WORKSHOP PROBLEM 8

Enforced Motion with Direct Frequency Response

Objectives

- Define frequency-varying tip displacement.
- Use the large mass method.
- Produce a MSC/NASTRAN input file from a dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC/NASTRAN.
- Compute nodal displacements for desired time domain.

MSC/NASTRAN 102 Exercise Workbook

8-2

Model Description:

Using the direct method, determine the frequency response of the flat rectangular plate, created in Workshop 1, under a 0.1 displacement at a corner of the tip. Use a frequency step of 20 Hz in the range of 20 to 1000 Hz. Use a structural damping of g = 0.06.

Below is a finite element representation of the flate plate. It also contains the loads and boundary constraints.

Figure 8.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Create the large mass at a corner of the tip (CMASS2).
- Define the frequency-varying tip displacement (RLOAD2, TABLED4, DAREA).
- Define a set of frequencies to be used in the solution (FREQ1).
- Prepare the model for a direct frequency analysis (SOL 108).
- Sprecify the structural damping.
 - PARAM, G, 0.06
- Request response in terms of nodal displacement and grid points 11, 33, and 55.
- Generate an input file, and submit it to the MSC/NASTRAN solver for direct transient analysis.
- Review the results, specifically the grid displacements.

ID SEMINAR, PROB8

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC/PATRAN for generating an input file should go to Step 9, otherwise, proceed to step 2.
- 2. Create a new database and named **prob8.db**.

File/New Database

New Database Name

prob8

◆ Default

MSC/NASTRAN

OK

In the New Model Preference form set the following:

Tolerance

Analysis code:

OK

3. Create the model by importing an existing MSC/NASTRAN input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method:

Select Input File

Select Input File

OK	
Apply	
ОК	

Read Input File

Model Data

Translate

plate.bdf

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Create the frequency dependent load case.

♦ Load Cases

Action:

Load Case Name:

Load Case Type:

Assign/Prioritize loads/BCs (Highlight the following:)

Create
frequency response
time_dependent
Displ_spc1.1

Apply

6. Place a large mass at a corner of the tip (Node 11). However, a point element must be created first.

◆ Finite Element	
Action:	Create
Object:	Element
Method:	Edit
Shape:	Point
<i>Node 1</i> =	Node 11
Apply	
Then define the scalar mass.	

♦ Properties

Action:

7.

Dimension:

Type:

Property Set Name:

Option(s):

Input Properties ...

Mass:

Dof at Node 1 (Value Type)

Create	
0D	
Mass	
scalar_mass	
Grounded	

1.0E+5	
UZ	

OK

Select Members: (Click on point element in select menu. Then select Elm 41.) Elm 41

Point Element

Add Apply

8. Start the analysis.

Action:

Object:

Method:

Jobname:

Solution Type...

Solution Type:

Solution Parameters ...

Formulation:

Mass Calculation

Wt.-Mass Conversion

Structure Damping Coeff:

OK

OK

Direct Text Input ...

♦ Bulk Data Section

Analyze

Entire Model

Analysis Deck

prob8

♦ FREQUENCY RESPONSE

Direct	
Coupled	
.00259	
0.06	

RLOAD2,500,600, , ,310 Bulk Data Section: (Each line in the box is a separate line to TABLED4,310,0.,1.,0.,10000., input!) +,0.,0.,-39.4784,ENDT DAREA,600,11,3,25.8799 ◆ Case Control Section DLOAD=500 Case Control Section: OK Subcase Create... Available Subcases frequency_response Subcase Parameters... Starting Frequency 20

Ending Frequency

of Freq. Increments

OK

Output Requests...

under Output Request highlight:

SPCFORCES(SORT1,Real)=All FEM

Delete	
OK	
Apply	
Cancel	
Subcase Select	•••

Subcases Selected: click on

Subcases for Solution Sequence: 108 click on

Default

frequency_response

MSC/NASTRAN 102 Exercise Workbook

An MSC/NASTRAN input file called **prob8.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN Users should proceed to step 10.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data previously stated. The result should be similar to the output below.

9. MSC/NASTRAN input file: prob8.dat

```
ID SEMINAR, PROB8
SOL 108
TIME 30
CEND
TITLE= FREQUENCY RESPONSE DUE TO .1 DISPLACEMENT AT TIP
SUBTITLE= DIRECT METHOD
ECHO= UNSORTED
SPC= 1
SET 111= 11, 33, 55
DISPLACEMENT(PHASE, SORT2) = 111
SDISP(PHASE, SORT2) = ALL
set 222 = 11
OLOAD = 222
SUBCASE 1
DLOAD= 500
FREQUENCY= 100
Ŝ
OUTPUT (XYPLOT)
$
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE
XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASE
XYPLOT DISP RESPONSE / 33 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASE
XYPLOT DISP RESPONSE / 55 (T3RM, T3IP)
Ś
BEGIN BULK
$
```

```
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM, G, 0.06
$
$ APPLY UNIT DISPLACEMENT AT TIP POINT
$
CMASS2, 5000, 1.0E+5, 11, 3
$
RLOAD2, 500, 600, , ,310
$
TABLED4, 310, 0., 1., 0., 10000.,
,0., 0., -39.4784, ENDT
$
DAREA, 600, 11, 3, 25.8799
$
$ SPECIFY FREQUENCY STEPS
$
FREQ1, 100, 20., 20., 49
$
ENDDATA
```

