WORKSHOP PROBLEM 4

Modal Transient Response Analysis

Objectives

- Define time-varying excitation.
- Produce a MSC/NASTRAN input file from a dynamic math model, created in Workshop 1.
- Submit the file for analysis in MSC/NASTRAN.
- Compute nodal displacements for desired time domain.

MSC/NASTRAN 102 Exercise Workbook

4-2

Model Description:

WORKSHOP 4

Using the Modal Method, determine the transient response of the flat rectangular plate, created in Workshop 1, under time-varying excitation. This example structure shall be excited by a 1 psi pressure load over the total surface of the plate varying at 250Hz. In addition, a 25 lb force is applied at a corner of the tip also varying at 250Hz but starting 0.004 seconds after the pressure load begins. Both time-dependent dynamics loads are applied only for the duration of 0.008 seconds only. Use a modal damping of $\zeta = 0.03$ for all nodes. Carry out the analysis for 0.04 seconds.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 4.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Specify modal damping as a tabular function of natural frequency (TABDMP1).
- Define the time-varying pressure loading (PLOAD2, LSEQ and TLOAD2).
- Define the time-varying tip load (DAREA and TLOAD2).
- Define the time delay term in the equations of the dynamic loading function (DELAY).
- Combine the time-varying loads (DLOAD).
- Specify integration time steps (TSTEP).
- Prepare the model for a modal transient analysis (SOL 112).
- Request response in terms of nodal displacement at grid 11, 33, and 55.
- Generate an input file and submit it to the MSC/NASTRAN solver for normal modes analysis.
- Review the results, specifically the nodal displacements.

ID SEMINAR, PROB4

CEND

BEGIN BULK

1	2	3	4	5	б	7	8	9	10
		I	L		l	L		I	

WORKSHOP 4

Modal Transient Response Analysis

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC/PATRAN for generating an input file should go to Step 11, otherwise, proceed to step 2.
- 2. Create a new database and named **prob4.db**.

File/New Database

New Database Name

prob4

◆ Default

MSC/NASTRAN

OK

In the New Model Preference form set the following:

Tolerance

Analysis code:

OK

3. Create the model by importing an existing MSC/NASTRAN input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method:

Select Input File

Select Input File

OK	
Apply	
ОК	

Read Input File

Model Data

Translate

plate.bdf

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Add the pre-defined constraints into a newly defined load case.

♦ Load Cases

Action:

WORKSHOP 4

Load Case Name:

Load Case Type:

Assign/Prioritize Loads/BCs

Select Load/BCs to Add to Spreadsheet (Select from menu.) Create transient_response Time Dependent

Displ_spc1.1

6. Create a time-dependent field for the pressure loading.

♦ Fields

Action:

OK

Apply

Object:

Method:

Field Name:

Options ...

Maximum Number of t:

OK

Input Data ...

Map Function to Table...

PCL Expression f'(t):

Start time:

End time:

Number of Points:

Apply Cancel

Create

Non Spatial

Tabular Input

time_dependent_pressure

sind(90000.*'t)	
0.0	
0.008	
20	

Go back to the *Time/Frequency Scalar Table Data* window, go down to row 21, and add the following:

7. Create a time-dependent field for the nodal force.

7a.First, define the PCL function manually.

7b.The text below defines a PCL function called **nodal_force**. Using a text editor, input the text into a file called **prob4.pcl**.

```
Function nodal_force(t)
real t
if (t < 0.004 || t > .012) then
  return 0.0
else
  return sind(90000.*t)
end if
End Function
```

7c.To compile PCL function, go into the command line and type:

!!input prob4 ◆ Fields Action: ① Object: N Method: ⑦ Field Name: 1 Options... 32 OK Input Data...

Create

Non Spatial

Tabular Input

time_dependent_force

32

4-10

Map Function to Table	
PCL Expression $f'(t)$:	nodal_force('t)
Start time:	0.000
End time:	0.012
Number of Points:	31
Apply	

Go back to the *Time/Frequency Scalar Table Data* window, go down to row 32, and add the following:

8. Create the time-dependent pressure.

♦ Loads/BCs

Action:

Cancel

WORKSHOP 4

Object:

Type:

New Set Name:

Target Element Type:

Input Data...

Top Surf Pressure

Time Dependence (Select from the **Time Dependent Fields** box.)

OK

Select Application Region ...

♦ FEM

Create

Pressure

Element Uniform

pressure

2D

-1

f:time_dependent_pressure

Select 2D Elements or Edge (Select all elements.)

Elm 1:40

Add
ОК
Apply

9. Create the time-dependent nodal force.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Input Data ...

Force <*F1 F2 F3*>

Force Nodal

force

Create

<0 0 25>

f:time_dependent_force

Time Dependence (Select from the **Time Dependent Fields** box.)

OK

Select Application Region ...

