WORKSHOP PROBLEM 3

Direct Transient Response Analysis

Objectives

- Define time-varying excitation.
- Produce a MSC/NASTRAN input file from dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC/NASTRAN.
- Compute nodal displacements for desired time domain.

MSC/NASTRAN 102 Exercise Workbook

3-2

Model Description:

Using the direct method, determine the transient response of the flat rectangular plate, created in Workshop 1, under time-varying excitation. This example structure shall be excited by 1 psi pressure load over the total surface of the plate varying at 250Hz. In addition, a 50 lb force is applied at a corner of the tip also varying at 250Hz but out-of-phase with the pressure load. Both time dependent dynamic loads are applied for the duration of 0.008 seconds only. Use structural damping of g=0.06 and convert this damping to equivalent viscous damping at 250Hz. Carry the analysis for 0.04 seconds.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 3.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Define the time-varying pressure loading (PLOAD2, LSEQ and TLOAD2). (Hint, be certain to specify phase angle since the applied loads are out-of-phase).
- Define the time-varying tip load (DAREA and TLOAD2). (Again, be certain to specify the phase angle).
- Combine the time-varying loads (DLOAD).
- Specify integration time steps (TSTEP).
- Prepare the model for a direct transient analysis (SOL 109).
- Specify the structural damping and convert this damping to equivalent viscous damping.
 - PARAM, G, 0.06
 - PARAM, W3, 1571.0
- Request response in terms of nodal displacement at grid points 11, 33 and 55.
- Generate an input file and submit it to the MSC/NASTRAN solver for direct transient analysis.
- Review the results, specifically the nodal displacements and xy-plot output.

ID SEMINAR, PROB3

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 3

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC/PATRAN for generating an input file should go to Step 13, otherwise, proceed to step 2.
- 2. Open a new database named **prob3.db**.

File/New Database

New Database Name

prob3

◆ Default

MSC/NASTRAN

OK

In the New Model Preference form set the following:

Tolerance

Analysis Code:

OK

3. Create the model by importing an existing MSC/NASTRAN input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method

Select Input File

Read Input File
Model Data

Translate

plate.bdf

Select File

OK
Apply
OK

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Add the pre-defined constraints into the default load case.

♦ Load Cases

Action:

Load Case Name

Load Case Type:

Assign/Prioritize Loads/BCs

Select Load/BCs to Add to Spreadsheet (Select from menu.)

Create transient_response **Time Dependent**

Displ_spc1.1

6. Create a time-dependent field for the transient response of the pressure loading.

◆ Fields	
Action:	Create
Object:	Non Spatial
Method	Tabular Input
Field Name	time_dependent_pressure
[Options]	
Maximum Number of t	21
ОК	
Input Data	
Map Function to Table	
Map Function to TablePCL Expression f'(t):	sind(90000.*'t)
Map Function to Table PCL Expression f'(t): Start Time	sind(90000.*'t) 0.0
Map Function to Table PCL Expression f'(t): Start Time End Time	sind(90000.*'t) 0.0 0.008
Map Function to Table PCL Expression f'(t): Start Time End Time Number of Points	sind(90000.*'t) 0.0 0.008 20

MSC/NASTRAN 102 Exercise Workbook

WORKSHOP 3

OK

Apply

Apply

Cancel

In the *Time/Frequency Scalar Table Data* window, add the following to Row 21:

7. Create another time-dependent field for the transient response of the nodal force.

♦	Fields
---	--------

Action:

Object:

Method

Field Name

[Options ...]

Maximum Number of t

OK

Input Data ...

Map Function to Table...

PCL Expression f'(t)

Start Time

End Time

Number of Points

-sind(90000.*'t)	
0.0	
0.008	
20	

Create

21

Non Spatial

Tabular Input

time_dependent_force

Direct Transient Response Analysis

In the Time/Frequency Scalar Table Data window, add the following to Row 21:

8. Create the time dependent pressure.

WORKSHOP 3

♦ Loads/BCs	
Action:	Create
Object:	Pressure
Type:	Element Uniform
New Set Name	pressure
Target Element Type:	2D
Input Data	
Top Surf Pressure	-1

Note: The default direction of pressure in MSC/PATRAN is opposite from default MSC/NASTRAN assumption.

Time Dependence: (Select from the Time Dependent Fields box)

f:time_dependent_pressure

OK

Select Application Region...

♦ FEM

Select 2D Elements or Edge (Select all elements)

3-11

9. Create the time-dependent nodal force.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Spatial Dependence Force <F1 F2 F3>

Time Dependence: (Select from the **Time Dependent Fields** box)

OK

Select Application Region...

♦ FEM

Select Nodes

Node	11	

f:time_dependent_force

Create

Force

Nodal

force

<0 0 50>

To simplify the view, turn off the entity labels using the toolbar.

In addition, switch to a 3 view isometric view point.

The result should be similar to **Figure 3.2**.

