2,1,45. TEMP,2,2,32. TEMP,2,3,60. TEMP,2,4,66. TEMP,2,5,60. TEMP,2,6,100. TEMP,2,7,80. SPC,20,1,12,0.0 SPC,20,7,2,0.0 ENDDATA

# SUBMITTING THE INPUT FILE FOR MSC/NASTRAN and MSC/PATRAN USERS:

21. Submit the input file to MSC/NASTRAN for analysis.

- 21a. To submit the MSC/PATRAN .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob2.bdf scr=yes. Monitor the run using the UNIX ps command.
- 21b. To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob2 scr=yes. Monitor the run using the UNIX ps command.
- 22. When the run is completed, edit the **prob2.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing **WARNING** messages indicate modeling errors.

22a. While still editing **prob2.f06**, search for the word:

**DISPLACE** (spaces are necessary).

What are the components of the displacement vector for GRID 3 and 5 (translation only)?

| Gravity Load Case | Temperature Load Case | Snow Drift Load Case |
|-------------------|-----------------------|----------------------|
| Grid 3            | Grid 3                | Grid 3               |
| Disp. X =         | Disp. X =             | Disp. X =            |
| Disp. Y =         | Disp. Y =             | Disp. Y =            |
| Disp. Z =         | Disp. Z =             | Disp. Z =            |
| Grid 5            | Grid 5                | Grid 5               |
| Disp. X =         | Disp. X =             | Disp. X =            |
| Disp. Y =         | Disp. Y =             | Disp. Y =            |
| Disp. Z =         | Disp. Z =             | Disp. Z =            |
|                   |                       |                      |

Search for the word:

SINGLE (spaces are necessary).

What are the components of the reaction force at GRID 1 and GRID 7?

| Gravity Load Case | <b>Temperature Load</b> | Case Snow Drift Load Ca | ase |
|-------------------|-------------------------|-------------------------|-----|
| GRID 1            | GRID 1                  | GRID 1                  |     |
| T1 =              | T1 =                    | T1 =                    |     |
| T2 =              | T2 =                    | T2 =                    |     |
| T3 =              | T3 =                    | T3 =                    |     |
| GRID 7            | GRID 7                  | GRID 7                  |     |
| T1 =              | T1 =                    | T1 =                    |     |
| T2 =              | T2 =                    | T2 =                    |     |
| T3 =              | T3 =                    | T3 =                    |     |
|                   |                         |                         |     |

Search for the word:

FORCE DIST (spaces are necessary).

What is the axial force in the BAR elements (CBAR) for each element case?

| Gravity L  | load Case | Temperatur | e Load Case | <b>Snow Drift</b> | Load Case |
|------------|-----------|------------|-------------|-------------------|-----------|
| Element 4  |           | Element 4  |             | Element 4         |           |
| PCT 1.000  |           | PCT 1.000  |             | PCT 1.000         |           |
| PCT 0.000  |           | PCT 0.000  |             | PCT 0.000         |           |
| Element 11 |           | Element 11 |             | Element 11        |           |
| PCT 1.000  |           | PCT 1.000  |             | PCT 1.000         |           |
| PCT 0.000  |           | PCT 0.000  |             | PCT 0.000         |           |

What is the axial force in CROD elements 7 and 8?

| Gravity Load Case | <b>Temperature Load Case</b> | Snow Drift Load Case |
|-------------------|------------------------------|----------------------|
| Element 7         | Element 7                    | Element 7            |
| Element 8         | Element 8                    | Element 8            |
|                   |                              |                      |

2-32 MSC/NASTRAN 101 Exercise Workbook

Search for the word:

**S T R E S S** (spaces are necessary).

What is the margin of safety for elements 6 and 11?

| Gravity I  | Load Case | Temperature | Load Case | <b>Snow Drift</b> | Load Case |
|------------|-----------|-------------|-----------|-------------------|-----------|
| Element 6  |           | Element 6   |           | Element 6         |           |
| PCT 1.000  |           | PCT 1.000   |           | PCT 1.000         |           |
| PCT 0.000  |           | PCT 0.000   |           | PCT 0.000         |           |
| Element 11 |           | Element 11  |           | Element 11        |           |
| PCT 1.000  |           | PCT 1.000   |           | PCT 1.000         |           |
| PCT 0.000  |           | PCT 0.000   |           | PCT 0.000         |           |

What is the Axial Stress for all elements 6 and 11?

| Gravity L  | load Case | <b>Temperature</b> | Load Case | <b>Snow Drift</b> | Load Case |
|------------|-----------|--------------------|-----------|-------------------|-----------|
| Element 6  |           | Element 6          |           | Element 6         |           |
| PCT 1.000  |           | PCT 1.000          |           | PCT 1.000         |           |
| PCT 0.000  |           | PCT 0.000          |           | PCT 0.000         |           |
| Element 11 |           | Element 11         |           | Element 11        |           |
| PCT 1.000  |           | PCT 1.000          |           | PCT 1.000         |           |
| PCT 0.000  |           | PCT 0.000          |           | PCT 0.000         |           |