♦ FEM

Select Nodes

Nodo	11	
Noue		

Add	
OK	_
Apply	

To simplify the view, turn off the entity labels using the toolbar.

L I I I I I I I I I I I I I I I I I I I	Hide Labels
--	-------------

In addition, switch to a 3 view isometric view point.

The result should be similar to Figure 4.2.

WORKSHOP 4

- 10. Generate the input file.
 - ♦ Analysis

Action:

Object:

Method:

Jobname:

Solution Type...

Solution Type:

Solution Parameters ...

Formulation

Mass Calculation

Wt.-Mass Conversion

Eigenvalue Extraction...

Number of Desired Roots

OK

Analyze

Entire Model

Analysis Deck

prob4

♦ TRANSIENT RESPONSE

Modal	
Coupled	
.00259	

5

OK	
OK	

SPCFORCES(SORT1,Real)=ALL FEM

Delete

Output Requests:

Sorting:

select **DISPLACEMENT(...**

By Freq/Time

Modify	
OK	
Apply	
Concol	

WORKSHOP 4

Subcase Select	
Subcases Selected: (Click to deselect.)	default
Subcases for Solution Sequence: 112 (Click to select.)	transient_response
ОК	
Apply	

An MSC/NASTRAN input file called **prob4.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN Users should proceed to step 12.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data previously stated. The result should be similar to the output below.

11. MSC/NASTRAN input File: prob4.dat

```
ID SEMINAR, PROB4
SOL 112
TIME 30
CEND
TITLE = TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS
SUBTITLE = USE THE MODAL METHOD
ECHO = UNSORTED
SPC = 1
SET 111 = 11, 33, 55
DISPLACEMENT(SORT2) = 111
SDAMPING = 100
SUBCASE 1
METHOD = 100
DLOAD = 700
LOADSET = 100
TSTEP = 100
$
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER
XYPLOT DISP RESPONSE / 11 (T3)
YTITLE= DISPLACEMENT RESPONSE AT TIP CENTER
XYPLOT DISP RESPONSE / 33 (T3)
YTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER
XYPLOT DISP RESPONSE / 55 (T3)
$
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE PROBLEM
$
INCLUDE 'plate.bdf'
Ś
$ EIGENVALUE EXTRACTION PARAMETERS
$
```

Modal Transient Response Analysis

```
WORKSHOP 4
EIGRL, 100, , ,5
```

```
$
$ SPECIFY MODAL DAMPING
$
TABDMP1, 100, CRIT,
+, 0., .03, 10., .03, ENDT
$
$ APPLY UNIT PRESSURE LOAD TO PLATE
$
LSEQ, 100, 300, 400
$
PLOAD2, 400, 1., 1, THRU, 40
$
$ VARY PRESSURE LOAD (250 HZ)
$
TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90.
$
$ APPLY POINT LOAD (250 HZ)
$
TLOAD2, 500, 600,610, 0, 0.0, 8.E-3, 250., -90.
$
DAREA, 600, 11, 3, 1.
DELAY, 610, 11, 3, 0.004
$
$ COMBINE LOADS
$
DLOAD, 700, 1., 1., 200, 25., 500
$
$ SPECIFY INTERGRATION TIME STEPS
$
TSTEP, 100, 100, 4.0E-4, 1
$
ENDDATA
```

4-17

Submitting the input file for analysis:

- 12. Submit the input file to MSC/NASTRAN for analysis.
 - 12a.To submit the MSC/PATRAN **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob4.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 12b.To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob4 scr=yes. Monitor the run using the UNIX ps command.
 - 13. When the run is completed, use **plotps** utility to create a postscript file, **prob4.ps**, from the binary plot file **prob4.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 4.3, 4.4, and 4.5.
- 14. When the run is completed, edit the **prob4.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 15. While still editing **prob4.f06**, search for the word:

DISPL (spaces are necessary)

Displacement at Grid 11.

Time T3

.0064=		

.02 = _____

Displacement at Grid 33.

Time	T3
------	----

.0068=	

.0092= _____

.02 = _____

Displacement at Grid 55.

Time T3

.0068= _____

.0092= _____

.02 = _____

Comparison of Results

16. Compare the results obtained in the **.f06** file with the results on the following page:

POINT-ID = 11

DISPLACEMENT VECTOR

TIME	TYPE	Т1	Т2	Т3	R1	R2	R3
.0	G	.0	.0	.0	.0	.0	.0
4.00000E-04	G	3.138503E-15	5.333171E-15	1.873720E-04	-6.340404E-06	5.161942E-05	.0
5.999999E-03	G	9.901832E-13	2.054362E-12	1.177721E-01	3.009433E-03	-3.418436E-02	.0
6.399998E-03	G	1.301660E-12	2.610037E-12	1.495051E-01	6.088505E-03	-4.068905E-02	.0
6.799998E-03	G	1.361787E-12	2.701773E-12	1.469920E-01	1.272909E-02	-3.955902E-02	.0
8.799998E-03	G	-1.399555E-12	-2.778663E-12	-1.534481E-01	-1.183270E-02	4.150834E-02	.0
9.199998E-03	G	-1.565439E-12	-3.143368E-12	-1.692225E-01	-1.568289E-02	4.710494E-02	.0
9.599999E-03	G	-1.396290E-12	-2.830759E-12	-1.533197E-01	-1.109114E-02	4.241555E-02	.0
2.00000E-02	G	1.762308E-13	3.609815E-13	2.043042E-02	1.705799E-04	-5.402198E-03	.0
3.959996E-02	G	5.328810E-14	1.099402E-13	6.485358E-03	-1.067494E-05	-1.817145E-03	.0

