
WORKSHOP PROBLEM 2b

Geometric Nonlinear Analysis of Cantilever Beam



Objectives:

- Demonstrate the use of geometric nonlinear analysis
- Determine the behavior of the cantilever beam under four increasing load magnitudes.
- Create an accurate deformation plot of the model.
- Create a plot of displacement vs. distance for all the subcases.
- Create a plot of the load factor vs. displacement.

Model Description:

For the structure below:

Add Case Control commands and Bulk Data Entries to:

- Perform a geometric nonlinear analysis.
- 2. Determine the behavior of the cantilever beam for the following four load cases:
 - 1) P = 2000
 - 2) P = 4000
 - 3) P = 6000
 - 4) P = 8000

Suggested Exercise Steps:

- Modify the existing MSC/NASTRAN input file by adding the appropriate nonlinear static analysis control parameters.
- Prepare the model for a nonlinear static analysis (SOL 106).
 - PARAM, LGDISP, 1
- Insert all relevant nonlinear static analysis parameters for both case control and subcases (NLPARM).
- Generate an input file and submit it to the MSC/NASTRAN solver for nonlinear static analysis.
- Review the results.

Input File from Workshop 2a for Modification: prob2a.dat

```
ASSIGN OUTPUT2 = 'prob2a.op2', UNIT = 12
ID NAS103, WORKSHOP 2A SOLUTION
SOL 101
TIME 10
CEND
TITLE = TRACE LARGE DEFLECTION OF A CANTILEVERED BEAM
SUBTITLE=REF.: BISSHOPP AND DRUCKER; QAM 3(1):272-275; 1945
SPC=1
DISP=ALL
OLOAD=ALL
SUBCASE 10
 LOAD = 200
SUBCASE 20
 LOAD = 400
SUBCASE 30
 LOAD = 600
SUBCASE 40
 LOAD = 800
BEGIN BULK
$ GEOMETRY
GRID,1,,0.,0.,0.,,345
=,*(1),=,*(1.),==$
=(9)
GRID,100,,0.,0.,1.,,123456
$ CONNECTIVITY
CBEAM,101,1,1,2,100
=,*(1),=,*(1),*(1),==$
=(8)
$ PROPERTIES
PBEAM,1,1,1.,1.-2,1.-2
MAT1,1,10.+6,,.3
$ CONSTRAINTS
SPC,1,1,123456
```

\$ LOADING

FORCE,11,11,,1.+4,0.,1.,0.

LOAD,200,.2,1.,11

LOAD,400,.4,1.,11

LOAD,600,.6,1.,11

LOAD,800,.8,1.,11

\$ PARAMETERS

PARAM,POST,-1

ENDDATA

Exercise Procedure:

Delete

- Users who are not utilitizing MSC/PATRAN for generating an input file should go to Step 4, otherwise, proceed to step 2.
- 2. Open the existing database called **prob2a.db**.

File/Open	
Database List	prob2a
OK	
3. Change the analysis from line	ear static to nonlinear static.
First, you will need to define parameters:	the appropriate nonlinear analysis
Click on the Analysis radio button of analysis as follows:	on the Top Menu Bar and set up the
♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method:	Analysis Deck
Job Name	prob2b
Solution Type	
Solution Type	• NONLINEAR STATIC
OK	
Subcase Create	
Available Subcases	subcase_1
Output Requests	
Form Type:	Advanced
Output Requests	STRESS(SORT

Output Requests	SPCFORCE(SORT
Delete	
Select Result Type	Applied Loads
Create	
OK	
Apply	
Repeat the above procedure to c subcases	reate the second, third, and fourth
Available Subcases	subcase_2
Output Requests	
Form Type:	Advanced
Output Requests	(Select all but DISPL ()
Delete	
Select Result Type	Applied Loads
Create	
OK	
Apply	
Now create the third subcase.	
Available Subcases	subcase_3
Output Requests	
Form Type:	Advanced
Output Requests	(Deselect all but DISPL ()
Delete	
Select Result Type	Applied Loads
Create	
OK	
Apply	

Finally, the fourth subcase.

