WORKSHOP PROBLEM 4

Rigid Element Analysis with RBAR

Objectives:

- Idealize the tube with QUAD4 elements.
- Use RBAR elements to model a "rigid" end.
- Produce a Nastran input file that represents the cylinder.
- Submit the file for analysis in MSC/NASTRAN.
- Find the displacement vectors.

Model Description:

The goal of this example is to maintain a circular cross section at the rigid end of the tube, (using RBAR elements), while applying a torque of 6000 in lbs about the z-axis of the tube.

Below is a Finite Element representation of the tube. One end of the tube is considered rigid, and the other end is fixed in all translational and rotational degrees of freedom. Table 4.1 contains all the necessary parameters to construct the input file.

Grid Coordinates and Element Connectivities

Radius	15 in
Thickness	0.125 in
Length	90 in
Elastic Modulus	10E6 lb/in ²
Density	0.101 lbs/in ³
Poisson's Ratio	0.3
Moment	6000 in-lbs

MSC/NASTRAN 101 Exercise Workbook

Suggested Exercise Steps:

- Generate a finite element representation of the cylinder structure. (i.e., The nodes (GRID) and element connectivities (CQUAD4) should be defined manually.)
- Define material (MAT1) and element (PSHELL) properties.
- Create grid point 999 at the center of the rigid end. This point is to serve as the load application point, as well as the connection point for the rigid element.
- Idealize the rigid end with rigid elements (RBAR).
- Apply the fixed boundary constraints (SPC1).
- Apply a static concentrated moment at the center of the top enclosure, grid 999 (MOMENT).
- Prepare the model for linear static analysis (SOL 101).
- Generate an Input file and submit it to the MSC/NASTRAN solver for linear static analysis.
- Review the results, specifically the displacements along the top edges.

ID SEMINAR, PROB4

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

MSC/NASTRAN 101 Exercise Workbook

4-6

Rigid Element Analysis with RBAR

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC/PATRAN for generating an input file should go to Step 15, otherwise, proceed to step 2.
- 2. Create a new database called **prob4.db**.

File/New Database

New Database Name

prob4	

OK

In the New Model Preference form set the following:

Tolerance

Analysis code:

◆ Default

MSC/NASTRAN

OK

In the next few steps you will create the necessary geometry for the cylinder model.

3. First create a cylindrical coordinate frame.

♦ Geometry

Action:

Object:

Method:

Type:

Coord ID List:

Apply

4. Now create a curve.

♦ Geometry

Action:

Object:

Method:

Create	
Coord	
3Point	
Cylindrical	
1	

Create
Curve
XYZ

MSC/NASTRAN 101 Exercise Workbook

Vector	Coord	inate	List:	
Origin	Coord	linate	List:	

<0, 0, 90>	
[15, 0, 0]	

٦

Apply

Change the view to isoview_1 by selecting this icon:

5. Create a surface out of the curve you just made.

◆ Geometry Acti

Action:	Create
Object:	Surface
Method:	Revolve
Axis:	Coord 0.3
Total Angle:	180
Curve List:	Curve 1

Apply

Repeat this step a second time to complete the cylinder. This time select the curve opposite Curve 1 which is Surface 1.2.

♦ Geometry

Create Action: **Object:** Surface Method: Revolve Coord 0.3 Axis: Total Angle: 180 Curve List: Surface 1.2 Apply

Figure 4.1-Geometry of Rigid Element

6. Create the Finite Element Model and mesh the surface.

First you will create 5 mesh seeds along the top and bottom edges, **surface 1.3 2.3**, and 5 along the **Curve 1**.

♦ Finite Elements

Action:

Object:

Type:

◆ Number of Elements

Number =

Curve List:

Apply

Create Mesh Seed Uniform

Mesh the surface.

♦ Finite Elements

Action:

Object:

Type:

Node Coordinate Frame...

Analysis Coordinate Frame:

Refer. Coordinate Frame:

OK

Create Mesh Surface

Coord 1	
Coord 1	

Surface 1, 2

Surface List:

Apply

Equivalence the model so there are no free edges.

♦ Finite Elements

Action:

Object:

Equivalence
All
Tolerance Cube

Method: Apply

7. Now you will create the Material Properties for the plate.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties ...

Elastic Modulus =

Poisson Ratio =

Density =

Apply

Create
Isotropic
Manual Input
mat_1
mat_1

10.0E6	
0.3	
0.101	

In the *Current Constitutive Models*, you will see **Linear Elastic - [,,,,] - [Active]** appeared. Click on **Cancel** to close the form.

Cancel

8. Give the cylinder a thickness using Properties.

Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties ...

Material Name:

Thickness:

OK

Select Members:

Create	
2D	
Shell	
wall	

m:mat_1	
0.125	

Surface 1, 2

Next you will apply the Load and Boundary Conditions to the model.