Comparison of Results:

23. Compare the results obtained in the **.f06** file with the results on the next page.

#### DISPLACEMENT VECTOR

| POINT ID. | TYPE | T1            | Т2            | Т3  | R1  | R2  | R3            |
|-----------|------|---------------|---------------|-----|-----|-----|---------------|
| 1         | G    | 0.0           | 0.0           | 0.0 | 0.0 | 0.0 | -1.810154E-04 |
| 2         | G    | 9.097225E-03  | -2.192763E-02 | 0.0 | 0.0 | 0.0 | -5.905244E-06 |
| 3         | G    | 1.497809E-03  | -2.494602E-02 | 0.0 | 0.0 | 0.0 | -6.952493E-05 |
| 4         | G    | 2.020590E-03  | -1.119851E-02 | 0.0 | 0.0 | 0.0 | -1.510895E-19 |
| 5         | G    | 2.543371E-03  | -2.494602E-02 | 0.0 | 0.0 | 0.0 | 6.952493E-05  |
| б         | G    | -5.056045E-03 | -2.192763E-02 | 0.0 | 0.0 | 0.0 | 5.905244E-06  |
| 7         | G    | 4.041180E-03  | 0.0           | 0.0 | 0.0 | 0.0 | 1.810154E-04  |

#### **TEMPERATURE LOAD**

#### DISPLACEMENT VECTOR

| POINT ID. | TYPE | T1            | т2            | Т3  | R1  | R2  | R3            |
|-----------|------|---------------|---------------|-----|-----|-----|---------------|
| 1         | G    | 0.0           | 0.0           | 0.0 | 0.0 | 0.0 | -1.640538E-04 |
| 2         | G    | -2.911754E-02 | -2.330577E-02 | 0.0 | 0.0 | 0.0 | 1.430237E-04  |
| 3         | G    | -2.548194E-02 | -1.314894E-02 | 0.0 | 0.0 | 0.0 | 1.492482E-04  |
| 4         | G    | -7.371972E-02 | 9.976783E-03  | 0.0 | 0.0 | 0.0 | 3.720360E-04  |
| 5         | G    | -4.109691E-02 | 3.371104E-02  | 0.0 | 0.0 | 0.0 | 9.121846E-05  |
| 6         | G    | -4.592643E-02 | 3.897398E-02  | 0.0 | 0.0 | 0.0 | 6.057345E-06  |
| 7         | G    | -4.358151E-02 | 0.0           | 0.0 | 0.0 | 0.0 | -3.110594E-04 |

#### SNOW AND CONCENTRATED LOAD

DISPLACEMENT VECTOR

| POINT ID. | TYPE | T1           | Т2            | Т3  | R1  | R2  | R3            |
|-----------|------|--------------|---------------|-----|-----|-----|---------------|
| 1         | G    | 0.0          | 0.0           | 0.0 | 0.0 | 0.0 | -5.570779E-03 |
| 2         | G    | 1.271998E-01 | -2.928742E-01 | 0.0 | 0.0 | 0.0 | 2.406997E-03  |
| 3         | G    | 1.541444E-02 | -2.935280E-01 | 0.0 | 0.0 | 0.0 | 7.510522E-05  |
| 4         | G    | 5.572549E-03 | -7.900714E-02 | 0.0 | 0.0 | 0.0 | 1.498581E-03  |
| 5         | G    | 2.198621E-02 | -7.672425E-02 | 0.0 | 0.0 | 0.0 | 1.233808E-03  |
| 6         | G    | 5.831808E-03 | -6.193648E-02 | 0.0 | 0.0 | 0.0 | -5.114951E-05 |
| 7         | G    | 2.857348E-02 | 0.0           | 0.0 | 0.0 | 0.0 | 2.269690E-04  |

FORCES OF SINGLE-POINT CONSTRAINT

| POINT ID. | TYPE | T1            | Т2           | Т3  | R1  | R2  | R3  |
|-----------|------|---------------|--------------|-----|-----|-----|-----|
| 1         | G    | -9.094947E-13 | 1.062826E+03 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7         | G    | 0.0           | 1.062826E+03 | 0.0 | 0.0 | 0.0 | 0.0 |

#### **TEMPERATURE LOAD**

FORCES OF SINGLE-POINT CONSTRAINT

| POINT ID. | TYPE | Τ1           | Т2            | Т3  | R1  | R2  | R3  |
|-----------|------|--------------|---------------|-----|-----|-----|-----|
| 1         | G    | 2.910383E-11 | -1.818989E-12 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7         | G    | 0.0          | -1.818989E-12 | 0.0 | 0.0 | 0.0 | 0.0 |

