WORKSHOP PROBLEM 4a

Linear Buckling Load Analysis (without spring)

4a-2 MSC/NASTRAN 103 Exercise Workbook

Model Description:

WORKSHOP 4a

For the structure below:

Add Case Control commands and Bulk Data Entries to:

1. Calculate the buckling load without a spring.

Suggested Exercise Steps:

- Modify the existing MSC/NASTRAN input file by adding the appropriate loading conditions and buckling analysis control parameters.
- Prepare the model for a linear buckling analysis (SOL105).
- For Case Control, insert the static load set selection (LOAD) and buckling set (EIGB) in subcases.
- For Bulk Data, comment out all references to the spring element (CELAS), (PELAS), and insert all the appropriate buckling analysis parameters (EIGB).
- Generate an input file and submit it to the MSC/NASTRAN solver for a linear buckling analysis.
- Review the results.

Input File for Modification:

prob4a.dat

ID NAS103, WORKSHOP 4A **TIME 10** CEND TITLE=SIMPLE ONE DOF GEOMETRIC NONLINEAR PROBLEM LABEL=REF: STRICKLIN AND HAISLER; COMP. AND STRUCT.; 7:125-136 (1977) ECHO=UNSORT DISP(SORT2)=ALL **BEGIN BULK** PARAM,POST,0 \$ **\$ GEOMETRY** \$ GRID, 1, , 0., 0., 0., , 123456 GRID, 2, , 100., 1., 0., , 13456 \$ **\$ CONNECTIVITY** \$ CROD, 10, 10, 1, 2 CELAS1, 20, 20, 2, 2, 0, 0 \$ **\$ PROPERTIES** \$ PROD, 10, 1, .1 PELAS, 20, 3. MAT1, 1, 10.E7 \$ \$ LOADS \$ FORCE, 6, 2, , -6., 0., 1., 0. \$ **\$ SOLUTION STRATEGY** \$

ENDDATA

Exercise Procedure:

- 1. Users who are not utilitizing MSC/PATRAN for generating an input file should go to Step 11, otherwise, proceed to step 3.
- 2. Create a new database called **prob4a.db**.

File/New...

New Database Name:

prob4a

OK

In the New Model Preference form set the following:

Tolerance:

Analysis Code:

Analysis Type:

OK

3. Those who do not wish to set up the model themselves may want to play the session file, **prob4a.ses**. If you choose to build the model yourself, proceed to the step 4.

File/Session/Play...

Session File List:

prob4.ses

Apply

The model has now been created. Skip to Step 10.

Whenever possible click \Box Auto Execute (turn off).

4. Create the long beam.

♦ Geometry

Action:

Object:

Method:

Vector Coordinate List:

Create	
Curve	
XYZ	
<100, 1, 0>	

Apply

5. Mesh the curve with one BAR2 element

♦ Finite Elements

Action:	Create
Object:	Mesh
Type:	Curve
Global Edge Length:	100
Element Topology:	Bar2
Curve List:	Curve 1
	(Select the curve.)

Apply

For clarity, increase the node size using the following toolbar icon.

6. Create the material property for the beam.

♦ Materials

Action:

Object:

Method:

Material Name

Input Properties...

Elastic Modulus =

Isotropic

Manual Input

Create

mat_1

10.E7

Apply	
Cancel	

7. Create the property for the beam.

Properties

Action:

MSC/NASTRAN 103 Exercise Workbook 4a-7

Dimension:

Type:

Property Set Name:

Input Properties...

Material Name

Area

OK

Select Members

1D Rod beam

m:mat_1 0.1

Curve 1
(Select the curve.)

Add	
Apply	

8. Create the LBCs for the model.

First, fix the left end of the beam.

♦ Loads/BCs

Action:

Object:

Method:

New Set Name

Input Data...

Translation < T1 T2 T3 >

Rotation < R1 R2 R3 >

OK

Select Application Region...

Select Geometry Entities

Add
ОК
Apply

Create	
Displacement	-

Nodal

constraint_1

< 0, 0, 0 >	
< 0, 0, 0 >	

(Select point at left of beam.)

Next, create the guided support LBC at the right end (free in y-direction, and fixed in all other DOFs).

New Set Name:	constraint_2
Input Data	
Translation < T1 T2 T3 >	< 0, , 0 >
Rotation < R1 R2 R3 >	< 0, 0, 0 >
ОК	
Select Application Region	
Select Geometry Entities	(Select point at right of beam.)
Add	

Appl	у				
9.	Create	the loadir	ng for	the mo	odel.

♦ Loads/BCs

Action:

OK

Object:

Method:

New Set Name

Input Data...

Force <*F1 F2 F3*>

OK

Select Application Region...