POINT-ID = 33

DISPLACEMENT VECTOR

т3 TIME TYPE т1 т2 R1 R2 .0 .0 .0 .0 G .0 .0 .0 4.00000E-04 G -1.482405E-15 5.013036E-15 1.835858E-04 -3.682543E-14 5.086755E-05 .0 1.795108E-12 .0 5.999999E-03 G -7.504724E-13 1.207052E-01 2.766146E-03 -3.436569E-02 2.269019E-12 1.556774E-01 6.135463E-03 -4.140196E-02 .0 6.399998E-03 G -9.796515E-13 .0 6.799998E-03 G -1.045427E-12 2.321332E-12 1.599741E-01 1.308315E-02 -4.083382E-02 7.199998E-03 G -8.759517E-13 1.829195E-12 1.278863E-01 1.804037E-02 -3.306541E-02 .0 8.799998E-03 1.073612E-12 -2.391129E-12 -1.655026E-01 -1.212454E-02 .0 G 4.270243E-02 1.217997E-12 -2.696051E-12 -1.851369E-01 -1.596580E-02 4.844051E-02 .0 9.199998E-03 G 3.184533E-13 2.059413E-02 1.496853E-04 -5.411018E-03 .0 2.00000E-02 G -1.280910E-13 3.959996E-02 G -3.946867E-14 9.686225E-14 6.468208E-03 -2.682333E-05 -1.813416E-03 .0 POINT-ID = 55

DISPLACEMENT VECTOR

TIME	TYPE	Τ1	Т2	Т3	R1	R2	
.0	G	.0	.0	.0	.0	.0	.0
4.00000E-04	G	-4.974573E-15	5.435887E-15	1.873720E-04	6.340404E-06	5.161942E-05	.0
6.399998E-03	G	-2.151553E-12	2.189475E-12	1.615714E-01	5.634375E-03	-4.218743E-02	.0
6.799998E-03	G	-2.229502E-12	2.212659E-12	1.728057E-01	1.248924E-02	-4.215589E-02	.0
7.199998E-03	G	-1.757434E-12	1.697970E-12	1.456460E-01	1.736620E-02	-3.459810E-02	.0
8.799998E-03	G	2.297826E-12	-2.283533E-12	-1.773652E-01	-1.152392E-02	4.395273E-02	.0
9.199998E-03	G	2.561482E-12	-2.555566E-12	-2.007833E-01	-1.524836E-02	4.984966E-02	.0
9.599999E-03	G	2.290908E-12	-2.331874E-12	-1.754856E-01	-1.067918E-02	4.413952E-02	.0
2.000000E-02	G	-2.917673E-13	3.108817E-13	2.072625E-02	1.192453E-04	-5.428383E-03	.0
3.959996E-02	G	-8.886282E-14	9.431532E-14	6.432103E-03	-4.190110E-05	-1.814187E-03	.0

MSC/NASTRAN 102 Exercise Workbook

R3

R3

17. MSC/NASTRAN Users have finished this exercise. MSC/PATRAN Users should proceed to the next step.

18. Proceed with the Reverse Translation process, that is importing the **prob4.op2** results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method:

Result Entities Translate

Read Output2

Select Results File...

Select Results File

prob4.op2

OK

Apply

When the translation is complete bring up the **Results** form.

♦ Results

Form Type:

Select Results Case (Select all.)

Get Results

Select Result

Plot Type

Plot Type Options...

Global Variable

Global Variables:

Apply Result (Y)

Results:

Vector Component

Advanced

1.1 Displacements, Translational

XY Plot

1. Time

 1.1 Displacements, Translational

 □X
 □Y

Node 11

WORKSHOP 4

Node IDs

Apply

New Title or Title Filter:

Displacement Response At
Loaded Corner

Rename
Apply

The output should look similar to Figure 4.3.

Figure 4.3-Displacement Response at Loaded Corner

19. Repeat the procedure to find the nodal displacement for Node 33.

The output should look similar to Figure 4.4.

Figure 4.4-Displacement Response at Tip Center

20. Repeat the procedure to find the nodal displacement for Node 55.

Figure 4.5-Displacement Response at Opposite Corner

Quit MSC/PATRAN when you are finished with this exercise.