#### SNOW AND CONCENTRATED LOAD

FORCES OF SINGLE-POINT CONSTRAINT

| POINT ID. | TYPE | T1           | Т2           | т3  | R1  | R2  | R3  |
|-----------|------|--------------|--------------|-----|-----|-----|-----|
| 1         | G    | 1.164999E-04 | 1.320833E+04 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7         | G    | 0.0          | 3.191667E+03 | 0.0 | 0.0 | 0.0 | 0.0 |

|         |      |       | FORCE         | DISTRI  | BUTION IN     | BAR ELE | MENTS (CBAR   | )      |
|---------|------|-------|---------------|---------|---------------|---------|---------------|--------|
| ELEMENT | STAT | TION  | BEND-MOI      | MENT    | SHEAR F       | ORCE    | AXIAL         |        |
| ID.     | ( 1  | PCT)  | PLANE 1       | PLANE 2 | PLANE 1       | PLANE 2 | FORCE         | TORQUE |
|         | 1 (  | 0.000 | -7.167844E+02 | 0.0     | -1.985941E+01 | 0.0     | -1.654005E+03 | 0.0    |
|         | 1 1  | L.000 | 2.480519E+03  | 0.0     | -1.985941E+01 | 0.0     | -1.654005E+03 | 0.0    |
|         | 2 0  | 0.000 | 2.480519E+03  | 0.0     | 3.044506E+01  | 0.0     | -1.517089E+03 | 0.0    |
|         | 2 1  | L.000 | -2.421041E+03 | 0.0     | 3.044506E+01  | 0.0     | -1.517089E+03 | 0.0    |
|         | 3 0  | 0.000 | -2.421041E+03 | 0.0     | -3.044506E+01 | 0.0     | -1.517089E+03 | 0.0    |
|         | 3 1  | L.000 | 2.480519E+03  | 0.0     | -3.044506E+01 | 0.0     | -1.517089E+03 | 0.0    |
|         | 4 0  | 0.000 | 2.480519E+03  | 0.0     | 1.985941E+01  | 0.0     | -1.654005E+03 | 0.0    |
|         | 4 1  | L.000 | -7.167843E+02 | 0.0     | 1.985941E+01  | 0.0     | -1.654005E+03 | 0.0    |
|         | 9 0  | 0.000 | 7.167844E+02  | 0.0     | -2.451677E+00 | 0.0     | 1.470505E+03  | 0.0    |
|         | 9 1  | L.000 | 1.187506E+03  | 0.0     | -2.451677E+00 | 0.0     | 1.470505E+03  | 0.0    |
| 1       | LO ( | 0.000 | 1.187506E+03  | 0.0     | -2.842171E-14 | 0.0     | 1.026502E+03  | 0.0    |
| 1       | LO 1 | L.000 | 1.187506E+03  | 0.0     | -2.842171E-14 | 0.0     | 1.026502E+03  | 0.0    |
| 1       | L1 ( | 0.000 | 1.187506E+03  | 0.0     | 2.451677E+00  | 0.0     | 1.470505E+03  | 0.0    |
| 1       | L1 1 | L.000 | 7.167844E+02  | 0.0     | 2.451677E+00  | 0.0     | 1.470505E+03  | 0.0    |
|         |      |       |               |         |               |         |               |        |

#### FORCES IN ROD ELEMENTS (CROD)

| ELEMENT | AXIAL         |        | ELEMENT | AXIAL         |        |
|---------|---------------|--------|---------|---------------|--------|
| ID.     | FORCE         | TORQUE | ID.     | FORCE         | TORQUE |
| 5       | -1.802138E+02 | 0.0    | 6       | 6.202254E+02  | 0.0    |
| 7       | 6.202254E+02  | 0.0    | 8       | -1.802138E+02 | 0.0    |

|         |        | FORCE         | DISTRI  | IBUTIO | N I N      | BAR   | ELEMENTS | (СВА          | R)     |
|---------|--------|---------------|---------|--------|------------|-------|----------|---------------|--------|
| ELEMENT | STATIO | N BEND        | -MOMENT |        | SHEAR      | FORCE |          | AXIAL         |        |
| ID.     | (PCT   | ) PLANE 1     | PLANE 2 | 2      | PLANE 1    | PLA   | ANE 2    | FORCE         | TORQUE |
|         | 1 0.0  | 00 4.113555E  | +02 0.0 | -1     | .410100E+0 | 1 0.0 |          | 1.001056E+02  | 0.0    |
|         | 1 1.0  | 00 2.681573E  | +03 0.0 | -1     | .410100E+0 | 1 0.0 |          | 1.001056E+02  | 0.0    |
|         | 2 0.0  | 00 2.681573E  | +03 0.0 | 1      | .898485E+0 | 1 0.0 |          | 9.596985E+01  | 0.0    |
|         | 2 1.0  | 00 -3.749292E | +02 0.0 | 1      | .898485E+0 | 1 0.0 |          | 9.596985E+01  | 0.0    |
|         | 3 0.0  | 00 -3.749293E | +02 0.0 | 1      | .823842E+0 | 1 0.0 |          | -1.149399E+02 | 0.0    |
|         | 3 1.0  | 00 -3.311259E | +03 0.0 | 1      | .823842E+0 | 1 0.0 |          | -1.149399E+02 | 0.0    |
|         | 4 0.0  | 00 -3.311259E | +03 0.0 | -2     | .129528E+0 | 1 0.0 |          | -1.198816E+02 | 0.0    |
|         | 4 1.0  | 00 1.172143E  | +02 0.0 | -2     | .129528E+0 | 1 0.0 |          | -1.198816E+02 | 0.0    |
|         | 9 0.0  | 00 -4.113555E | +02 0.0 | -3     | .215626E+0 | 1 0.0 |          | -9.584331E+01 | 0.0    |
|         | 9 1.0  | 00 5.762646E  | +03 0.0 | -3     | .215626E+0 | 1 0.0 |          | -9.584331E+01 | 0.0    |
|         | 10 0.0 | 00 5.762646E  | +03 0.0 | 6      | .518988E+0 | 1 0.0 |          | 6.045220E+00  | 0.0    |
|         | 10 1.0 | 00 -6.753811E | +03 0.0 | 6      | .518988E+0 | 1 0.0 |          | 6.045220E+00  | 0.0    |
|         | 11 0.0 | 00 -6.753811E | +03 0.0 | -3     | .456561E+0 | 1 0.0 |          | 1.167489E+02  | 0.0    |
|         | 11 1.0 | 00 -1.172141E | +02 0.0 | -3     | .456561E+0 | 1 0.0 |          | 1.167489E+02  | 0.0    |