Available Subcases subcase_4 **Output Requests... Advanced** Form Type: (Deselect all but DISPL(...) Output Requests **Delete Applied Loads** Select Result Type Create OK Apply Cancel Finally, select all the subcases. Subcase Select... Subcases for Solution Sequence subcase_1 subcase 2 $subcase_3$ subcase_4 (Select one after the other) Subcases Selected: (Deselect **Default**) OK Apply

An input file called **prob2b.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN users should now proceed to **Step 5**.

Generating an input file for MSC/NASTRAN Users:

4. MSC/NASTRAN users can generate an input file using the data from the Model Description. The result should be similar to the output below (**prob2b.dat**):

```
ASSIGN OUTPUT2 = 'prob2b.op2', UNIT = 12
ID NAS103, WORKSHOP 2B SOLUTION
SOL 106
TIME 10
CEND
TITLE = TRACE LARGE DEFLECTION OF A CANTILEVERED BEAM
SUBTITLE=REF.: BISSHOPP AND DRUCKER; QAM 3(1):272-275; 1945
SPC=1
DISP=ALL
OLOAD=ALL
NLPARM=10
SUBCASE 10
 LOAD = 200
SUBCASE 20
 LOAD = 400
SUBCASE 30
 LOAD = 600
$
SUBCASE 40
 LOAD = 800
$
BEGIN BULK
$ GEOMETRY
GRID,1,,0.,0.,0.,345
=,*(1),=,*(1.),==$
=(9)
GRID,100,,0.,0.,1.,,123456
$ CONNECTIVITY
CBEAM, 101, 1, 1, 2, 100
=,*(1),=,*(1),*(1),==$
=(8)
$ PROPERTIES
PBEAM,1,1,1.,1.-2,1.-2
MAT1,1,10.+6,,.3
$ CONSTRAINTS
SPC,1,1,123456
```

\$ LOADING

FORCE,11,11,,1.+4,0.,1.,0.

LOAD,200,.2,1.,11

LOAD,400,.4,1.,11

LOAD,600,.6,1.,11

LOAD,800,.8,1.,11

\$ PARAMETERS

PARAM, POST,-1

PARAM,LGDISP,1

NLPARM,10,10

ENDDATA

Submit the input file for analysis:

- 5. Submit the input file to MSC/NASTRAN for analysis.
 - 5a. To submit the MSC/PATRAN .bdf file, find an available UNIX shell window. At the command prompt enter nastran prob2b.bdf scr=yes. Monitor the analysis using the UNIX ps command.
 - 5b. To submit the MSC/NASTRAN .dat file, find an available UNIX shell window and at the command prompt enter nastran prob2b.dat scr=yes. Monitor the analysis using the UNIX ps command.
- 6. When the analysis is completed, edit the **prob2b.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 6a. While still editing **prob2b.f06**, search for the word:

DISPLACE (spaces are necessary).

What is subcase?	the y-displacement of Node 11 for the first
T2 =	
What is subcase?	the y-displacement of Node 11 for the second
T2 =	
What is subcase?	the y-displacement of Node 11 for the third
T2 =	
What is subcase?	the y-displacement of Node 11 for the fourth
T2 =	

Comparison of Results:

7. Compare the results obtained in the **.f06** file with the results on the following page:

DISPLACEMENT VECTOR

2				DI	SPLAC	EMENT VEC	I O R	
2 b- 1 POIN	T ID.	TYPE	T1	Т2	Т3	R1	R2	R3
4	11	G	-1.605319E+00	4.941084E+00	0.0	0.0	0.0	7.820106E-01
ΔS_{N}	100	G				0.0		
\S_1	TRACE	LARGE D	EFLECTION OF A CA	NTILEVERED BEAN	M		MAY 28, 1997	MSC/NASTRAN 5
IAS								
TR				DIS	PLACE	MENT VECT	O R	
MSC/NASTRAN 103 Exercise Workbook							_	
POIN	T ID.	TYPE	T1	Т2	Т3	R1	R2	R3
23	11	G	-3.288413E+00	6.712009E+00	0.0	0.0	0.0	1.121878E+00
Ex	100	G	0.0	0.0	0.0	0.0	0.0	0.0
$\frac{c}{c}$ 1	TRACE	LARGE D	EFLECTION OF A CA	ANTILEVERED BEA	M		MAY 28, 1997	MSC/NASTRAN
ise								
Wc				DI	SPLAC	EMENT VEC'	ľ O R	
řk po ry	m TD	mvp n	m1	m2	m2	D.1	7.0	T) 2
8 POTM	IT ID.	TYPE	TT	TZ	13	R1 0.0	R2	K3
K	11	G	-4.345254E+UU	7.462511E+UU	0.0	0.0	0.0	1.284553E+UU
	100	G	0.0	0.0	0.0	0.0	0.0	0.0
1	TRACE	LARGE D	EFLECTION OF A CA	NTILEVERED BEAN	A .		MAY 28, 1997	MSC/NASTRAN 7
				ЪТ		EMENT VEC'	r O D	
				D I i	БРЦАС	EMENI VEC	IOR	
POIN	T ID.	TYPE	Т1	Т2	Т3	R1	R2	R3
	11	G	-5.047949E+00	7.870426E+00	0.0	0.0	0.0	1.375393E+00
	100	G	0.0	0.0	0.0	0.0	0.0	0.0
1	TRACE	LARGE D	EFLECTION OF A CA	ANTILEVERED BEA	M		MAY 28, 1997	MSC/NASTRAN

8.	This ends the exercise for MSC/NASTRAN users
	MSC/PATRAN users should proceed to the next
	step.

9.	Open a	new da	atabase	to	import	the	results	into
<i>)</i> .	Open a	new a	atabase	w	mport	uic	ICSUILS	mu.

First, close the present database.

File/0	Close
--------	-------

Next, open a new database titled prob2b.db

File/New	
rne/ivew	
New Database Name:	prob2b
OK	
In the New Model Preference form	n set the following:
Tolerance:	● Default
Analysis Code:	MSC/NASTRAN
Analysis Type:	Structural
OK	
To do this, return to the An follows: • Analysis	arysis form and proceed
Action:	Read Output2
Object:	Both
Method:	Translate
Select Results File	
Selected Results File:	prob2b.op2
ОК	
Apply	

When the translation is complete and the Heartbeat turns green, bring up the **Results** form. Now we will generate the fringe plot of the model. **♦** Results Action: Create Object: **Fringe** Now click on the Select Results icon. **Select Results** subcase_4, PW Linear... Select Result Case(s) **Displacements, Translational** Select Fringe Result Quantity: Magnitude Next click on the **Target Entities** icon. **Target Entities Current Viewport** Target Entity: Click on the **Display Attributes** icon. **Display Attributes** Discrete/Smooth Style: Display: Free Edges For better visual quality of the fringe plot, change the width of the line.

(Select the third line from top.)

Width:

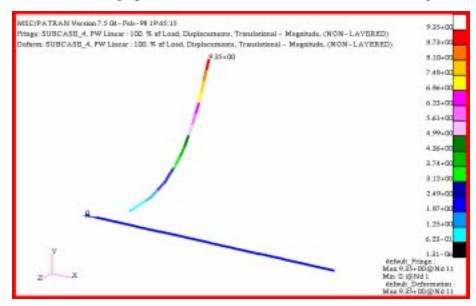
Now click on the **Plot Options** icon.

