APPENDIX F

Simple Lumped Mass System

Objectives:

- Model a simple lumped mass system using beam elements and point elements.
- Apply the proper constraints to the model to ensure stability during analysis.
- Calculate the first two modes of vibration for the system.

Model Description:

Simple Lumped Mass System

Remember: for a beam, $k = \frac{12EI}{L^3}$

This system can be modeled using bar elements and concentrated masses.

In order to idealize the above lumped mass system, the following assumptions are made:

1)
$$L1 = L2 = L3 = 100$$

$$E = 10.0E6$$

Thus,
$$I_1 = \frac{k_1 L^3}{12E}$$
, etc.

Purpose of Exercise:

Calculate the first two modes, where:

$$m_1 = 1.0 \frac{lb}{in} s^2$$

$$k_1 = 600.0 \frac{lb}{in}$$

$$m_2 = 1.5 \frac{lb}{in} s^2$$

$$k_2 = 1200.0 \frac{lb}{in}$$

$$m_3 = 2.0 \frac{lb}{in} s^2$$

$$k_3 = 1800.0 \frac{lb}{in}$$

Clough and Penzian:

$$\omega_1 = 14.5 \frac{\text{rad}}{\text{sec}} \phi_1 = \left\{ \begin{array}{c} 1.0 \\ 0.646 \\ 0.301 \end{array} \right\}$$

This example problem introduces normal modes analysis of a simple lumped mass system, represented by a beam with masses applied. SOL 103 is used for this analysis.

Suggested Exercise Steps:

- Open a new database.
- Create a curve and mesh it with bar elements (CBAR). Use the meshing feature so that elements and nodes (GRID) will be generated automatically by MSC/PATRAN.
- Create 3 point elements (using Finte...: Create: Element: Edit). These point elements will be needed for CONM2 assignment.
- Define material (MAT1) and element properties (PBAR). Be certain to include assumed values for Elastic Modulus and Inertia 1,1.
- Apply a fixed boundary constraint (SPC1) at one end of the beam.
- Constrain two translational D.O.F.'s (Y and Z) and three rotational D.O.F.'s at the other 3 points.
- Use the load and boundary sets to define a loadcase.
- Prepare the model for a Normal Modes analysis (SOL 103 & PARAMs).
- Generate and submit input file to the MSC/NASTRAN solver.
- Compare the result with theory.

Results:

SUBCASE 1

			REAL EIGE	NVALUES
MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES
GENERALIZED		GENERALIZED		
NO.	ORDER			
1	1	2.108789E+02	1.452167E+01	2.311195E+00
2	2	9.639604E+02	3.104771E+01	4.941397E+00
3	3	2.125159E+03	4.609945E+01	7.336955E+00

Sample NASTRAN Input File:

```
ID SEMINAR, Appendix F
SOL 103
TIME 60
CEND
SEALL = ALL
SUPER = ALL
TITLE = Simple Lumped Mass System
ECHO = SORT
MAXLINES = 999999999
SPC = 2
SUBCASE 1
SUBTITLE=sub_1
  METHOD = 1
  VECTOR (SORT1, REAL) = ALL
  SPCFORCES(SORT1, REAL) = ALL
BEGIN BULK
PARAM POST
               -1
PARAM PATVER 3.
       AUTOSPC YES
PARAM
PARAM COUPMASS 1
PARAM K6ROT 0.
PARAM WTMASS 1.
PARAM, NOCOMPS, -1
                               3
EIGRL 1
       1
                     0.
                             50.
PBAR
       1 1 1 1 2 1 2 1 0. 2 2 2 2 3 1 0. 3 3 3 4 1 5 2 6 3
                                           0.
                                                     0.
                                     1.
CBAR
                              2
PBAR
CBAR
                              100.
                                      1. 0.
                                                     0.
                              3
                             150.
PBAR
                                      1. 0.
                              4
                                                     0.
CBAR
CONM2
                              1.
CONM2
                              1.5
        6 3
1 1.+6
CONM2
       6
                               2.
MAT1
                              300.
GRID
GRID
                       0.
                                     0.
                       0.
                              200.
                                     0.
       3
                             99.9999 0.
                       0.
GRID
GRID 4
                       0.
                               0.
SPCADD 2
                      3
SPC1
       1
              123456 4
                       1
                            2
                                      3
               23456
SPC1
ENDDATA
```