**TEMPERATURE LOAD** 

FORCES IN ROD ELEMENTS (CROD)

| ELEMENT | AXIAL        |        | ELEMENT | AXIAL         |        |
|---------|--------------|--------|---------|---------------|--------|
| ID.     | FORCE        | TORQUE | ID.     | FORCE         | TORQUE |
| 5       | 3.334333E+01 | 0.0    | 6       | -1.503388E+02 | 0.0    |
| 7       | 1.597325E+02 | 0.0    | 8       | -3.984136E+01 | 0.0    |

#### SNOW AND CONCENTRATED LOAD

|         | FO       | RCE DIST      | RIBUTION | IN BAR E      | LEMENTS | (CBAR)        |        |
|---------|----------|---------------|----------|---------------|---------|---------------|--------|
| ELEMENT | STATION  | BEND-MON      | IENT     | SHEAR FO      | RCE     | AXIAL         |        |
| ID.     | (PCT)    | PLANE 1       | PLANE 2  | PLANE 1       | PLANE 2 | FORCE         | TORQUE |
|         | 1 0.000  | -1.098263E+05 | 0.0      | -5.620021E+03 | 0.0     | -1.972972E+04 | 0.0    |
|         | 1 1.000  | -6.902036E+04 | 0.0      | 4.039792E+03  | 0.0     | -1.489982E+04 | 0.0    |
|         | 2 0.000  | -6.902037E+04 | 0.0      | -2.410550E+03 | 0.0     | -1.409352E+04 | 0.0    |
|         | 2 1.000  | -2.652932E+04 | 0.0      | 8.093880E+02  | 0.0     | -1.248356E+04 | 0.0    |
|         | 3 0.000  | -2.652932E+04 | 0.0      | -2.326103E+02 | 0.0     | -7.333517E+03 | 0.0    |
|         | 3 1.000  | 1.092021E+04  | 0.0      | -2.326103E+02 | 0.0     | -7.333517E+03 | 0.0    |
|         | 4 0.000  | 1.092021E+04  | 0.0      | 1.182581E+02  | 0.0     | -7.289658E+03 | 0.0    |
|         | 4 1.000  | -8.118965E+03 | 0.0      | 1.182581E+02  | 0.0     | -7.289658E+03 | 0.0    |
|         | 9 0.000  | 1.098263E+05  | 0.0      | 6.417671E+02  | 0.0     | 1.513345E+04  | 0.0    |
|         | 9 1.000  | -1.339296E+04 | 0.0      | 6.417671E+02  | 0.0     | 1.513345E+04  | 0.0    |
| -       | LO 0.000 | -1.339295E+04 | 0.0      | -1.562901E+03 | 0.0     | 6.451971E+03  | 0.0    |
| -       | LO 1.000 | -2.531606E+04 | 0.0      | 4.370995E+02  | 0.0     | 6.451971E+03  | 0.0    |
| -       | L1 0.000 | -2.531606E+04 | 0.0      | -1.741408E+02 | 0.0     | 6.467182E+03  | 0.0    |
| 1       | L1 1.000 | 8.118966E+03  | 0.0      | -1.741408E+02 | 0.0     | 6.467182E+03  | 0.0    |