9. Fix the right edge from moving through all Degrees of Freedom. To make the screen selection easier change the view to Right View by selecting this icon:

Figure 4.2 - Node Locations

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Input Data...

Translations <T1 T2 T3>

Rotations <R1 R2 R3>

Analysis Coordinate Frame:

Displacement	
Nodal	
fixed	
<0.0.0>	

Create

<0, 0, 0>
<0, 0, 0>
Coord 1

OK

Select Application Region...

Geometry Filter:

Select Nodes:

♦ FEM

Node 1:31:6 43:61:6 (see Fig 4.2)

MSC/NASTRAN 101 Exercise Workbook 4-13

Add	
ОК	
Apply	

10. Next you must create the loading point where the moment will be applied.

♦ Finite Elements

Action:

Object:

Method:

Node ID List:

Analysis Coordinate Frame:

Refer. Coordinate Frame:

Associate with Geometry

Node Location List:

Node	
Edit	
999	
Coord 1	
Coord 1	

Create

[0, 0, 90]

Apply

11. Create the rigid element.

Finite Elements

Action:

Object:

Type:

Define Terms...

Auto Execute

♦ Create Dependant

Node List:

Create MPC RBAR

Node 6

You can type the node into the list directly or you can screen select it by changing back to **Isometric View1** and selecting the node on the *left edge* of the model.

Select DOFs by holding the Shift key down while clicking with the left mouse button.

DOFs:	UX
	UY
	UZ
Apply	
◆ Create Independent	
Node List:	Node 999
DOFs:	UX
	UY
	UZ
	RX
	RY
	RZ
Apply	

Apply	
Cancel	
Apply	

Repeat this procedure nine more times replacing the *Dependant Variable Node List* with **Nodes 12, 18, 24, 30, 36, 48, 54, 60, 66.** The DOFs and the independent node shall remain the same.

Change the view to isoview_1 by selecting this icon:

Figure 4.3 - Nodal Constraints on the Rigid Element

12. Now you will create the moment.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Input Data...

Force:

Moment:

Analysis Coordinate Frame:

OK

Select Application Region...

Geometry Filter:

Create Force Nodal

applied_moment

< >

< , ,6000>

Coord 0

♦ FEM

MSC/NASTRAN 101 Exercise Workbook

13. Create a new group for output.

Group/Create...

New Group Name:

Group Contents:

Entity Selection:

Note: The selection process for the nodes is the same as in *step 11*. Be certain to set the selection menu filter to nodes only.

Node

Also make sure you exclude Node 999.

14. Now you are ready to run the analysis.

♦ Analysis Action: Analyze **Object: Entire Model** Method: **Analysis Deck** Job Name: prob4 Solution Type... Solution Type: **Linear Static** OK Subcase Create... Subcase Name: output_1 Default Available Load Cases: **Output Request...** Advanced Form Type:

Under Output Requests delete both "STRESS" and "SPCFORCES", then highlight DISPLACEMENT.

Select Group(s)/Set:

output_request

Modify	
OK	
Apply	
Cancel	

Apply

An MSC/NASTRAN input file called **prob4.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN Users should proceed to step 16.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data from table 4.1. The result should be similar to the output below.

15. MSC/NASTRAN Input File: prob4.bdf

ID SEMIN	AR, PRO	В4				
SOL 101						
TIME 600						
CEND						
SET 1 =	6,12,18	,24,30,36	5,48,54,	60,66		
SUBCASE	1					
SPC =	1					
LOAD	= 1					
DISPL	ACEMENT	= 1				
BEGIN BU	T'K					
PSHELL	1	1	.125	1		1
COUAD4	1	1	1	2	8	7
=	*1	=	*1	*1	*1	*1
= 3	-		-	-	-	-
	6	1	7	8	14	13
-	*1	-	, *1	*1	*1	*1
- 3	T	-	T	T	Ŧ	T
	11	1	12	1/	20	10
CQUAD4	⊥⊥ *1	-	±0 *1	*1	*1	19 *1
=	T	=	T	T	T	T
	16	1	10	20	26	25
CQUAD4	⊥0 +1	T	19 +1	∠U +1	∠o +1	∠⊃ +1
=	^ <u>1</u>	=	^	^ <u>T</u>	^	^ <u>T</u>
= 3	0.1	1	05	26	20	21
CQUAD4	21	T	25	26	32	31
=	*⊥	=	*⊥	*⊥	*1	*⊥
= 3						
CQUAD4	26	1	31	32	44	43
=	*1	=	*1	*1	*1	*1
=3		_				
CQUAD4	31	1	43	44	50	49
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	36	1	49	50	56	55
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	41	1	55	56	62	61
=	*1	=	*1	*1	*1	*1
=3						
CQUAD4	46	1	61	62	2	1
=	*1	=	*1	*1	*1	*1
=3						
MAT1	1	10.+6		.3	.101	
RBAR	51	б	999		123456	123
=	*1	*6	==			
=4						
RBAR	57	48	999		123456	123
=	*1	*6	==			
=2						

