WORKSHOP PROBLEM 5

Direct Frequency

Response Analysis

Objectives:

- Define frequency-varying excitation.
- Produce a MSC/NASTRAN input file from dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC/NASTRAN.
- Compute nodal displacements for desired frequency domain.

MSC/NASTRAN 102 Exercise Workbook **5-1**

MSC/NASTRAN 102 Exercise Workbook

5-2

Model Description:

Using the direct method, determine the frequency response of the flat rectangular plate, created in Workshop 1, under frequency-varying excitation. This example structure shall be excited by a unit load at a corner of the tip. Use a frequency step of 20 Hz between a range of 20 and 1000 Hz. Use structural damping of g=0.06.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 5.1-Loads and Boundary Conditions

Suggested Exercise Steps:

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement
- Define the frequency-varying tip load (DAREA and RLOAD2).
- Define a set of frequencies to be used in the solution (FREQ1).
- Prepare the model for a direct frequency response analysis (SOL 108).
- Specify the structural damping.
 - PARAM, G, 0.06
- Request response in terms of nodal displacement at Grids 11, 33 and 55.
- Generate an input file and submit it to the MSC/NASTRAN solver for direct transient analysis.
- Review the results, specifically the nodal displacements and phase angles.

ID SEMINAR, PROB5

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- Users who are not utilizing MSC/PATRAN for generating an input 1. file should go to Step 9, otherwise, proceed to step 2.
- 2. Create a new database called **prob5.db**.

File/New Database

New Database Name:

OK

pro	b5		

In the New Model Preference form set the following:

Tolerance:

Analysis Code:

Analysis Type:

OK

◆ Default MSC/NASTRAN Structural

3. Create the model by importing an existing MSC/NASTRAN input file, (plate.bdf).

Action:

Object:

Method:

Select Input File ...

Read Input fil	e
Model Data	

Translate

plate.bdf

OK	
Apply	
OK	

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

5. Create a time dependent load case for the transient response.

◆ Load Cases	
Action:	Create
Load Case Name:	frequency_response
Load Case Type:	Time Dependent
Assign/Prioritize Loads/BCs (Highlight the following:)	Displ_spc1.1
ОК	
Apply	

6. Create a frequency dependent field for the frequency dependent load.

Using the data in the table below, enter the values describing the time dependent force into the *Time/Frequency Scalar Table Data* form.

	Freq (f)	Value
1	0	1.0
2	1000	1.0

Input Data...

MSC/NASTRAN 102 Exercise Workbook

OK
Apply

7. Create the frequency dependent unit force.

♦ Load/BCs

Action:

Object:

Type:

New Set Name:

Input Data...

Spatial Dependence/Force:

Time Dependence: (Select from the **Time Dependent Fields** box)

OK

Select Application Region...

FEM

Add

Select Nodes:

Create	
Force	
Nodal	
unit_force	

<0 0 1>

l

f:frequency_dependent_load

Node 11

To better visualize the model, hide the entity labels and switch to an isometric view using the icons below:

The model should be similar to Figure 5.2.

8. Now you are ready to generate an input file for analysis.

Click on the **Analysis** radio button on the Top Menu Bar and complete the entries as shown here.

Struct. Damping Coeff. =	0.06
ОК	
ОК	
Subcase Create	
Available Subcases	frequency_response
Subcase Parameters	
Starting Frequency =	20
Ending Frequency =	1000
# of Freq. Increments =	49
ОК	
Output Requests	
Form Type:	Advanced

under Output Request highlight: SPCFORCES(SORT1,Real)=All FEM

Delete

Output Requests:

Sorting:

Cancel

Subcase Select ...

Subcases Selected: (Click to de-select.)

Subcases for Solution Sequence: 108 (Click to select.)

Apply

select **DISPLACEMENT(...**

By Freq/Time

Default

frequency_response

An input file called **prob5.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN users should now proceed to Step 10.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data from page 5-3 (Model Description). The result should be similar to the output below.