#### FORCES IN ROD ELEMENTS (CROD)

| ELEMENT | AXIAL         |        | ELEMENT | AXIAL        |        |
|---------|---------------|--------|---------|--------------|--------|
| ID.     | FORCE         | TORQUE | ID.     | FORCE        | TORQUE |
| 5       | -6.500541E+03 | 0.0    | 6       | 9.150221E+03 | 0.0    |
| 7       | 3.810205E+02  | 0.0    | 8       | 3.535989E+02 | 0.0    |

|         |         |          | SТ     | R E  | S S    | DI    | SТ   | RI   | вит   | I   | ΟN    | I N        | В     | AR    | ELE    | ME    | ENI  | S      | (   | CBAR)      |           |
|---------|---------|----------|--------|------|--------|-------|------|------|-------|-----|-------|------------|-------|-------|--------|-------|------|--------|-----|------------|-----------|
| ELEMENT | STATION | SXC      |        |      | SXD    |       |      | SXE  |       |     | Sž    | ζF         |       | A     | XIAL   |       |      | S-MAX  |     | S-MIN      | M.ST      |
| ID.     | (PCT)   |          |        |      |        |       |      |      |       |     |       |            |       |       |        |       |      |        |     |            | M.SC      |
| 1       | 0.000   | 7.691278 | 3E+01  | -7.  | 691278 | E+01  | -7.6 | 9127 | 8E+01 | . 7 | .6912 | 278E+0     | 1 -3  | .0072 | 81E+02 | 2 -2. | 2381 | 54E+02 | -3. | 776409E+02 | 6.3E+01   |
| 1       | 1.000 - | 2.661660 | )E+02  | 2.   | 661660 | E+02  | 2.6  | 6166 | 0E+02 | -2  | .6616 | 560E+0     | 2 - 3 | .0072 | 81E+02 | 2 -3. | 4562 | 16E+01 | -5. | 668942E+02 | 4.1E+01   |
| 2       | 0.000 - | 2.661660 | )E+02  | 2.   | 661660 | E+02  | 2.6  | 6166 | 0E+02 | -2  | .6616 | 560E+0     | 2 -2  | .7583 | 43E+02 | 2 -9. | 6683 | 04E+00 | -5. | 420002E+02 | 4.3E+01   |
| 2       | 1.000   | 2.597838 | 3E+02  | -2.  | 597838 | E+02  | -2.5 | 9783 | 8E+02 | 2   | .5978 | 338E+0     | 2 -2  | .7583 | 43E+02 | 2 -1. | 6050 | 54E+01 | -5. | 356180E+02 | 4.4E+01   |
| 3       | 0.000   | 2.597838 | 3E+02  | -2.  | 597838 | E+02  | -2.5 | 9783 | 8E+02 | 2   | .5978 | 338E+0     | 2 -2  | .7583 | 43E+02 | 2 -1. | 6050 | 54E+01 | -5. | 356181E+02 | 2         |
| 3       | 1.000 - | 2.661660 | )E+02  | 2.   | 661660 | E+02  | 2.6  | 6166 | 0E+02 | -2  | .6616 | 560E+0     | 2 -2  | .7583 | 43E+02 | 2 -9. | 6683 | 35E+00 | -5. | 420003E+02 | 4.3E+01   |
| 4       | 0.000 - | 2.661660 | )E+02  | 2.   | 661660 | E+02  | 2.6  | 6166 | 0E+02 | -2  | .6616 | 560E+0     | 2 - 3 | .0072 | 81E+02 | 2 -3. | 4562 | 16E+01 | -5. | 668942E+02 | 2         |