GRID	1	1	15.	0.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	7	1	15.	36.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	13	1	15.	72.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	19	1	15.	108.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	25	1	15.	144.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	31	1	15.	-180.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	43	1	15.	-144.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	49	1	15.	-108.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	55	1	15.	-72.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	61	1	15.	-36.	0.	1				
=	*1	=	=	=	*18	=				
=4										
GRID	999	1	Ο.	0.	90.	1				
SPC1	1	123456	1	7	13	19	25	31	+	A
+	A 43	49	55	61						
MOMENT	1	999	0	6000.	0.	0.	1			
CORD2C	1		0.	0.	0.	0.	Ο.	1.	+	В
+	в 1.	0.	0.							
ENDDAT	A									

Submit the input file for analysis

- 16. Submit the input file to MSC/NASTRAN for analysis.
 - 16a. To submit the MSC/PATRAN **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob4.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 16b. To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob4 scr=yes. Monitor the run using the UNIX ps command.
- 17. When the run is completed, edit the **prob4.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 18. While still editing **prob4.f06**, search for the word:

DISPLACEMENT (spaces are necessary)

T2 (GRID 6)	=	
T2 (GRID 30)	=	
T2 (GRID 60)	=	

Comparison of Results:

19. Compare the results obtained in the **.f06** file with the results on the following page:

DISPLACEMENT VECTOR

POINT ID.	TYI	PE T1	Т2	Т3	R1	R2	R3
б	G	6.489201E-18	8.929722E-04	-7.888723E-19	-1.846752E-05	-1.016440E-20	5.934382E-05
12	G	5.928149E-18	8.929722E-04	-7.324192E-19	-1.846752E-05	7.257694E-20	5.934382E-05
18	G	3.102745E-18	8.929722E-04	-3.383081E-19	-1.846752E-05	2.849946E-19	5.934382E-05
24	G	-9.078021E-19	8.929722E-04	2.429239E-19	-1.846752E-05	-4.996487E-19	5.934382E-05
30	G	-4.571600E-18	8.929722E-04	7.892660E-19	-1.846752E-05	6.445572E-20	5.934382E-05
36	G	-6.489201E-18	8.929722E-04	1.092034E-18	-1.846752E-05	-1.334018E-19	5.934382E-05
48	G	-5.928149E-18	8.929722E-04	1.035581E-18	-1.846752E-05	9.133200E-20	5.934382E-05
54	G	-3.102745E-18	8.929722E-04	6.414700E-19	-1.846752E-05	2.467077E-19	5.934382E-05
60	G	9.078021E-19	8.929722E-04	6.023794E-20	-1.846752E-05	-2.297201E-19	5.934382E-05
66	G	4.571600E-18	8.929722E-04	-4.861042E-19	-1.846752E-05	4.177066E-20	5.934382E-05

- 20. MSC/NASTRAN Users have finished this exercise. MSC/PATRAN Users should proceed to the next step.
- 21. Proceed with the Reverse Translation process, that is importing the **prob4.op2** results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows:

♦ Analysi	is
-----------	----

Action:

Object:

Method:

Select Results File...

Selected Results File:

OK	
Apply	

Set the **default_group** to current.

Group/Set Current...

Set Current Group:

default_group

Read Output2

Result Entities

Translate

prob4.op2

22. When the translation is complete bring up the **Results** form.

♦ Results

Cancel

Action:	Create
Object:	Fringe
Select Result Cases:	Default, Static Subcase
Select Fringe Result:	Displacement, Translational
Quantity:	Magnitude

To change the target entites of the plot, click on the **Target Entities** icon.

Target Entities

Target Entity:

Select Groups:

Groups default_group

To change the display attributes of the plot, click on the **Display Attributes** icon.

Display Attributes

Style:

Element Shrink Factor:

Continuous	
0.05	

Apply

22a. Next add the deformation options to the plot.

Results

Action:

Object:

Select Result Case(s):

Select Deformation Result:

Show As:

Create Deformation Default, Static Subcase Displacements, Translational Resultant

To change the target entites of the plot, click on the **Target Entities** icon.

Target Entities

Target Entity:

Select Groups:

Groups	
default_group	

MSC/NASTRAN 101 Exercise Workbook

WORKSHOP 4

To change the display attributes of the plot, click on the **Display Attributes** icon.

Display Attributes

Show Undeformed

Line Style:

Apply

You may reset the graphics if you click on this icon:

You can go back and select any *Results Case, Fringe Results or Deformation Results* you are interested in.

Quit MSC/PATRAN when you are finished with this exercise.