9. MSC/NASTRAN input file: prob5.dat

```
ID SEMINAR, PROB5
SOL 108
TIME 30
CEND
TITLE = FREQUENCY RESPONSE DUE TO UNIT FORCE AT TIP
ECHO = UNSORTED
SPC = 1
SET 111 = 11, 33, 55
DISPLACEMENT(SORT2, PHASE) = 111
SUBCASE 1
DLOAD = 500
FREQUENCY = 100
$
OUTPUT (XYPLOT)
Ŝ
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE
XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASE
XYPLOT DISP RESPONSE / 33 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASE
XYPLOT DISP RESPONSE / 55 (T3RM, T3IP)
$
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
5-14
              MSC/NASTRAN 102 Exercise Workbook
```

WORKSHOP 5 Direct Frequency Response Analysis

```
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM, G, 0.06
$
$ APPLY UNIT FORCE AT TIP POINT
$
RLOAD2, 500, 600, , ,310
$
DAREA, 600, 11, 3, 1.0
$
TABLED1, 310,
, 0., 1., 1000., 1., ENDT
$
$ SPECIFY FREQUENCY STEPS
$
FREQ1, 100, 20., 20., 49
$
ENDDATA
```

Submitting the input file for analysis:

- 10. Submit the input file to MSC/NASTRAN for analysis.
 - 10a.To submit the MSC/PATRAN .bdf file, find an available UNIX shell window. At the command prompt enter **nastran prob5.bdf** scr=yes. Monitor the run using the UNIX ps command.
 - 10b.To submit the MSC/NASTRAN .dat file, find an available UNIX shell window and at the command prompt enter nastran prob5 scr=yes. Monitor the run using the UNIX ps command.
- 11. When the run is completed, use **plotps** utility to create a postscript file, **prob5.ps**, from the binary plot file, **prob5.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 5-2 to 5-7.
- 12. When the run is completed, edit the **prob5.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

For MSC/NASTRAN users only. MSC/PATRAN users should skip to step 16.

13. While still editing **prob5.f06**, search for the word:

XY-OUTPUT SUMMARY (spaces are necessary).

Displacement at Grid 11

Frequency (X)	Displacement (Y)				
140 =					
380 =					
Displacement at Grid 33					
Frequency (X)	Displacement (Y)				
140 =					
600 =					
Displacement at Grid 55					
Frequency (X)	Displacement (Y)				
140 =					
1000 =					

Comparison of Results

14. Compare the results obtained in the **.f06** file with the results on the following page:

POINT-ID =		11						
				COMPLEX	DISPLAC	EMENT VI	ECTOR	
					(MAGNITUDE/	PHASE)		
FRECIIENCY	TVDF		т 1	Ψ2	ጥ 3	٦q	P 2	۶a
$2 000000 \pm 01$	G	0 0	11	0.0	8 817999E-03	6 435859E-04	2 632016E-03	0 0
2.0000001.01	0	0.0		0.0	356 4954	176 5664	176 5000	0.0
4 000000±+01	G	0.0		0.0	9 404316E-03	6 434991 E = 04	2795561 ± 03	0.0
1.0000001.01	0	0.0		0.0	356 2596	176 5677	176 2785	0 0
9 7999995+02	G	0.0		0.0	9 965085E-04	2 691742E-04	4 097779E-04	0.0
5.755555102	0	0.0		0.0	187 6832	7 8008	15 1581	0.0
1 000000±+03	G	0.0		0.0	8 803170E-04	2 354656E-04	3 317750E-04	0 0
1.0000001.03	0	0.0		0.0	186 9299	8 2146	14 6645	0.0
		0.0		0.0	100.9299	0.2110	11.0013	0.0
POINT-ID =	33							
				СОМРЬЕХ	DISPLAC	EMENT VE	ECTOR	
					(MAGNITUDE/	PHASE)		
FREQUENCY	TYPE		т1	Ͳ2	Ψ3	R1	R2	۶R
2.000000E+01	G	0.0		0.0	8.183126E-03	5.993295E-04	2.443290E-03	0.0
	-	0.0		0.0	356.4899	176.5639	176.4950	0.0
4.000000E+01	G	0.0		0.0	8.768992E-03	6.006200E-04	2.606561E-03	0.0
	-	0.0		0.0	356.2376	176.5565	176.2581	0.0
9.799999E+02	G	0.0		0.0	6.867234E-04	3.836353E-04	5.393046E-04	0.0
	C	0.0		0.0	188.0180	5.5597	10.0794	0.0
1.000000E+03	G	0.0		0.0	6.062436E-04	3.454144E-04	4.648783E-04	0.0
	-	0.0		0.0	186.8358	5.4959	8.8514	0.0
POINT-ID =		55						
				COMPLEX	DISPLAC		ECTOR	
					(MAGN1TUDE/	PHASE)		
FREQUENCY	TYPE		Т1	Т2	Т3	R1	R2	R3
2.00000E+01	G	0.0		0.0	7.606255E-03	5.587703E-04	2.371172E-03	0.0
		0.0		0.0	356.4844	176.5612	176.4928	0.0
4.00000E+01	G	0.0		0.0	8.190030E-03	5.613805E-04	2.534562E-03	0.0
		0.0		0.0	356.2155	176.5442	176.2492	0.0
9.799999E+02	G	0.0		0.0	2.558788E-04	4.612964E-04	5.702980E-04	0.0
		0.0		0.0	193.1958	4.6290	9.0143	0.0
1.000000E+03	G	0.0		0.0	2.144666E-04	4.204372E-04	4.981144E-04	0.0