Plot Options

Coordinate Transformation:	None	
Scale Factor	1.0	
Apply		
The resulting fringe plot should disuperimposed over the undeform displaying the physical deformatio follows:	ned bar. The final fringe plot	
♦ Results		
Action:	Create	
Object:	Deformation	
Now click on the Select Resu	lts icon.	
Select Resu	ılts	
Select Result Case(s)	subcase_4, PW Linear	
Select Fringe Result	Displacements, Translational	
Show As:	Resultant	
Click on the Display Attribu	tes icon.	
Display Attributes		
In order to see the deformation Interpretation to True Scale w	on results accurately, set the Scale ith a Scale Factor of 1.	
Scale Interpretation	True Scale	
Scale Factor	1.0	
■ Show Undeformed		

Line Width:

(Select the third line from top.)


Now click on the Plot Options icon

Coordinate Transformation: None
Scale Factor 1.0

Apply

Your resulting plot should look similar to the following.

You can see the physical deformation of the model as well as the amount of deformation from the fringe plot.

To better fit the results on the screen, zoom out a couple times using the following toolbar icon:

Alternatively, use any number of the toolbar icons to better view the resulting fringe plot.

Notice that the deformation of the beam is much more reasonable. This is a result of using a nonlinear static analysis, which acounts for large displacements.

Click the **Reset Graphics** icon to clear the post-processing results and obtain the original model in the viewport.

Reset Graphics

11. Create an XY plot of Displacement vs. Distance for all four subcases.

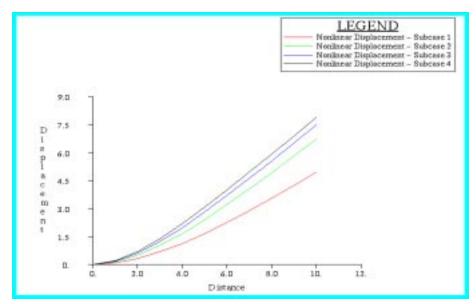
First create a XY plot for the first subcase.

♦ Results			
Action:	Create		
Object:	Graph		
Method:	Y vs X		
Select all the Result Cases by highl	ighting them.		
Select Result Case(s)	subcase_1, PW Linear: 100.% of Load		
<i>Y</i> :	Result		
Select Y Result	Displacements, Translational		
Quantity:	Y Component		
<i>X</i> :	Coordinate		
Select Coordinate Axis	Coord 0.1		
Next click on the Target Entities icon.			
Target Ent	ities		
Target Entity:	Nodes		
Select Nodes	Node 1:11 (Select nodes along length of beam.)		

Click on the **Display Attributes** icon.

■ Show X Axis Label			
X Axis Label:	Distance		
X Axis Scale	● Linear		
X Axis Format			
Label Format:	Fixed		
OK			
■ Show Y Axis Label			
Y Axis Label:	Displacements		
Y Axis Scale	● Linear		
Y Axis Format			
Label Format:	Fixed		
OK			
■ Append Curves in XY Windo	W		
Now alick on the Plot Ontions icon			
Now click on the Plot Options icon			
Plot Options			
Coordinate Transformation:	None		
Scale Factor	1.0		
Apply			
пррту			
Now change the title in the Legen subcases by selecting the related	d. Later, change the title of the other graph under Curve List.		
♦ XY Plot			
Action:	Modify		
Object:	Curve		
Curve List	default GraphResults Graph 0		

Title... Curve Title Text Nonlinear Displacement -Apply


Subcase 1

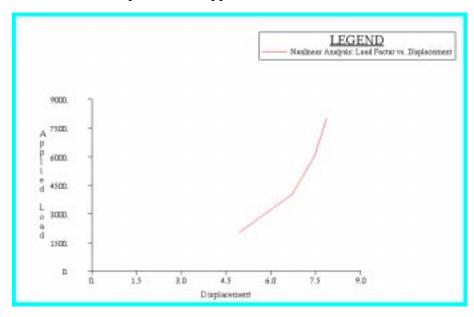
Cancel

Repeat the above procedure for the remaining subcases with only one difference. Under the **Display Attributes** window in the **Results** form, click *on* the **Append Curves in XY Window** as shown below.