Select Geometry Entities

Create	
Force	
Force	
Nodal	
rtouur	
load_1	

< 0, -6, 0>

(Select point at right of beam.)

MSC/NASTRAN 103 Exercise Workbook 4a-9

10. Now you are ready to generate an input file for analysis.

Click on the Analysis radio button on the Top Menu Bar and set up the subcases as follows:

♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method:	Analysis Deck
Job Name	prob4a
Solution Type	
Solution Type:	• BUCKLING
Solution Parameters	
EigenValue Extraction	
Extraction Method:	Inverse Power
Lower =	0.0
Upper =	3.0
Estimated Number of Roots:	20
Number of Desired Positive Roots:	2
Number of Desired Negative Roots:	2
ОК	
ОК	
ОК	
OK Subcase Create	
OK Subcase Create Available Subcases:	Default
OK Subcase Create Available Subcases: Output Requests	Default
OK Subcase Create Available Subcases: Output Requests Form Type:	Default Advanced
OK Subcase Create Available Subcases: Output Requests Form Type: Output Requests:	Default Advanced SPCFORCES (SORT 1
OK Subcase Create Available Subcases: Output Requests Form Type: Output Requests: Delete	Default Advanced SPCFORCES (SORT 1

4a-10 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 4a

y Freq/Inne

An input file called **prob4a.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN users should now proceed to **Step 12**.

Generating an input file for MSC/NASTRAN Users:

```
11. MSC/NASTRAN users can generate an input file using the data from the Model Description. The result should be similar to the output below (prob4a.dat):
```

```
ASSIGN OUTPUT2 = 'prob4a.op2', UNIT=12
ID NAS103, WORKSHOP 4A SOLUTION
TIME 10
SOL 105
CEND
TITLE=SIMPLE ONE DOF GEOMETRIC NONLINEAR PROBLEM
LABEL=REF: STRICKLIN AND HAISLER; COMP. AND STRUCT.; 7:125-136 (1977)
ECHO=UNSORT
DISP(SORT2)=ALL
SUBCASE 10
 LOAD=6
SUBCASE 20
 METHOD=30
BEGIN BULK
PARAM, POST, 0
$
$ GEOMETRY
$
GRID, 1, , 0., 0., 0., , 123456
GRID, 2, , 100., 1., 0., , 13456
$
$ CONNECTIVITY
CROD, 10, 10, 1, 2
$CELAS1, 20, 20, 2, 2, 0, 0
$
$ PROPERTIES
$
PROD, 10, 1, .1
$PELAS, 20, 3.
MAT1, 1, 10.E7
$
$ LOADS
$
FORCE, 6, 2, , -6., 0., 1., 0.
$
$ SOLUTION STRATEGY
$
EIGB, 30, INV, 0.0, 3.0, 20, 2, 2, , +EIGB
+EIGB. MAX
ENDDATA
```

4a-12 MSC/NASTRAN 103 Exercise Workbook

Submit the input file for analysis:

- 12. Submit the input file to MSC/NASTRAN for analysis.
 - 12a. To submit the MSC/PATRAN .bdf file, find an available UNIX shell window. At the command prompt enter nastran prob4a.bdf scr=yes. Monitor the analysis using the UNIX ps command.
 - 12b. To submit the MSC/NASTRAN .dat file, find an available UNIX shell window and at the command prompt enter **nastran prob4a.dat scr=yes**. Monitor the analysis using the UNIX **ps** command.
- 13. When the analysis is completed, edit the **prob4a.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 13a. While still editing **prob4a.f06**, search for the word:

REAL EIGENVALUES (spaces are necessary).

What is the first eigenvalue obtained from the analysis?

EIG =

What is the critical buckling load (eigenvalue * applied load)?

 $P_{cr} =$

While still editing **prob4a.f06**, search for the word:

DISPLACEMENTS (spaces are necessary).

What is the y-displacement of Node 2?

T2 =

MSC/NASTRAN 103 Exercise Workbook 4a-13

Comparison of Results:

14. Compare the results obtained in the **.f06** file with the results on the following page:

POINT-II	D = 2	1				0.5	
			DIS	РЬАСЕМ	ENI VECI	O R	_
SUBCASE	TYPE	Τ1	Т2	Т3	Rl	R2	R3
10	G	0.0	-6.000900E-01	0.0	0.0	0.0	0.0
			REZ	AL EIG	ENVALUES		
MODE	EXTRACTION	EIGENVALUE	RADI	ANS	CYCLES	GENERALIZED	GENERALIZED
NO.	ORDER					MASS	STIFFNESS
1	1	1.666583E+0	0 1.29096	52E+00	2.054630E-01	5.999400E+00	9.998501E+00

This ends the exercise for MSC/NASTRAN users. 15. MSC/PATRAN users should proceed to the next step.