| 4       | 1.000   | 7.691277 | 7E+01  | -7.  | 691277 | E+01  | -7.6 | 9127 | 7E+01 | . 7 | .6912 | 277E+0     | 1 -3  | .0072 | 81E+02 | 2 -2. | 2381 | 54E+02 | -3. | 776409E+02 | 4.1E+01   |
| 9       | 0.000 - | 5.070840 | )E+01  | 5.   | 070840 | E+01  | 5.0  | 7084 | 0E+01 | - 5 | .0708 | 340E+0     | 1 2   | .2623 | 16E+02 | 2.    | 7694 | 00E+02 | 1.  | 755232E+02 | 2 7.6E+01 |
| 9       | 1.000 - | 8.400930 | )E+01  | 8.   | 400930 | E+01  | 8.4  | 0093 | 0E+01 | 8   | .4009 | 930E+0     | 1 2   | .2623 | 16E+02 | 23.   | 1024 | 09E+02 | 1.  | 422223E+02 | 2         |
| 10      | 0.000 - | 8.400930 | )E+01  | 8.   | 400930 | E+01  | 8.4  | 0093 | 0E+01 | - 8 | .4009 | 930E+0     | 1 1   | .5792 | 33E+02 | 2.    | 4193 | 26E+02 | 7.  | 391402E+01 | 9.8E+01   |
| 10      | 1.000 - | 8.400930 | )E+01  | 8.   | 400930 | E+01  | 8.4  | 0093 | 0E+01 | - 8 | .4009 | 930E+0     | 1 1   | .5792 | 33E+02 | 2.    | 4193 | 26E+02 | 7.  | 391402E+01 | 9.8E+01   |
| 11      | 0.000 - | 8.400930 | )E+01  | 8.   | 400930 | E+01  | 8.4  | 0093 | 0E+01 | - 8 | .4009 | 930E+0     | 1 2   | .2623 | 16E+02 | 23.   | 1024 | 09E+02 | 1.  | 422223E+02 | 2 7.6E+01 |
| 11      | 1.000 - | 5.070840 | )E+01  | 5.   | 070840 | E+01  | 5.0  | 7084 | 0E+01 | - 5 | .0708 | 340E+0     | 1 2   | .2623 | 16E+02 | 2.    | 7694 | 00E+02 | 1.  | 755232E+02 | 2         |
|         |         |          |        |      |        |       |      |      |       |     |       |            |       |       |        |       |      |        |     |            |           |
|         |         |          |        |      | S      | ΤR    | ΕS   | SE   | S I   | Ν   | RC    | D          | ΕL    | ЕМЕ   | NTS    | 3     | (    | CROI   | ))  |            |           |
| ELEMI   | ENT .   | AXIAL    | SAI    | FETY | то     | RSION | IAL  | SAF  | ETY   |     | ELEME | ENT        | AX    | IAL   | SAF    | TTY   | Г    | ORSION | λL  | SAFETY     |           |
| II      | ). S    | TRESS    | MAI    | RGIN | S      | TRESS | 3    | MAR  | GIN   |     | II    | <b>)</b> . | ST    | RESS  | MAR    | GIN   |      | STRESS |     | MARGIN     |           |
|         | 5 -3.4  | 40148E+0 | )1 5.4 | 1E+0 | 1      | 0.0   |      |      |       |     |       | 6          | 1.18  | 2449E | +02 1  | .5E+  | -01  | 0.0    |     |            |           |
|         | 7 1.1   | 82449E+0 | )2 1.5 | 5E+0 | 1      | 0.0   |      |      |       |     |       | 8 –        | 3.44  | 0148E | +01 5  | .4E+  | -01  | 0.0    |     |            |           |