■ Append Curves in XY Window

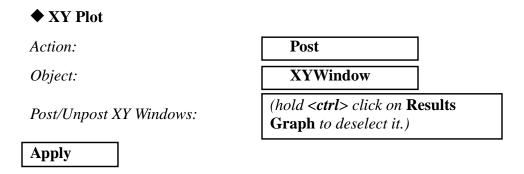
The following XY plot should resemble yours. It contains four curves one for each of the subcases

When done viewing, delete the XY plot by doing the following:


♦ XY Plot Post Action: Object: **XYWindow** (hold **<ctrl>** click on **Results** Post/Unpost XY Windows: **Graph** to deselect it.)

Apply			
12. Create an XY plot of Load F	actor vs. Displacement.		
♦ Results			
Action:	Create		
Object:	Graph		
Method:	Y vs X		
Select Result Case(s)	(Select all cases.)		
<i>Y</i> :	Result		
Select Y Result	Applied Loads, Translational		
Quantity:	Y Component		
X:	Result		
Select X Result			
Select X Result	Displacements, Translational		
Quantity:	Y Component		
OK			
Next click on the Target Entities icon.			
Target Entities			
Target Entity:	Nodes		
Select Nodes	Node 11 (Select node at end of beam.)		
Click on the Display Attributes icon.			
Display Attributes			

■ Show	X	Axis	La	bel	L
--------	---	------	----	-----	---


X Axis Format				
Label Format:	Fixed			
OK				
■ Show Y Axis Label				
Y Axis Label:	Applied Load			
Y Axis Scale	• Linear			
Y Axis Format				
Label Format:	Fixed			
OK				
□Append Curves in XY Window				
Now click on the Plot Options icon				
Plot Options				
Coordinate Transformation:	None			
Scale Factor	1.0			
Apply				
Now change the title in the Legend.				
♦ XY Plot				
Action:	Modify			
Object:	Curve			
Curve List	default_GraphResults Graph 0			
Title				
Curve Title Text	Nonlinear Analysis: Load Factor vs. Displacement			
Apply				
Cancel				

The second XY plot should appear as follows:

Notice that there is no longer a linear relationship between the displacement and the load factor.

When done viewing, delete the XY plot by doing the following:

Quit MSC/PATRAN when you have completed this exercise.