Figure 3.2-The model with loads and boundary conditions applied.

10. Create the analysis.

♦ Analysis

Action:

WORKSHOP 3

Object:

Method:

Job Name

Solution Type...

Solution Type:

Solution Parameters...

Formulation:

Mass Calculation:

Wt.-Mass Conversion =

Struct. Damping Coeff. =

W3, Damping Factor =

OK

Entire Model

Analysis Deck

prob3

♦ TRANSIENT RESPONSE

Direct	
Coupled	
.00259	
0.06	
1571	

Direct Text Input	
Clear	
ОК	
Subcase Create	
Available Subcases (Select from menu.)	transient_response
Subcase Parameters	
Ending Time =	.04
Number of Time Steps =	100
ОК	
Output Requests	
Form Type:	Advanced
Under Output Requests, highlig	ght:
SPCFORCES(SORT1,Real)=	All FEM
Delete	

Output Requests:

Sorting:

Modify OK Apply Cancel

Subcase Select...

Subcases Selected: (Click to de-select.)

Subcases for Solution Sequence: 109 (Click to select.) Default

transient_response

select **DISPLACEMENT(...**

By Freq/Time

OK

MSC/NASTRAN 102 Exercise Workbook

Apply

An MSC/NASTRAN input file called **prob3.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN Users should proceed to step 14.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data previously stated. The result should be similar to the output below.

11. MSC/NASTRAN input file: prob3.dat

```
ID SEMINAR, PROB3
SOL 109
TIME 30
CEND
TITLE= TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS
SUBTITLE= USE THE DIRECT METHOD
ECHO= PUNCH
SPC= 1
SET 1= 11, 33, 55
DISPLACEMENT= 1
SUBCASE 1
DLOAD= 700 $ SELECT TEMPORAL COMPONENT OF TRANSIENT LOADING
LOADSET= 100 $ SELECT SPACIAL DISTRIBUTION OF TRANSIENT LOADING
TSTEP= 100 $ SELECT INTEGRATION TIME STEPS
$
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER
XYPLOT DISP RESPONSE / 11 (T3)
YTITLE= DISPLACEMENT RESPONSE AT CENTER TIP
XYPLOT DISP RESPONSE / 33 (T3)
YTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER
XYPLOT DISP RESPONSE / 55 (T3)
Ś
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
Ŝ
$ SPECIFY STRUCTURAL DAMPING
$ 3 PERCENT AT 250 HZ. = 1571 RAD/SEC.
$
PARAM, G, 0.06
```

WORKSHOP 3

```
PARAM, W3, 1571.
$
$ APPLY UNIT PRESSURE LOAD TO PLATE
$
LSEQ, 100, 300, 400
$
PLOAD2, 400, 1., 1, THRU, 40
$
$ VARY PRESSURE LOAD (250 HZ)
$
TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90.
$
$ APPLY POINT LOAD OUT OF PHASE WITH PRESSURE LOAD
$
TLOAD2, 500, 600, , 0, 0., 8.E-3, 250., 90.
$
DAREA, 600, 11, 3, 1.
$
$ COMBINE LOADS
$
DLOAD, 700, 1., 1., 200, 50., 500
$
$ SPECIFY INTERGRATION TIME STEPS
Ś
TSTEP, 100, 100, 4.0E-4, 1
$
ENDDATA
```

Submitting the input file for analysis:

- 12. Submit the input file to MSC/NASTRAN for analysis.
 - 12a. To submit the MSC/PATRAN **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob3.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 12b. To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob3 scr=yes. Monitor the run using the UNIX ps command.
- 13. When the run is completed, use **plotps** utility to create a postscript file, **prob3.ps**, from the binary plot file **prob3.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 3.2, 3.3 and 3.4.
- 14. Edit the **prob3.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 15. While still editing prob3.f06, search for the word:

DISPL (spaces are necessary)