Submitting the input file for analysis:

- 10. Submit the input file to MSC/NASTRAN for analysis.
 - 10a. To submit the MSC/PATRAN **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob8.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 10b. To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob8 scr=yes. Monitor the run using the UNIX ps command.
- 11. When the run is completed, use **plotps** utility to create a postscript file, **prob8.ps**, from the binary plot file **prob8.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 8.2 to 8.7.
- 12. Edit the **prob8.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

13. While still editing **prob8.f06**, search for the word:

XY-OUTPUT SUMMARY (spaces are necessary). Displacement at Grid 11 Frequency (X) Displacement (Y) 140 = _____ 380 = _____ Displacement at Grid 33 Frequency (X) Displacement (Y) 140 =600 = Displacement at Grid 55 Frequency (X) Displacement (Y) 140 =1000 = _____

Comparison of Results

Compare the results obtained in the .f06 file with the results on the following page:

XY-OUTPUT SUMMARY (RESPONSE)

SUBCASE	CURVE	FRAME		XMIN-FRAME/	XMAX-FRAME/	YMIN-FRAME/	X FOR	YMAX-FRAME/	X FOR
ID	TYPE	NO.	CURVE ID.	ALL DATA	ALL DATA	ALL DATA	YMIN	ALL DATA	YMAX
1 E	DISP	1	11(5,)	2.00000E+01	1.00000E+03	9.992202E-02	3.600000E+02	9.992512E-02	2.00000E+0
				2.00000E+01	1.00000E+03	9.992202E-02	3.600000E+02	9.992512E-02	2.00000E+01
1 E	DISP	1	11(, 11)	2.00000E+01	1.00000E+03	7.680080E-07	1.00000E+03	3.828149E-04	3.800000E+02
				2.00000E+01	1.00000E+03	7.680080E-07	1.00000E+03	3.828149E-04	3.800000E+02
1 E	DISP	2	33(5,)	2.00000E+01	1.00000E+03	2.312926E-03	6.00000E+02	8.446401E-01	3.800000E+02
				2.00000E+01	1.00000E+03	2.312926E-03	6.00000E+02	8.446401E-01	3.800000E+02
1 E	DISP	2	33(, 11)	2.00000E+01	1.00000E+03	3.348117E-01	9.799999E+02	3.599947E+02	2.00000E+01
				2.00000E+01	1.00000E+03	3.348117E-01	9.799999E+02	3.599947E+02	2.00000E+01
1 E	DISP	3	55(5,)	2.000000E+01	1.00000E+03	2.434351E-02	1.00000E+03	1.624350E+00	3.800000E+02
				2.000000E+01	1.00000E+03	2.434351E-02	1.00000E+03	1.624350E+00	3.800000E+02
1 E	DISP	3	55(, 11)	2.000000E+01	1.00000E+03	3.690138E+00	1.00000E+03	3.599892E+02	2.00000E+01
				2.000000E+01	1.000000E+03	3.690138E+00	1.00000E+03	3.599892E+02	2.000000E+01

14. MSC/NASTRAN Users have finished this exercise. MSC/ PATRAN Users should proceed to the next step.

15. Proceed with the Reverse Translation process, that is importing the **prob8.op2** results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method:

Select Results File...

Select Results File

OK Apply

16. Plot the results in XY plots.

The first plot is to make the Displacement versus Frequency plot at Node 11.

◆ Results

Form Type:

Select Result Cases (Highlight all cases.)

Get Results

Select Result

Plot Type:

Plot Type Options...

Result XY Plot Types

Global Var...

Global Variable:

Apply

Result (Y)...

Advanced

1.1-Displacements, Translational

XY Plot

Results Versus Global Variables

1-Frequency

Figure 8.2-Displacement Response at Node 11.

Apply

The next step is to make the plot of Phase versus Frequency. Return to the *Results Display* form. If the *Curves for XY Plot* form and the *Result XY Plot Options* form are still open, close them by pushing the **Cancel** button.

Plot Type Options	
Result (Y)	
Results:	1.1-Displacements, Translational
Vector Component	$\Box X \Box Y \blacksquare Z$
Numerical Form for Complex Results	■ Phase
ОК	
Node IDs	Node 11
Apply	
Result XY Window Name:	XYWindow2
New Title or Title Filter	Phase vs Frequency at Node 11
Rename	
Apply	

Figure 8.3-Phase Angle at Node 11

MSC/NASTRAN 102 Exercise Workbook

Repeat the above steps of plotting the XY plots of Grids 11 for Node 33 and 55. Once again, push **Cancel** to remove any miscellaneous forms until the *Results Display* form.

Plot Type Options...

Result (Y)...

Numerical Form for Complex Results ■ Mag.

Node 33

OK

Node IDs

Apply...

Result XY Window Name:

New Title or Title Filter

XYWindow3]
Displacement vs F at Node 33	requency

Rename

Apply

MSC/NASTRAN 102 Exercise Workbook

Quit MSC/PATRAN when you have completed this exercise.