#### **TEMPERATURE LOAD**

| ELEMENT STA<br>ID. (PC<br>1 0.(<br>1 1.(<br>2 0.(<br>2 1.(<br>3 0.( | ST         ATION       SXC         'CT)       .000       -4.413949E+01         .000       -2.877395E+02         .000       -2.877395E+02         .000       -2.877395E+02 | SXD<br>4.413949E+01<br>2.877395E+02<br>2.877395E+02 | SXE<br>4.413949E+01<br>2 2.877395E+02 | SXF<br>L -4.413949E+01<br>2 -2.877395E+02 | AXIAL<br>1.820101E+01 | S-MAX<br>6.234050E+01 - | -2.593847E+01 | M.ST<br>M.SC<br>3.8E+02 |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------|-------------------------|---------------|-------------------------|
| ID. (PC<br>1 0.0<br>1 1.0<br>2 0.0<br>2 1.0<br>3 0.0                | CT)<br>.000 -4.413949E+01<br>.000 -2.877395E+02<br>.000 -2.877395E+02                                                                                                     | 4.413949E+01<br>2.877395E+02<br>2.877395E+02        | 4.413949E+01<br>2.877395E+02          | -4.413949E+01<br>2 -2.877395E+02          | 1.820101E+01          | 6.234050E+01 -          | -2.593847E+01 | M.SC<br>3.8E+02         |
| 1 0.0<br>1 1.0<br>2 0.0<br>2 1.0<br>3 0.0                           | 000 -4.413949E+01<br>000 -2.877395E+02<br>.000 -2.877395E+02                                                                                                              | 4.413949E+01<br>2.877395E+02<br>2.877395E+02        | 4.413949E+01<br>2.877395E+02          | -4.413949E+01<br>2 -2.877395E+02          | 1.820101E+01          | 6.234050E+01 -          | -2.593847E+01 | 3.8E+02                 |
| 1 1.0<br>2 0.0<br>2 1.0<br>3 0.0                                    | 000 -2.877395E+02<br>.000 -2.877395E+02                                                                                                                                   | 2.877395E+02<br>2.877395E+02                        | 2.877395E+02                          | 2 -2.877395E+02                           | 1 820101E+01          | 2 0504067 02            |               | · -                     |
| 2 0.0<br>2 1.0<br>3 0.0                                             | .000 -2.877395E+02                                                                                                                                                        | 2.877395E+02                                        |                                       |                                           | T.OCOTOTD+01          | 3.059406E+02 -          | -2.695385E+02 | 7.7E+01                 |
| 2 1.0<br>3 0.0                                                      | 000 1 000005- 01                                                                                                                                                          |                                                     | 2.877395E+02                          | 2 -2.877395E+02                           | 1.744906E+01          | 3.051886E+02 -          | -2.702905E+02 | 7.8E+01                 |
| 3 0.0                                                               | 4.023085E+01                                                                                                                                                              | -4.023085E+01                                       | -4.023085E+01                         | 4.023085E+01                              | 1.744906E+01          | 5.767992E+01 -          | -2.278179E+01 | 4.2E+02                 |
|                                                                     | 000 4.023086E+01                                                                                                                                                          | -4.023086E+01                                       | -4.023086E+01                         | 4.023086E+01                              | -2.089816E+01         | 1.933270E+01 -          | -6.112902E+01 | 7.1E+01                 |
| 3 1.0                                                               | 000 3.553065E+02                                                                                                                                                          | -3.553065E+02                                       | 2 -3.553065E+02                       | 3.553065E+02                              | -2.089816E+01         | 3.344083E+02 -          | -3.762047E+02 | 6.3E+01                 |
| 4 0.0                                                               | 000 3.553065E+02                                                                                                                                                          | -3.553065E+02                                       | ? -3.553065E+02                       | 2 3.553065E+02                            | -2.179665E+01         | 3.335098E+02 -          | -3.771031E+02 | 7.1E+01                 |
| 4 1.0                                                               | 000 -1.257740E+01                                                                                                                                                         | 1.257740E+01                                        | 1.257740E+01                          | -1.257740E+01                             | -2.179665E+01         | -9.219258E+00 -         | -3.437405E+01 | 6.3E+01                 |
| 9 0.0                                                               | 000 2.910105E+01                                                                                                                                                          | -2.910105E+01                                       | -2.910105E+01                         | 2.910105E+01                              | -1.474512E+01         | 1.435593E+01 -          | -4.384618E+01 | 6.0E+01                 |
| 9 1.0                                                               | 000 -4.076743E+02                                                                                                                                                         | 4.076743E+02                                        | 2 4.076743E+02                        | 2 -4.076743E+02                           | -1.474512E+01         | 3.929292E+02 -          | -4.224194E+02 | 5.6E+01                 |
| 10 0.0                                                              | 000 -4.076743E+02                                                                                                                                                         | 4.076743E+02                                        | 2 4.076743E+02                        | 2 -4.076743E+02                           | 9.300338E-01          | 4.086043E+02 -          | -4.067443E+02 | 5.8E+01                 |
| 10 1.0                                                              | 000 4.777935E+02                                                                                                                                                          | -4.777935E+02                                       | ? -4.777935E+02                       | 2 4.777935E+02                            | 9.300338E-01          | 4.787236E+02 -          | -4.768635E+02 | 4.9E+01                 |
| 11 0.0                                                              | 000 4.777935E+02                                                                                                                                                          | -4.777935E+02                                       | ? -4.777935E+02                       | 2 4.777935E+02                            | 1.796137E+01          | 4.957549E+02 -          | -4.598322E+02 | 4.7E+01                 |
| 11 1.(                                                              | .000 8.292229E+00                                                                                                                                                         | -8.292229E+0(                                       | ) -8.292229E+0C                       | 0 8.292229E+00                            | 1.796137E+01          | 2.625360E+01            | 9.669140E+00  | 5.1E+01                 |
|                                                                     |                                                                                                                                                                           | STI                                                 | RESSES D                              | INRODE                                    | LEMENTS               | (CROD)                  |               |                         |
| ELEMENI                                                             | IT AXIAL                                                                                                                                                                  | SAFETY T                                            | ORSIONAL SA                           | AFETY ELEM                                | 1ENT AXIAL            | SAFETY                  | TORSIONAL     | SAFETY                  |
| ID.                                                                 | STRESS                                                                                                                                                                    | MARGIN                                              | STRESS MA                             | ARGIN IL                                  | ). STRESS             | MARGIN                  | STRESS        | MARGIN                  |
| 1                                                                   | 5 6.412179E+00                                                                                                                                                            | 3.0E+02                                             | 0.0                                   |                                           | 6 -2.8911             | 31E+01 6.5E+0           | 1 0.0         |                         |
|                                                                     | 7 3.071780E+01                                                                                                                                                            | 6.1E+01 0                                           | 0.0                                   |                                           | 8 -7.6618             | 300E+00 2.5E+0          | 2 0.0         |                         |