16. Proceed with the Reverse Translation process, that is, importing the prob4a.op2 results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows:

Analysis

Action:

Object:

Method:

Select Results File...

Selected Results File

Read Output2
Result Entities
Translate

prob4a.op2

OK Apply

> 17. When the translation is complete bring up the **Results** form.

Now we will generate the fringe plot of the model.

♦ Results

Action: **Object:**

Create Fringe

Now click on the Select Results icon.

Select Results

Select Result Case(s) Select Fringe Result Quantity:

Default, Static Subcase Displacements, Translational

Magnitude

Next click on the Target Entities icon.

Target Entities

Target Entity:

WORKSHOP 4a

Current Viewport

Note: This feature allows you to view fringe plots of specific elements of your choice.

Click on the **Display Attributes** icon.

Display Attributes

Style:

Display:

Discrete/Smooth

Free Edges

For better visual quality of the fringe plot, change the width of the line.

Width:

(Select the third line from top.)

Note: The **Display Attributes** form allows you the ability to change the displayed graphics of fringe plots.

Now click on the Plot Options icon.

Coordinate Transformation:

None	
1.0	

Scale Factor

Apply

The resulting fringe plot should display the displacement spectrum superimposed over the undeformed bar. The final fringe plot displaying the physical deformation of the model can be created as follows:

Action:

Object:

Create
Deformation

MSC/NASTRAN	103	Exercise	Workbook	4a-17
-------------	-----	----------	----------	-------

Now click on the Select Results icon.

Select Results

Select Result Case(s)
Select Fringe Result
Show As:

Default, Static Subcase Displacements, Translational		

Click on the **Display Attributes** icon.

Display Attributes

Line Width:

(Select the third line from top.)

In order to see the deformation results accurately, set the Scale Interpretation to True Scale with a Scale Factor of 1.

Scale Interpretation

• True Scale

■ Show Undeformed

Line Width:

Scale Factor

(Select the third line from top.)

Now click on the Plot Options icon

Coordinate Transformation:

Scale Factor

None 1.0

Apply

As seen from the fringe values that the beam has a maximum downward deflection of 0.600. Since the load is less than the calculated load, the beam does not "snap-throught" the maximum compression (deflection=1).

To clear the post-processing results and obtain the original model in the viewport, select the **Reset Graphics** icon.

Reset Graphics

Quit MSC/PATRAN when you have completed this exercise.

MSC/PATRAN .bdf file: prob4a.bdf

\$ NASTRAN input file created by the MSC MSC/NASTRAN input file \$ translator (MSC/PATRAN Version 7.5) on January 15, 1998 at \$ 14:12:46. ASSIGN OUTPUT2 = 'prob4.op2', UNIT = 12 \$ Direct Text Input for File Management Section \$ Buckling Analysis, Database SOL 105 **TIME 600** \$ Direct Text Input for Executive Control CEND SEALL = ALLSUPER = ALLTITLE = MSC/NASTRAN job created on 15-Jan-98 at 14:11:15 ECHO = NONE MAXLINES = 999999999 \$ Direct Text Input for Global Case Control Data SUBCASE 1 \$ Subcase name : Default SUBTITLE=Default SPC = 2LOAD = 2DISPLACEMENT(SORT2,REAL)=ALL SUBCASE 2 \$ Subcase name : Default SUBTITLE=Default SPC = 2METHOD = 1\$ Direct Text Input for this Subcase **BEGIN BULK** PARAM POST -1 PARAM PATVER 3. PARAM AUTOSPC YES PARAM COUPMASS -1 PARAM K6ROT 0. PARAM WTMASS 1. PARAM, NOCOMPS, -1 PARAM PRTMAXIM YES EIGB 1 INV 0. 20 2 2 3. + A A MAX +\$ Direct Text Input for Bulk Data \$ Elements and Element Properties for region : beam PROD 1 1 .1 CROD 1 1 1 2 **\$** Referenced Material Records

4a-20 MSC/NASTRAN 103 Exercise Workbook

Buckling Load Analysis

WORKSHOP 4a

\$ Material Record : mat_1 \$ Description of Material : Date: 11-Jun-97 Time: 11:15:21 MAT1 1 1.+8\$ Nodes of the Entire Model 0. 0. GRID 1 0. GRID 2 100. 1. 0. \$ Loads for Load Case : Default SPCADD 2 1 3 LOAD 2 1. 1. 1 \$ Displacement Constraints of Load Set : constraint_1 SPC1 1 123456 1 \$ Displacement Constraints of Load Set : constraint_2 SPC1 3 13456 2 \$ Nodal Forces of Load Set : load_1 FORCE 1 2 0 6. 0. -1. 0. \$ Referenced Coordinate Frames ENDDATA 87e89bd5

4a-22 MSC/NASTRAN 103 Exercise Workbook