Displacement at Grid 11

Time T3

.0024 = _____

.0052 = _____

.02 = _____

Displacement at Grid 33

Time T3

- .0024 = _____
- .0052 = _____
- .02 = _____

Displacement at Grid 55

WORKSHOP 3

Time		T3
.0024	=	
.0052	=	
.02	=	

3-19

Comparison of Results

16. Compare the results obtained in the **.f06** file with the results on the following page:

11

DISPLACEMENT VECTOR

TIME	TYPE		Т1	т2	Т3	R1	R2		R3
0.0	G	0.0	0.0	0.	0	0.0	0.0	0.0	
4.00000E-04	G	0.0	0.0	-2.	173625E-02	1.104167E-02	1.050818E-02	0.0	
8.00000E-04	G	0.0	0.0	-7.	204904E-02	2.847414E-02	2.852519E-02	0.0	
1.200000E-03	G	0.0	0.0	-1.	433462E-01	4.082027E-02	4.915178E-02	0.0	
3.879996E-02	G	0.0	0.0	-3.	726422E-02	-6.629907E-05	1.039267E-02	0.0	
3.919996E-02	G	0.0	0.0	-2.	122380E-02	-1.431050E-05	5.916678E-03	0.0	
3.959996E-02	G	0.0	0.0	-2.	998187E-03	-7.089762E-06	8.371174E-04	0.0	
3.999996E-02	G	0.0	0.0	1.	535974E-02	5.380207E-06	-4.281030E-03	0.0	
		22							
FOINI-ID =		55	D	ISPLAC	EMENT	VECTOR			
TIME	TYPE		Τ1	Т2	Т3	R1	R2		R3
0.0	G	0.0	0.0	0.	0	0.0	0.0	0.0	
4.00000E-04	G	0.0	0.0	-1.	122398E-02	9.220218E-03	6.138594E-03	0.0	
8.00000E-04	G	0.0	0.0	-4.	424753E-02	2.576699E-02	2.014980E-02	0.0	
1.200000E-03	G	0.0	0.0	-1.	030773E-01	3.819036E-02	3.922388E-02	0.0	
•									
•									
3 879996E-02	G	0 0	0 0	-3	729695E-02	1 898676E-05	1 037927E-02	0 0	
3 919996E-02	G	0 0	0.0	-2	121863E-02	3 488550E-05	5 907703E-03	0 0	
3.959996E-02	G	0.0	0.0	-3.	002583E-03	-2.228106E-07	8.361273E-04	0.0	
3 999996E-02	G	0 0	0.0	1	535096E-02	-3 032754E-05	-4 274252E-03	0 0	
5.555556	6	0.0	0.0	±•	5556761 02	5.052/512 05	1.2,12321 03	0.0	
POINT-ID =		55							
			D	ISPLAC	ЕМЕΝТ	VECTOR			
TIME	TYPE		т1	т2	Т3	R1	R2		R3
0.0	G	0.0	0.0	0.	0	0.0	0.0	0.0	
4.000000E-04	G	0.0	0.0	-2.	849185E-03	7.791447E-03	4.611430E-03	0.0	
8.000000E-04	G	0.0	0.0	-1.	992890E-02	2.322436E-02	1.681028E-02	0.0	
1.200000E-03	G	0.0	0.0	-6.	643156E-02	3.540079E-02	3.501805E-02	0.0	
	0	0.0	0.0	0.	0151501 02	3.3100791 02	5.5010051 02	0.0	
•									
3.879996E-02	G	0.0	0.0	-3.	722652E-02	1.035188E-04	1.039059E-02	0.0	
3.919996E-02	G	0.0	0.0	-2.	115454E-02	8.268487E-05	5.912832E-03	0.0	
3.959996E-02	G	0.0	0.0	-2.	998628E-03	6.654292E-06	8.371378E-04	0.0	
3.999996E-02	G	0.0	0.0	1.	529953E-02	-6.482315E-05	-4.277684E-03	0.0	

17. MSC/NASTRAN Users have finished this exercise. MSC/ PATRAN Users should proceed to the next step.

18. Proceed with the Reverse Translation process, that is importing the **prob3.op2** results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object: Method Read Output2

Result Entities

Translate

Select Results File...

Select File

OK Apply prob3.op2

When the translation is complete bring up the **Results** form.

♦ Results

Form Type:

Select Results Cases (Highlight all.)

Get Results

Select Result

Plot Type

Plot Type Options...

Global Var...

Global Variables

Apply

Result(Y)...

Results

Vector Component

OK

Node IDs

1.1 Displacements, Translational

XY Plot

Advanced

1-Time

1.1-Displacements, Translational

 $\Box X \quad \Box Y \quad \blacksquare Z$

Node 11

MSC/NASTRAN 102 Exercise Workbook

Direct Transient Response Analysis

Apply

WORKSHOP 3

New Title or Title Filter

Displacement Response At Loaded Corner

You may reset the graphics by clicking on this icon:

Figure 3.3-Displacement Response at Node 11

Repeat the above steps for plotting the xy plots of Node 11, Node 33 and Node 55. Return to the *Results Display* form. If the *Curves for XY Plot* form and the *Result XY Plot Options* form are still open, close them by pushing the **Cancel** button.

WORKSHOP 3 Direct Transient Response Analysis

Return to the *Results Display* form. If the *Curves for XY Plot* form and the *Result XY Plot Options* form are still open, close them by pushing the **Cancel** button.

Plot Type Option	
Global Var	
Global Variables	1. Time
Apply	
Result(Y)	
Results	1.1-Displacements, Translational
Vector Component	$\Box X \Box Y \blacksquare Z$
ОК	
Node IDs	Node 55
Apply	
New Title or Title Filter	Displacement Response at Opposite Corner
Rename	

Figure 3.5-Displacement Response at Node 55

Apply

Quit MSC/PATRAN when you are finished with this exercise.

MSC/NASTRAN 102 Exercise Workbook

MSC/NASTRAN 102 Exercise Workbook