2-42

#### SNOW AND CONCENTRATED LOAD

| S      |        |         | q             | דר פפיקי        |               |               |               | мғмтс         | (CBAP)        |         |
|--------|--------|---------|---------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------|
|        | ELEMEN | r stati | ON SXC        | SXD             | SXE           | SXF           | AXIAL         | S-MAX         | S-MIN         | M.ST    |
|        | ID.    | (PCT)   |               |                 |               |               |               | ~             |               | M.SC    |
|        | 1      | 0.000   | 1.178464E+04  | 4 -1.178464E+04 | -1.178464E+04 | 1.178464E+04  | -3.587222E+03 | 8.197420E+03  | -1.537187E+04 | 5.6E-01 |
| _      | 1      | 1.000   | 7.406060E+03  | 3 -7.406060E+03 | -7.406060E+03 | 7.406060E+03  | -2.709058E+03 | 4.697002E+03  | -1.011512E+04 | 1.4E+00 |
| 2      | 2      | 0.000   | 7.406061E+03  | 3 -7.406061E+03 | -7.406061E+03 | 7.406061E+03  | -2.562459E+03 | 4.843602E+03  | -9.968520E+03 | 1.4E+00 |
| ך<br>ק | 2      | 1.000   | 2.846663E+03  | 3 -2.846663E+03 | -2.846663E+03 | 2.846663E+03  | -2.269737E+03 | 5.769253E+02  | -5.116400E+03 | 3.7E+00 |
|        | 3      | 0.000   | 2.846663E+03  | 3 -2.846663E+03 | -2.846663E+03 | 2.846663E+03  | -1.333367E+03 | 1.513296E+03  | -4.180030E+03 | 1.5E+01 |
|        | 3      | 1.000   | -1.171767E+03 | 3 1.171767E+03  | 1.171767E+03  | -1.171767E+03 | -1.333367E+03 | -1.616001E+02 | -2.505133E+03 | 4.7E+00 |
| D<br>D | 4      | 0.000   | -1.171767E+03 | 3 1.171767E+03  | 1.171767E+03  | -1.171767E+03 | -1.325392E+03 | -1.536259E+02 | -2.497159E+03 |         |
| z      | 4      | 1.000   | 8.711855E+02  | 2 -8.711855E+02 | -8.711855E+02 | 8.711855E+02  | -1.325392E+03 | -4.542069E+02 | -2.196578E+03 | 8.6E+00 |
| 5      | 9      | 0.000   | -7.769585E+03 | 3 7.769585E+03  | 7.769585E+03  | -7.769585E+03 | 2.328223E+03  | 1.009781E+04  | -5.441362E+03 | 1.4E+00 |
|        | 9      | 1.000   | 9.474753E+02  | 2 -9.474753E+02 | -9.474753E+02 | 9.474753E+02  | 2.328223E+03  | 3.275699E+03  | 1.380748E+03  | 3.4E+00 |
| Ā      | 10     | 0.000   | 9.474749E+02  | 2 -9.474749E+02 | -9.474749E+02 | 9.474749E+02  | 9.926110E+02  | 1.940086E+03  | 4.513605E+01  | 1.1E+01 |
| 3.     | 10     | 1.000   | 1.790967E+03  | 3 -1.790967E+03 | -1.790967E+03 | 1.790967E+03  | 9.926110E+02  | 2.783578E+03  | -7.983558E+02 | 7.6E+00 |
| P      | 11     | 0.000   | 1.790967E+03  | 3 -1.790967E+03 | -1.790967E+03 | 1.790967E+03  | 9.949510E+02  | 2.785918E+03  | -7.960159E+02 | 7.6E+00 |
| 2      | 11     | 1.000   | -5.743705E+02 | 2 5.743705E+02  | 5.743705E+02  | -5.743705E+02 | 9.949510E+02  | 1.569322E+03  | 4.205806E+02  | 2.9E+01 |
| 1      |        |         |               |                 |               |               |               |               |               |         |

STRESSES IN ROD ELEMENTS (CROD)

| ELEMENT | AXIAL         | SAFETY  | TORSIONAL | SAFETY | ELEMENT | AXIAL        | SAFETY  | TORSIONAL | SAFETY |
|---------|---------------|---------|-----------|--------|---------|--------------|---------|-----------|--------|
| ID.     | STRESS        | MARGIN  | STRESS    | MARGIN | ID.     | STRESS       | MARGIN  | STRESS    | MARGIN |
| 5       | -1.250104E+03 | 5.2E-01 | 0.0       |        | 6       | 1.759658E+03 | 8.0E-02 | 0.0       |        |
| 7       | 7.327319E+01  | 2.5E+01 | 0.0       |        | 8       | 6.799979E+01 | 2.7E+01 | 0.0       |        |

# 24. MSC/NASTRAN Users have finished this exercise. MSC/PATRAN Users should proceed to the next step.

25. Proceed with the Reverse Translation process, that is, importing the **prob2.op2** results file into MSC/PATRAN. To do this, return to the **Analysis** form and proceed as follows:



Action:

*Object:* 

Method:

| <br>Read Output 2      |
|------------------------|
| <b>Result Entities</b> |
| Translate              |
|                        |

| Select Result | s File |
|---------------|--------|
| Filter        |        |

Available Files:

prob2.op2

26. When the translation is complete and the Heartbeat turns green, bring up the **Results** form.

#### Results

Action:

OK

Apply

Object:

Select Results Case(s):

Select Fringe Result:

Quantity:

Create

Fringe

temperature\_load, Static Subcase

**Displacements, Translational** 

Magnitude

To change the target entites of the plot, click on the **Target Entities** icon.



#### **Target Entites**

*Target Entity:* 

Select Materials:

Materials southern\_pine steel

To change the display attributes of the plot, click on the **Display Attributes** icon.



**Display Attributes** 

Style:

Discrete/Smooth

To change the plot options, click on the **Plot Options** icon.



#### **Plot Options**

Coordinate Transformation:

None

Apply

26a. Next, add the deformation options to the plot.

#### Results

Action:

Object:

| Create      |
|-------------|
| Deformation |

To change the target entites of the plot, click on the **Target Entites** icon.



#### **Target Entities**

Target Entity:

Select Materials:

Materials southern\_pine steel

To change the properties of the plot, click on the **Display Attributes** icon.



**Display Attributes** 

■ Show Undeformed

Line Style:

Apply



If you wish to reset your display graphics to the state it was in before you began post-processing your model, remember to select the **Reset Graphics** icon.



You can go back and select any *Results Case, Fringe Results or Deformation Results* you are interested in.

Quit MSC/PATRAN when you have completed this exercise.