MSC/PATRAN .bdf file: prob2b.bdf

```
$ NASTRAN input file created by the MSC MSC/NASTRAN input file
$ translator (MSC/PATRAN Version 7.5) on January 15, 1998 at
$ 13:21:45.
ASSIGN OUTPUT2 = 'prob2b.op2', UNIT = 12
$ Direct Text Input for File Management Section
$ Nonlinear Static Analysis, Database
SOL 106
TIME 600
$ Direct Text Input for Executive Control
CEND
SEALL = ALL
SUPER = ALL
TITLE = MSC/NASTRAN job created on 15-Jan-98 at 13:07:43
ECHO = NONE
MAXLINES = 999999999
$ Direct Text Input for Global Case Control Data
SUBCASE 1
$ Subcase name: subcase_1
 SUBTITLE=subcase_1
 NLPARM = 1
 SPC = 2
 LOAD = 2
 DISPLACEMENT(SORT1,REAL)=ALL
 OLOAD(SORT1,REAL)=ALL
$ Direct Text Input for this Subcase
SUBCASE 2
$ Subcase name : subcase_2
 SUBTITLE=subcase_2
 NLPARM = 2
 SPC = 2
 LOAD = 4
 DISPLACEMENT(SORT1,REAL)=ALL
 OLOAD(SORT1,REAL)=ALL
$ Direct Text Input for this Subcase
SUBCASE 3
$ Subcase name : subcase_3
 SUBTITLE=subcase_3
 NLPARM = 3
 SPC = 2
 LOAD = 6
 DISPLACEMENT(SORT1,REAL)=ALL
```

```
SPCFORCES(SORT1,REAL)=ALL
 STRESS(SORT1,REAL,VONMISES,BILIN)=ALL
$ Direct Text Input for this Subcase
SUBCASE 4
$ Subcase name: subcase_4
 SUBTITLE=subcase_4
 NLPARM = 4
 SPC = 2
 LOAD = 8
 DISPLACEMENT(SORT1,REAL)=ALL
 SPCFORCES(SORT1,REAL)=ALL
 STRESS(SORT1,REAL,VONMISES,BILIN)=ALL
$ Direct Text Input for this Subcase
BEGIN BULK
PARAM POST -1
PARAM PATVER 3.
PARAM AUTOSPC NO
PARAM COUPMASS -1
PARAM K6ROT 100.
PARAM WTMASS 1.
PARAM LGDISP 1
PARAM, NOCOMPS,-1
PARAM PRTMAXIM YES
NLPARM 1
             10
                     AUTO 5
                                 25
                                     PW
                                           NO
                                               +
                                                    Α
   Α
         .001 1.-7
NLPARM 2
             10
                                     PW
                     AUTO 5
                                 25
                                           NO
                                                    В
   В
         .001 1.-7
NLPARM 3
             10
                     AUTO 5
                                 25
                                     PW
                                           NO
                                                    \mathbf{C}
                                               +
   C
         .001 1.-7
NLPARM 4
             10
                     AUTO 5
                                 25
                                     PW
                                           NO
                                                    D
         .001 1.-7
   D
$ Direct Text Input for Bulk Data
$ Elements and Element Properties for region : beam
PBEAM 1
           1
                1.
                     .01
                         .01
                                             Ε
                                         +
   Ε
                                       F
   F YES
                   .01
                        .01
          1. 1.
                                            G
   G
                     2
CBEAM 1
            1
                 1
                         100
CBEAM 2
                 2
            1
                     3
                         100
                 3
CBEAM 3
                     4
                         100
CBEAM 4
            1
                 4
                     5
                         100
CBEAM 5
                 5
            1
                     6
                         100
                     7
CBEAM 6
                 6
                         100
CBEAM 7
                 7
                     8
                         100
            1
CBEAM 8
            1
                 8
                     9
                         100
```

```
CBEAM 9
              1
                  9
                       10
                            100
CBEAM 10
                   10
                        11
                             100
$ Referenced Material Records
$ Material Record: mat 1
$ Description of Material : Date: 28-May-97
                                          Time: 11:45:28
MAT1
      1
            1.+7
                      .3
$ Nodes of the Entire Model
GRID
      1
                         0.
GRID
      2
                1.
                    0.
                         0.
GRID
      3
                2. 0.
                         0.
GRID
                3. 0.
      4
                         0.
GRID
      5
                4. 0.
                         0.
GRID 6
                5. 0.
                         0.
                6.
GRID
      7
                    0.
                         0.
GRID 8
                7.
                    0.
                         0.
GRID
      9
                8.00000 0.
                           0.
GRID
      10
                9.00000 0.
GRID
       11
                10.
                     0.
                          0.
                     0.
GRID
      100
                 0.
$ Loads for Load Case: subcase_1
SPCADD 2
              10 12
LOAD 2
            1. 1. 1
$ Loads for Load Case: subcase_2
LOAD 4
            1. 1.
$ Loads for Load Case: subcase 3
LOAD 6
            1. 1.
$ Loads for Load Case: subcase_4
                 1.
LOAD 8
$ Displacement Constraints of Load Set: constraint_1
           123456 1
SPC1 10
                        100
$ Displacement Constraints of Load Set : constraint_2
      12
            345 1
                      THRU 11
SPC1
$ Nodal Forces of Load Set : force_1
FORCE 1
             11
                  0
                      2000. 0.
                                      0.
$ Nodal Forces of Load Set : force_2
FORCE 3
            11
                  0
                      4000. 0.
                                      0.
$ Nodal Forces of Load Set: force 3
FORCE 5 11
                  0
                      6000. 0.
$ Nodal Forces of Load Set: force 4
FORCE 7
            11
                  0
                      8000. 0.
                                      0.
$ Referenced Coordinate Frames
ENDDATA 1e925697
```