190.6200

4.3746

7.6762

0.0

MSC/NASTRAN 102 Exercise Workbook

5-19

0.0

0.0

Direct Frequency Response Analysis

WORKSHOP 5

15. MSC/NASTRAN Users have finished this exercise. MSC/PATRAN Users should proceed to the next step.

16. Proceed with the Reverse Translation process, that is importing the **prob5.op2** results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows.

♦ Analysis	
Action:	Read Output2
Object:	Result Entities
Method:	Translate
Select Results File	
Select Available Files	prob5.op2
ОК	

17. Plot the results in XY plots.

The first plot is to make the Displacement versus Frequency plot at Node 11.

Results

Apply

Form Type:

Select Result Cases (Highlight all cases.)

Get Results

Select Result

Plot Type:

Plot Type Options...

Result XY Plot Types

Global Var...

Global Variable:

Apply Result (Y)... Advanced

1.1-Displacements, Translational

XY Plot

Results Versus Global Variables

1-Frequency

WORKSHOP 5 Direct Frequency Response Analysis

Results	1.1-Displacements, Translationa
Vector Component	
Numerical Form for Complex Results	■ Mag.
ОК	
Node IDs	Node 11
Apply	
New Title or Title Filter	Displacement vs Frequency at Node 11
Rename	

Apply

MSC/NASTRAN 102 Exercise Workbook 5-21

The next step is to make the plot of Phase versus Frequency. Return to the *Results Display* form. If the *Curves for XY Plot* form and the *Result XY Plot Options* form are still open, close them by pushing the **Cancel** button.

Plot Type Options	
Result (Y)	
Result	1.1-Displacements, Translational
Vector Component	$\Box X \Box Y \blacksquare Z$
Numerical Form for Complex Results	■ Phase
ОК	
Node IDs	Node 11
Apply	
Result XY Window Name:	XYWindow2
New Title or Title Filter	Phase vs Frequency at Node 11
Rename	
Apply	

Figure 5.4-Phase Angle at Node 11

Repeat the above steps of plotting the XY plots of Node 11 for Node 33 and 55. Once again, push **Cancel** to remove any miscellaneous forms until the *Results Display* form.

Result (Y)...

Numerical Form for Complex Results ■ Mag.

OK

Node IDs

Node 33

Apply...

Result XY Window Name:

New Title or Title Filter

XYWindow3	
Displacement vs F at Node 33	requency

Rename	
Apply	

Figure 5.5-Displacement Response at Node 33

Plot Type Options... Result (Y)...

Numerical Form for Complex Results

Phase

OK

5-24

Node IDs

Apply

Result XY Window Name:

New Title or Title Filter

Rename	
Apply	

Node 33	
---------	--

XYWindow4

Phase vs Frequency at Node 33

Figure 5.6-Phase Angle at Node 33

Apply

5-26

Quit MSC/PATRAN when you have completed this exercise.

MSC/NASTRAN 102 Exercise Workbook

5-28